
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

µC/OS-II Real Time Kernel Port for Cirrus
Logic EP93xx Platform

Eugen DODIU1, Adrian GRAUR2, Cristina N. GAITAN3, Vasile G. GAITAN4, Adrian M. GAITAN5

Stefan cel Mare University of Suceava
13,University Street, RO-720229 Suceava

1edodiu@usv.ro, 2adriang@eed.usv.ro, 3gaitan@eed.usv.ro,
 4cristinag@eed.usv.ro, 5agaitan@stud.usv.ro

Abstract — Real-time systems are a key element for

applications where deadlines must be satisfied. The absence of
a time constraint in a hard real-time system can cause severe
material damage or even life threatening scenarios. This is why
the system designer’s task is to make proper selection of an
embedded operating system that can meet these demands.

Index Terms — µC/OS-II, hard real-time/soft real-time,

embedded system, EP9302, real-time scheduling, operating
system

I. INTRODUCTION
This article presents the practical steps toward running

Micriµm’s µC/OS-II real time kernel on a Cirrus Logic
EP9302 processor.

Real-time systems are a bit different from the classical
ones because they have to offer a certain response within a
specified time period. In the case of real-time systems,
correct execution of tasks will depend not only on the
correctness of the results, but also on the time instance they
are started. Unlike soft real-time where deadline miss is not
a major problem, missing a time constraint in a hard real-
time system can lead to physical damage [1][1][2][2].

All these problems are satisfied with µC/OS-II as we
could see on other tested hardware architectures. Without
any doubt, µC/OS-II is a very powerful product, since it was
certified by the Federal Aviation Administration to meet the
requirements of the RTCA DO-178B standard for software
used in avionics equipment. Our previous testing of this
operating system on some embedded architectures (ARM 7,
HCS12) here at Stefan cel Mare University of Suceava,
proved that µC/OS-II is the best choice for real-time
applications. This OS was born back in 1992, when engineer
Jean Labrosse, future founder of Micriµm Technologies
Corporation, began working on a real-time operating system
that was needed to satisfy strict timing requirements of one
of his projects. The latest stable version is 286 and can be
found on Micriµm's website along with the latest version,
µC/OS-III.

Applications such as cameras, avionics, high-end audio
equipment, engine controls, medical equipment, industrial
machines, have been using µC/OS-II for a long time now
with great success [2][2][1].

Latest distributions allow integration with other software
packages such as µC/TCP-IP, µC/GUI, µC/File System,
µC/USB, µC/CAN, µC/Modbus, µC/Bluetooth, for
obtaining greater scalability and performance [2][2][5].

It is important to mention just a few characteristics of this
real time kernel to observe its key features:

 ROM-able. This OS was designed for embedded
systems and if using adequate development tools
it can be embedded as a part of the final product.

 Scalable. The total amount of memory or the
memory footprint can be modified from a
configuration file accordingly to the hardware
restraints.

 Portable. The way the software structure is built
allows easy porting to other architectures.

 Preemptive. This means that µC/OS-II will
always run the highest priority task that is ready
to be executed.

 Deterministic. User knows how much CPU time
is spent for µC/OS-II system function execution.

 Interrupt Management. The kernel can manage
interrupts with up to 255 levels deep.

 Tasks Stacks. This feature allows using separate
stacks with different sizes for each task thus
permitting better footprint management.

All the above characteristics conclude that µC/OS-II is a
well built, robust and reliable operating system that can be
used in real-time embedded systems.

II. HARDWARE ARCHITECTURE
The test system uses Technologic System’s TS7300

development board [3][3]. This board was initially sold with
Linux preinstalled, but we decided to use it for µC/OS-II
porting and testing, since the hardware platform allowed this
software change.

Figure 1. Hardware organization of the test board [3][3].

 85

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

Fig. 1 presents the hardware architecture of the TS-7300
test board [3][3][3]:

 EP9302 Cirrus Logic Processor (ARM920T @
200MHz)

 32 Mbytes Samsung SDRAM K4S561632H
 Peripherials: IO ports, USB port, JTAG, CAN,

USART, power connectors
 Real time clock
 Altera CycloneII FPGA for application

development
 Altera MAX II CPLD companion chip
 SD card storage
 PC104 expansion slot
 RS232 drivers
 Serial FLASH memory for Linux bootloader.

Featuring a five stage pipeline consisting of fetch, decode,
execute, memory and write stages, the ARM920T 32 bit
architecture, delivers impressive performance with power
consumption under 2 Watts [3]. Trial results showed that
this ARM920T processor can produce impressive
throughput with over 309 Mbytes/s at 200MHz core clock
using block transfer STMIA instructions. ARM920T has the
following characteristics: ARM and Thumb instructions, 32
bit Advanced Micro-Controller Bus Architecture, 16 Kbyte
instruction and 16 Kbyte data cache, MMU for operating
systems, TLB with 64 entries for data and instructions,
programmable page sizes, independent lockdown for TLB
entries. Activating all these characteristics can lead to very
good raw performance of the controller.

