
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 129

Abstract — Infrastructure underlying the distributed

information systems is heterogeneous and very complex.
Middleware allows the development of distributed information
systems, without knowing the functioning details of an
infrastructure, by its abstracting. An essential issue on
designing such systems is represented by choosing the
middleware technologies. An architectural model of a SCADA
system based on middleware is proposed in this paper. This
system is formed of servers that centralize data and clients,
which receive information from a server, thus allowing the
chart displaying of such information. All these components
own a specific functionality and can exchange information, by
means of a middleware bus. A middleware bus signifies a
software bus, where more middleware technologies can coexist.

Index Terms — middleware, SCADA, client-server
technology, heterogeneous system, distributed system

I. INTRODUCTION

The essential part of middleware [1] consists in managing
the complexity and heterogeneousness of the distributed
infrastructure. On the one hand, the middleware provides the
abstracting of programming [5], so as to hide the complexity
of a system’s building; on the other hand, there is a complex
software infrastructure that implements this abstracting.

The architectural model of a heterogeneous system
oriented on SCADA applications and based on middleware
is presented in this paper. One might learn some simple
lessons:

1. The complete transparency (an application’s property
on preserving the behavior when passing from a
centralized environment towards a distributed one) is
not feasible [2]. The transparency has been an aim
since the beginning of middleware. The good
engineering practices admit the limitations of
transparency and also accept the fact that distributed
applications have to taken as such; these focus at least
on fundamental aspects related to fault tolerance and
performances [3].

2. Some useful patterns have been revealed. One of the
most common patterns of the middleware consists in
using a local representative (the Proxy design
pattern), in order to organize the communication
between remote entities. Another universal pattern is
the one accomplishing a correspondence between
client and server, by means of a service name, which
acts as a registry (the architectural pattern named
Broker). Other patterns less apparent are used in
order to organize the server’s activity, by means of

creating the lines or area of lines (pooling), or by its
reaction on falling, by using detection-reaction
schemes.

3. The development of a distributed application, even
when a conceptual simple scheme is used, such as
RPC, which involves an important engineering
infrastructure: IDL generators and stubs, unitary
representation of data, (un)marshallers
(serializers/deserializers), mechanisms of fault
tolerance, name services, development instruments.

As in the situation of processors, there is no architecture
able to satisfy the entire requirements specific to
applications diversity. Some architectures react better to
certain requirements, such as the distributed applications
necessary to implement the databases; other react better to
some other requirements, as those related to systems of data
acquisitions.

The middleware classification will be represented by:
transactional, object oriented, procedural and object or
component oriented. To this classification, one might add
the flexible (adaptive), reflective, scalable, real time, of
mobile calculus, peer-to-peer, grid, model driven and QoS-
enabled middleware.

Web services do not bring anything revolutionary. These
services represent a normal progress on technologies
development of computers science and are practically based
upon component programming. The support for such
technology seems to be amazing, since it is based on XML
accepted by all organizations. Starting from the proof
performed by [4], web services will be assigned as both
middleware and software component.

II. MINIMAL REQUIREMENTS AND BASIC

ARCHITECTURE OF THE PROPOSED MODEL

The minimal requirements imposed for the proposed
model are:
 To be oriented on SCADA applications, necessary for

process data acquisition;
 To support wide distributed and heterogeneous

systems;
 To prove real time characteristics;
 To be scalable;
 To use the already existing technologies and to adapt

easily to new technologies.

Figure 1 illustrates a first approximation of this model.

Middleware Based Model of Heterogeneous
Systems for SCADA Distributed Applications

Nicoleta-Cristina GĂITAN1, Vasile Gheorghiţă GĂITAN2, Ştefan Gheorghe PENTIUC3,
Ioan UNGUREAN4, Eugen DODIU5
Ştefan cel Mare University of Suceava

str.Universitătii nr.13, RO-720229 Suceava
1cristinag@eed.usv.ro, 2gaitan@eed.usv.ro, 3pentiuc@eed.usv.ro, 4ioanu@eed.usv.ro, 5edodiu@usv.ro

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 130

Figure 1. Block scheme of the architectural model, specific to a heterogeneous system oriented on SCADA applications and based on middleware.

