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Abstract — Real-time systems are a key element for 

applications where deadlines must be satisfied. The absence of 
a time constraint in a hard real-time system can cause severe 
material damage or even life threatening scenarios. This is why 
the system designer’s task is to make proper selection of an 
embedded operating system that can meet these demands. 

 
Index Terms — µC/OS-II, hard real-time/soft real-time, 

embedded system, EP9302, real-time scheduling, operating 
system 

I. INTRODUCTION  
This article presents the practical steps toward running 

Micriµm’s µC/OS-II real time kernel on a Cirrus Logic 
EP9302 processor.  

Real-time systems are a bit different from the classical 
ones because they have to offer a certain response within a 
specified time period. In the case of real-time systems, 
correct execution of tasks will depend not only on the 
correctness of the results, but also on the time instance they 
are started. Unlike soft real-time where deadline miss is not 
a major problem, missing a time constraint in a hard real-
time system can lead to physical damage [1][1][2][2].  

All these problems are satisfied with µC/OS-II as we 
could see on other tested hardware architectures. Without 
any doubt, µC/OS-II is a very powerful product, since it was 
certified by the Federal Aviation Administration to meet the 
requirements of the RTCA DO-178B standard for software 
used in avionics equipment. Our previous testing of this 
operating system on some embedded architectures (ARM 7, 
HCS12) here at Stefan cel Mare University of Suceava, 
proved that µC/OS-II is the best choice for real-time 
applications. This OS was born back in 1992, when engineer 
Jean Labrosse, future founder of Micriµm Technologies 
Corporation, began working on a real-time operating system 
that was needed to satisfy strict timing requirements of one 
of his projects. The latest stable version is 286 and can be 
found on Micriµm's website along with the latest version, 
µC/OS-III.  

Applications such as cameras, avionics, high-end audio 
equipment, engine controls, medical equipment, industrial 
machines, have been using µC/OS-II for a long time now 
with great success [2][2][1].  

Latest distributions allow integration with other software 
packages such as µC/TCP-IP, µC/GUI, µC/File System, 
µC/USB, µC/CAN, µC/Modbus, µC/Bluetooth, for 
obtaining greater scalability and performance [2][2][5]. 

It is important to mention just a few characteristics of this 
real time kernel to observe its key features: 

 ROM-able. This OS was designed for embedded 
systems and if using adequate development tools 
it can be embedded as a part of the final product. 

 Scalable. The total amount of memory or the 
memory footprint can be modified from a 
configuration file accordingly to the hardware 
restraints. 

 Portable. The way the software structure is built 
allows easy porting to other architectures. 

 Preemptive. This means that µC/OS-II will 
always run the highest priority task that is ready 
to be executed.  

 Deterministic. User knows how much CPU time 
is spent for µC/OS-II system function execution. 

 Interrupt Management. The kernel can manage 
interrupts with up to 255 levels deep. 

 Tasks Stacks. This feature allows using separate 
stacks with different sizes for each task thus 
permitting better footprint management. 

All the above characteristics conclude that µC/OS-II is a 
well built, robust and reliable operating system that can be 
used in real-time embedded systems. 

II. HARDWARE ARCHITECTURE 
The test system uses Technologic System’s TS7300 

development board [3][3]. This board was initially sold with 
Linux preinstalled, but we decided to use it for µC/OS-II 
porting and testing, since the hardware platform allowed this 
software change.  

 
Figure 1. Hardware organization of the test board [3][3]. 
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Fig. 1 presents the hardware architecture of the TS-7300 
test board [3][3][3]: 

 EP9302 Cirrus Logic Processor (ARM920T @ 
200MHz) 

 32 Mbytes Samsung SDRAM K4S561632H 
 Peripherials: IO ports, USB port, JTAG, CAN, 

USART, power connectors  
 Real time clock 
 Altera CycloneII FPGA for application 

development 
 Altera MAX II CPLD companion chip 
 SD card storage 
 PC104 expansion slot 
 RS232 drivers 
 Serial FLASH memory for Linux bootloader. 

Featuring a five stage pipeline consisting of fetch, decode, 
execute, memory and write stages, the ARM920T 32 bit 
architecture, delivers impressive performance with power 
consumption under 2 Watts [3]. Trial results showed that 
this ARM920T processor can produce impressive 
throughput with over 309 Mbytes/s at 200MHz core clock 
using block transfer STMIA instructions. ARM920T has the 
following characteristics: ARM and Thumb instructions, 32 
bit Advanced Micro-Controller Bus Architecture, 16 Kbyte 
instruction and 16 Kbyte data cache, MMU for operating 
systems, TLB with 64 entries for data and instructions, 
programmable page sizes, independent lockdown for TLB 
entries. Activating all these characteristics can lead to very 
good raw performance of the controller. 

There are a few integrated circuits that are not directly 
addressable by the EP9302 processor. In most of the cases 
this is done using the Altera MAX II glue-logic companion 
chip. The documentation of the board shows the mapped 
addresses in the ARM9 physical address space. SD cards are 
also accessed via this companion chip. 