There are a few integrated circuits that are not directly
addressable by the EP9302 processor. In most of the cases
this is done using the Altera MAX II glue-logic companion
chip. The documentation of the board shows the mapped
addresses in the ARM9 physical address space. SD cards are
also accessed via this companion chip.

III. PROGRAMMING AND BOOTING PROCESS
Cirrus Logic designed the EP9302 processor with

multiple ways of booting. The JTAG connector has a dual
function: it controls both the programming via JTAG for the
CPLD devices and the boot mode of the EP9302 processor.
This connector cannot be used for EP9302 JTAG
programming since the JTAG pins of this device are not
welded to it. If someone decides to perform a JTAG
programming of the EP9302 processor on this test board
there are a few operations that must completed. The tester
must weld the JTAG_DIN (pin 78), JTAG_DOUT (pin 79),
JTAG_CLK (pin 77), JTAG_TMS (pin 80) to the JTAG
connector. Since the processor has no on-chip flash the user
has to make an initialization file of the SDRAM chip that
will be executed prior to any application code. Only after the
on-board Samsung memory will be initialized, the
application code will be downloaded and executed from the
SDRAM. This sequence works fine with IAR Embedded
Workbench version 5.40.1 and JLink programmer with
hardware version 5.3.

As mentioned before the JTAG connector controls the
booting method of the processor (Fig.2).

Figure 2. Logical evolution of the booting algorithm. [6] [6][6]

Our intention was not to modify the contents of the 25160
EEPROM SPI memory that boots Linux from the compact
flash. This is why we decided to use the UART
programming method. The absence of the EP9302 on-chip
flash memory implies reprogramming of the device every
time a power off-on cycle is completed. Jumper 1 from the
JTAG connector selects the loading via UART or SPI. In
our case, the presence of a jumper on the first pair of pins
specifies that a serial download will be initiated. A number
of 2048 characters are expected to be received via the
UART serial port by the on chip boot ROM. These
characters will be placed in the receive Ethernet buffer that
starts at address 0x80014000.

Since the 2K program received in buffer space is not
enough to load and run the µC/OS-II kernel and application
tasks, we had to build our own boot loader whose only basic
function is the loading of the binary file in the SDRAM. The
Boot ROM utility leaves the UART 1 serial port configured
at 9600 baud, 1 bit stop, no parity, 8 data bits and opened for
incoming data. After receiving the "< " the second
bootloader is sent to the system using a simple terminal
application that has the possibility of sending data files.
Even if the effective code of the second loader is less then
2K, IAR Embedded Workbench will fill the remaining space
till 0xFFFF with 0x00. When the second bootloader starts,
the first action is to disable the external watchdog timer that
is built using the MAXII CPLD. This is done by first writing
the feed register at address 0x23C00000 and then the
configuration register at adress 0x23800000. If these actions
are not performed, the board will reset peridocally at 8
seconds. Since we want to use the full computing power of
the ARM core, the caches are enabled by writing to CP15
registers with dedicated MRC and MCR instructions. This
task is fulfilled when boosting the speed of the core up to
200MHz using the following PLL parameters:

 86

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

PLL1_X1FBD = 21, PLL1_X2FBD = 31, PLL1_X2IPD =
24, P2L1_PS = 1. This gives an output frequency of
199.987200 MHz. The HCLK is POUT/2 and PCLK is
HCLK/2. Writing this configuration word in the apropriate
PLL config register folowed by 5 NOPs will restart the core
at its desired frequecy. The user can check if the PLL is
locked by reading a dedicated register. Next we decided to
raise the speed of the UART to 115200 for obtaining better
programing times. By doing so, a 64K image files is
downloaded in memory in less then 6 seconds. Before
jumping to the reception loop the SAMSUNG SDRAM
memory initializatin is performed. This is done in the
following steps:

1 -insert 200us start-up delay
2 -load EP9302 memory controller config register with
correct values: RAS-TO-CAS latency 3, CAS delay 3, 4
banks , 16 bit data width
3 - 200us delay is inserted
4 -GLConfig issue NOP commands
5 - 200us delay is inserted
6 - GLConfig – Precharge all comand
7 - Errata for E2 revision requires reading any adress of
all 4 banks of the memory in order to make the precharge
all command work. This is done by reading from adress
0x00000000,0x00200000,0x00400000 and 0x00600000.
8 -Refresh register timer is loaded with value 0xA
9 -20us delay is inserted
10 –GLConfig Mode register select
11 –Write configuration word with CAS = 2 (010), BL = 4
(010) offset 9 by reading from adress 0x00006600.
12 - Go to normal mode by writing the configuration
register.
The reception is done by polling the FIFO full status flag.