Concerning this model, some ascertainments have been

imposed:
 Middleware bus signifies a software bus, where more

middleware technologies can coexist, and which
allow the implementation of the client/server model
(and also peer-to-peer, if it is necessary) between the
client applications and server applications. The
middleware has to ensure the client server
communication for the next three situations:

1. the client and the server are placed on the same
computer and:
 are part of the same process (there are

potentially different execution lines) or,
 are various processes, which run on the

same kernel (processor) or run on different
processors, in the situation of multi-kernel
or multiprocessor architectures (usually,
the operating system provides some
mechanisms of communication and
synchronization between processes, such
as local procedures calls, pipes with
names, spinlocks, etc.);

2. are placed on separated computers, but
connected within local networks, case where
the client and server communication can be
optimized, so as to reach superior
performances concerning the data transfer rate
(a potential solution would be the immediate
using of TCP/IP stack)

3. are placed on separated computers, but
connected in Intranet, Internet or Extranet
networks.

 choosing the middleware will be accomplished
depending upon specific features of the application,
such as: imposing real time requirements; creating
and using some databases; the applications chart;
connecting to applications placed on superior levels
of an institution’s organization; already existing
software licenses; the infrastructure of the existing
networks; constraints imposed by other applications;

 a host computer can support either a client application
or a server application, or both of them;

 a server application can be the client of other server
applications;

 a server does not compulsory have to connect to a
SAD (it can be connected to a database);

 a mainframe can be chosen (cluster or grid), so as to
implement a server of collecting the data from other
servers, and which subsequently will create a
database, by means of processing the data achieved,
able to face the requirements launched by a high
number of clients;

 the client application will be object oriented, and
objects will be provided with one or two interfaces:
 the standard interface towards the client

application – allows the communication
between the application’s objects;

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 131

 the interface towards the middleware – allows
the connection to a server, by using a specific
middleware application.

 the objects of client application will be of three types:
 normal objects – are those objects connected

by the standard interface to other objects of the
client application, which can represent data
consumers, data producers or both of them;

 objects of displaying (text or chart) – are the
same as normal objects, with the distinction
that information of the human operator is
shown under text or chart form;

 acquisition objects – are the same as normal
objects, but are provided with a supplementary
interface, which ensures the connection to
middleware and implicitly to servers
implemented upon basis of that middleware
(these objects allow the connecting of client
application to more already existing
middleware, as well as the immediate adapting
to those newest).

 the servers can be of three types: of data (DA); of
alarms and events (AE), historical (HDA) or
combinations of these;

 the server has to implement a software component for
data acquisition (SCDA), on which a standard
interface will be connected, no matter the middleware
used, so as to allow the connection to SAD or
databases; SCDA will also have to define another
standard interface, able to allow the coupling of
drivers specific to the significant number of protocols
within local industrial networks field;

 at the level of SCDA, two types of special drivers
will exist, meaning: one able to allow the simulation
of data acquisition (for abbreviation, acquisition
means both the properly speaking acquisition, and the
commands sent towards the process), and the second
one, able to stimulate the client towards another type
of server;

 SCDA will allow the hierarchical organization of the
process data or of other types of data, under the form
of objects’ dictionary, easily accessible of server’s
level and implicitly, of the client application;

 A unitary language on SCDA level should also be
defined, so as to describe the equipments or data for
their placing into objects’ dictionary, and a file
manager should be also implemented, so as to
manage the dictionary and the local industrial
networks.

III. THE ARCHITECTURE OF CLIENT AND SERVER

APPLICATIONS

In Figure, the model proposed at the client and server
level is described.

 The proposed level should also ensure the integration
with other hierarchical levels of the enterprises. Within the
control of industrial processes, the simplified hierarchical
architecture of information involves the following levels:
 The business and processes management: dedicated

systems exist for the management of resources and of

relationships with the clients and providers. The main
task at this level consists in the analysis of the current
state, in providing support for decisions making, in
adjusting the parameters, in managing the
infrastructure and in providing support so as to plan
the activities.