III. PROGRAMMING AND BOOTING PROCESS 
Cirrus Logic designed the EP9302 processor with 

multiple ways of booting. The JTAG connector has a dual 
function: it controls both the programming via JTAG for the 
CPLD devices and the boot mode of the EP9302 processor. 
This connector cannot be used for EP9302 JTAG 
programming since the JTAG pins of this device are not 
welded to it. If someone decides to perform a JTAG 
programming of the EP9302 processor on this test board 
there are a few operations that must completed. The tester 
must weld the JTAG_DIN (pin 78), JTAG_DOUT (pin 79), 
JTAG_CLK (pin 77), JTAG_TMS (pin 80) to the JTAG 
connector. Since the processor has no on-chip flash the user 
has to make an initialization file of the SDRAM chip that 
will be executed prior to any application code. Only after the 
on-board Samsung memory will be initialized, the 
application code will be downloaded and executed from the 
SDRAM. This sequence works fine with IAR Embedded 
Workbench version 5.40.1 and JLink programmer with 
hardware version 5.3.  

As mentioned before the JTAG connector controls the 
booting method of the processor (Fig.2). 

Figure 2. Logical evolution of the booting algorithm.  [6] [6][6]

Our intention was not to modify the contents of the 25160 
EEPROM SPI memory that boots Linux from the compact 
flash. This is why we decided to use the UART 
programming method. The absence of the EP9302 on-chip 
flash memory implies reprogramming of the device every 
time a power off-on cycle is completed. Jumper 1 from the 
JTAG connector selects the loading via UART or SPI. In 
our case, the presence of a jumper on the first pair of pins 
specifies that a serial download will be initiated. A number 
of 2048 characters are expected to be received via the 
UART serial port by the on chip boot ROM. These 
characters will be placed in the receive Ethernet buffer that 
starts at address 0x80014000.  

Since the 2K program received in buffer space is not 
enough to load and run the µC/OS-II kernel and application 
tasks, we had to build our own boot loader whose only basic 
function is the loading of the binary file in the SDRAM. The 
Boot ROM utility leaves the UART 1 serial port configured 
at 9600 baud, 1 bit stop, no parity, 8 data bits and opened for 
incoming data. After receiving the "< " the second 
bootloader is sent to the system using a simple terminal 
application that has the possibility of sending data files. 
Even if the effective code of the second loader is less then 
2K, IAR Embedded Workbench will fill the remaining space 
till 0xFFFF with 0x00. When the second bootloader starts, 
the first action is to disable the external watchdog timer that 
is built using the MAXII CPLD. This is done by first writing 
the feed register at address 0x23C00000 and then the 
configuration register at adress 0x23800000. If these actions 
are not performed, the board will reset peridocally at 8 
seconds. Since we want to use the full computing power of 
the ARM core, the caches are enabled by writing to CP15 
registers with dedicated MRC and MCR instructions. This 
task is fulfilled when boosting the speed of the core up to 
200MHz using the following PLL parameters: 
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PLL1_X1FBD = 21, PLL1_X2FBD = 31, PLL1_X2IPD = 
24, P2L1_PS = 1. This gives an output frequency of 
199.987200 MHz. The HCLK is POUT/2 and PCLK is 
HCLK/2. Writing this configuration word in the apropriate 
PLL config register folowed by 5 NOPs will restart the core 
at its desired frequecy. The user can check if the PLL is 
locked by reading a dedicated register. Next we decided to 
raise the speed of the UART to 115200 for obtaining better 
programing times. By doing so, a 64K image files is 
downloaded in memory in less then 6 seconds. Before 
jumping to the reception loop the SAMSUNG SDRAM 
memory initializatin is performed. This is done in the 
following steps: 

1  -insert 200us start-up delay 
2 -load EP9302 memory controller config register with 
correct values: RAS-TO-CAS latency 3, CAS delay 3, 4 
banks , 16 bit data width 
3  - 200us delay is inserted 
4  -GLConfig issue NOP commands 
5  - 200us delay is inserted 
6  - GLConfig – Precharge all comand 
7  - Errata for E2 revision requires reading any adress  of 
all 4 banks of the memory in order to make the precharge 
all command work. This is done by reading from adress 
0x00000000,0x00200000,0x00400000 and 0x00600000. 
8   -Refresh register timer is loaded with value 0xA 
9   -20us delay is inserted 
10 –GLConfig Mode register select 
11 –Write configuration word with CAS = 2 (010), BL = 4 
(010) offset 9 by reading  from adress 0x00006600. 
12  - Go to normal mode by writing the configuration 
register. 
The reception is done by polling the FIFO full status flag. 

When the 16 byte depth FIFO is full, the processor copies 
all the data from the receive stack into the memory 
respecting the little endian organisation. When a 64K 
boundary is reached a jump to adress 0x00000000 is done 
using a branch instruction. We had a few problems since the 
memory chip U23 doesn’t have the correct notation on the 
board. Instead of being mapped to domain 3 as the electrical 
schematic tells, our memory chip is adressed with SD_CS3 
and is mapped to domain 1 that starts at adress 0x00000000. 
It is probably that notations are swapped, but this is a minor 
issue.  

Table 1 shows the partial mapping of the Samsung 
K4S561632H memory in domain 1. 