 The most known applications at this level are ERP
(Enterprise Resource Management) – the
management of enterprise resources, SAP (Systems
Analysis and Product) / systems of analysis and
production, SCM (Supply Chain Management) / the
management of supply resources.

 PLM (Product Lifecycle Management) – the
management of products life cycle.

 The control systems of the processes: these are in
generally responsible for planning of operations and
commands, with the view of leading the process as an
entire. The applications at this level include all types
of display modes to manufacturing and supervising.
Typically, the systems placed at this level are: MES
(Manufacturing Execution Systems) – systems of
execution manufacturing, SCADA (Supervisory
Control And Data Acquisition) – supervising the
control and data acquisition, HMI (Human Machine
Interface) – the human-machine interface.

 The management of field devices: takes care of
digital field devices, which control and adjust in real
time the processes, using a feedback control (close
loop). As concerns the distributed processes, islands
of automation can be emphasized, whom cooperation
has to be smoothed by a supervision system. on
principle, the main functions of this level are carried
out with PLCs (Programmable Logic Controller) –
programmable logic controllers or DCS (Distributed
Control System) – systems of distributed control.

IV. CONCLUSION

Notwithstanding, these levels do not know too clearly the
limits and competences, but a vertical communication with
the process level is always necessary. This communication
needs:
 an adequate level of reliableness;
 to meet the temporal requirements;
 to have regard for limits of delays;
 using a diversified structure of communication;
 using of standards specific to manufacturer, so as to

access the process data;
 using of open architectures;
 A uniform model of displaying the data.
The novelty elements of the model are:
 Middleware objects of the client application allow the

adding of new servers, which were developed by
using environments of development and integration
on applications, specific to various types of
middleware technologies (such as ACE and MICO
for CORBA, OPC UA for web services, OPC Xi for
WCF, etc.). For these applications, only the software
for the middleware object has to be written, which
will perform the access and will expose the dictionary
of objects, supported by the server.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 132

 All servers see the same type of objects dictionary,
and as result, a standardization of data exposition will
be accomplished, both at servers and application
levels (the middleware object will expose data in the
same manner, so as to allow data to be accessed by
other objects of the application).

 Implementing a standard interface at the application

level allows the facile connecting of objects to each
others, so as to communicate various data.

Figure 2. Representation of the proposed model, as concerns the clients and servers structures

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 133

 Moreover, the middleware objects can immediately
connect in an easy way, without the server and also to
other applications of process data collection, where
the exposition to client application will remain
unitary.

 All servers, no matter the middleware technology, see
in the same way the process data, by means of objects
dictionary, wherewith they communicate by a
standard interface. All devices or other types of data
are unitary described, by using the same description
language.

 The second interface allows the connection to server
of different written drivers on various protocols, by
means of simple "wrapper" (casing or adaptor)
software.

 The extension of functionality specific to client
applications, by adding new objects, and specific to
server applications, by adding new networks, without
rerunning the already existing programs.

V. FUTURE WORKS

The future extensions of the model will ensure the
compatibility with standards of describing the devices, as
AutomationML, OpenPLC XML, EDDL, FDT or
CANOpen.

REFERENCES
[1] D. Eberle, Semantic Management of Middleware. Springer, ISBN

978-0-387-27630-4, 2006.
[2] S. Krakowiak. Middleware Architecture with Patterns and

Frameworks. Distributed under a Creative Commons license,
http://creativecommons.org/licenses/by-nc-nd/3.0/, 2009.

[3] J.Waldo,; G. Wyant,; A. Wollrath,; S. Kendall. A Note on Distributed
Computing. In Vitek, J. and Tschudin, C., editors, Mobile Object
Systems: Towards the Programmable Internet, volume 1222 of
Lecture Notes in Computer Science, Springer Verlag, 1997, pages 49–
64.

[4] D. Karastoyanova,; A. Buchmann,. COMPONENTS,
MIDDLEWARE AND WEB SERVICES. In IADIS International
Conference WWW/Interne, Volume II, IADIS, 2003.

[5] R. E. Schantz, D. C. Schmidt. Middleware for Distributed Systems,
Evolving the Common Structure for Network-centric Applications.
Wiley Encyclopedia of Computer Science and Engineering, 2008.