 
TABLE I. ADRESS MAPING FOR SAMSUNG SDRAM 

Bank no. Adress range 
1 0x0000_0000 - 0x003F_FFFF 
1 0x0100_0000 - 0x013F_FFFF 
2 0x0400_0000 - 0x043F_FFFF 
2 0x0500_0000 - 0x053F_FFFF 
3 0x0800_0000 - 0x083F_FFFF 
3 0x0900_0000 - 0x093F_FFFF 
4 0x0C00_0000- 0x0C3F_FFFF 
4 0x0D00_0000 - 0x0D3F_FFFF 

 
Figure 3. Partial mapping of the Samsung K4S561632H SDRAM memory. 

If the first memory bank is used alone, the hardware 
allows booting images of up to 4 Mbytes footprint. As 
shown in Table 1, the SDRAM memory domain is not a 
contiguous space and this depends on the way the ARM 
core addresses the external devices. In a Samsung 
K4S561632H SDRAM, memory the organization is as 
follows: 13 address lines are used for ROW addressing, 9 
address lines are used for column addressing and 2 lines for 
bank selection. EP9302 has the following internal address 
decoding scheme: A1-A8, A24, A25 for column selection, 
A9-A22 row selection, A26, A27 bank selection[6]. For this 
hardware configuration the following address decoding is 
used: A1-A8, A24 for column selection, A9-A21 row 
selection, A26, A27 for bank selection. EP9302 memory 
controller allows swapping of bank selection lines A26 and 
A27 with A21 and A22. By doing so, the address space will 
only be divided in 4 banks, as can be seen in Table 2. Each 
bank has now 8 Mbytes in size and the address space is less 
divided. Fig. 4 shows the internal structure of the 
K4S561632H-TC/L75 Samsung memory, including row, 
column and bank addressing logic. 

 
TABLE II. ADRESS MAPING WITH SROMLL BIT SET TO 1. 

Bank no. Adress range 
1 0x0000_0000 - 0x007F_FFFF 
2 0x0100_0000 - 0x017F_FFFF 
3 0x0400_0000 - 0x047F_FFFF 
4 0x0500_0000 - 0x057F_FFFF 
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Figure 4. SDRAM Functional Block Diagram. 

IV. SOFTWARE CONFIGURATION 
The second bootloader starts downloading into the 

memory from address 0x00000000. The memory domain 1 
to which U24 is attached, starts from this address. Since all 
available memory from the board is SDRAM, both code and 
data segments will be placed in RAM starting from address 
0x00 as can be seen in Listing 1. 

 
define symbol __ICFEDIT_intvec_start__ = 0x0; 
/*-Memory Regions-*/ 
define symbol __ICFEDIT_region_ROM_start__ = 0x80; 
define symbol __ICFEDIT_region_ROM_end__   = 0x7FFF; 
define symbol __ICFEDIT_region_RAM_start__ = 0x8000; 
define symbol __ICFEDIT_region_RAM_end__   = 0xFFFF; 
/*-Sizes-*/ 
define symbol __ICFEDIT_size_cstack__   = 0x400; 
define symbol __ICFEDIT_size_svcstack__ = 0x400; 
define symbol __ICFEDIT_size_irqstack__ = 0x200; 
define symbol __ICFEDIT_size_fiqstack__ = 0x200; 
define symbol __ICFEDIT_size_undstack__ = 0x200; 
define symbol __ICFEDIT_size_abtstack__ = 0x200; 
define symbol __ICFEDIT_size_heap__     = 0x2000; 
Listing 1. ROM, RAM and stack memory usage. 

IAR Embedded Workbench version 5.40.1 and 286 
µC/OS-II source files were used for testing. Execution of the 
µC/OS-II binary image starts with the exception handlers 
and stack initialization sequence that are coded in file 
cstartup.s. Control is next passed to the main function that 
contains the initialization of the system, AppStartTask 
creation function and the function that actually starts the 
system: OSStart(). Task switching is assured by configuring 
the timer 1 to generate periodic interrupts that launch the 
scheduler. We set it to trigger with 1KHz frequency. This 
value must be in correlation with the OS_TICKS_PER_SEC 

value used in the os_cfg.h file. The starting task is also 
responsible with interrupt configuration and system timer 
starting. Since we expect to have full performance from this 
system, the Vectored Interrupt Controller is set to execute 
the functions that are for exception handler processing. 

V. CONCLUSION 
The paper presents the basic steps that need to be 

performed for loading µC/OS-II on TS7300 development 
board. This includes PLL configuration, cache activation 
and writing a bootloader that copies the image sent serially 
to the SDRAM. For testing and development purpose the 
UART serial download has been used. Using this system in 
an application requires adding a bigger EEPROM memory 
that can host the entire application code. An alternative 
option can be the redesigning of hardware, so that stand-
alone flash memories can be used.  

Even though Technologic Systems TS7300 was initially 
developed for use with Linux, we found that its real time 
computing power comes to life when using true RT 
operating systems such as µC/OS-II. Practical results of task 
switching times, interrupt latencies and jitter will be 
presented in a future paper. 
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