When the 16 byte depth FIFO is full, the processor copies
all the data from the receive stack into the memory
respecting the little endian organisation. When a 64K
boundary is reached a jump to adress 0x00000000 is done
using a branch instruction. We had a few problems since the
memory chip U23 doesn’t have the correct notation on the
board. Instead of being mapped to domain 3 as the electrical
schematic tells, our memory chip is adressed with SD_CS3
and is mapped to domain 1 that starts at adress 0x00000000.
It is probably that notations are swapped, but this is a minor
issue.

Table 1 shows the partial mapping of the Samsung
K4S561632H memory in domain 1.

TABLE I. ADRESS MAPING FOR SAMSUNG SDRAM

Bank no. Adress range
1 0x0000_0000 - 0x003F_FFFF
1 0x0100_0000 - 0x013F_FFFF
2 0x0400_0000 - 0x043F_FFFF
2 0x0500_0000 - 0x053F_FFFF
3 0x0800_0000 - 0x083F_FFFF
3 0x0900_0000 - 0x093F_FFFF
4 0x0C00_0000- 0x0C3F_FFFF
4 0x0D00_0000 - 0x0D3F_FFFF

Figure 3. Partial mapping of the Samsung K4S561632H SDRAM memory.

If the first memory bank is used alone, the hardware
allows booting images of up to 4 Mbytes footprint. As
shown in Table 1, the SDRAM memory domain is not a
contiguous space and this depends on the way the ARM
core addresses the external devices. In a Samsung
K4S561632H SDRAM, memory the organization is as
follows: 13 address lines are used for ROW addressing, 9
address lines are used for column addressing and 2 lines for
bank selection. EP9302 has the following internal address
decoding scheme: A1-A8, A24, A25 for column selection,
A9-A22 row selection, A26, A27 bank selection[6]. For this
hardware configuration the following address decoding is
used: A1-A8, A24 for column selection, A9-A21 row
selection, A26, A27 for bank selection. EP9302 memory
controller allows swapping of bank selection lines A26 and
A27 with A21 and A22. By doing so, the address space will
only be divided in 4 banks, as can be seen in Table 2. Each
bank has now 8 Mbytes in size and the address space is less
divided. Fig. 4 shows the internal structure of the
K4S561632H-TC/L75 Samsung memory, including row,
column and bank addressing logic.

TABLE II. ADRESS MAPING WITH SROMLL BIT SET TO 1.

Bank no. Adress range
1 0x0000_0000 - 0x007F_FFFF
2 0x0100_0000 - 0x017F_FFFF
3 0x0400_0000 - 0x047F_FFFF
4 0x0500_0000 - 0x057F_FFFF

 87

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

Figure 4. SDRAM Functional Block Diagram.

IV. SOFTWARE CONFIGURATION
The second bootloader starts downloading into the

memory from address 0x00000000. The memory domain 1
to which U24 is attached, starts from this address. Since all
available memory from the board is SDRAM, both code and
data segments will be placed in RAM starting from address
0x00 as can be seen in Listing 1.

define symbol __ICFEDIT_intvec_start__ = 0x0;
/*-Memory Regions-*/
define symbol __ICFEDIT_region_ROM_start__ = 0x80;
define symbol __ICFEDIT_region_ROM_end__ = 0x7FFF;
define symbol __ICFEDIT_region_RAM_start__ = 0x8000;
define symbol __ICFEDIT_region_RAM_end__ = 0xFFFF;
/*-Sizes-*/
define symbol __ICFEDIT_size_cstack__ = 0x400;
define symbol __ICFEDIT_size_svcstack__ = 0x400;
define symbol __ICFEDIT_size_irqstack__ = 0x200;
define symbol __ICFEDIT_size_fiqstack__ = 0x200;
define symbol __ICFEDIT_size_undstack__ = 0x200;
define symbol __ICFEDIT_size_abtstack__ = 0x200;
define symbol __ICFEDIT_size_heap__ = 0x2000;
Listing 1. ROM, RAM and stack memory usage.

IAR Embedded Workbench version 5.40.1 and 286
µC/OS-II source files were used for testing. Execution of the
µC/OS-II binary image starts with the exception handlers
and stack initialization sequence that are coded in file
cstartup.s. Control is next passed to the main function that
contains the initialization of the system, AppStartTask
creation function and the function that actually starts the
system: OSStart(). Task switching is assured by configuring
the timer 1 to generate periodic interrupts that launch the
scheduler. We set it to trigger with 1KHz frequency. This
value must be in correlation with the OS_TICKS_PER_SEC

value used in the os_cfg.h file. The starting task is also
responsible with interrupt configuration and system timer
starting. Since we expect to have full performance from this
system, the Vectored Interrupt Controller is set to execute
the functions that are for exception handler processing.

V. CONCLUSION
The paper presents the basic steps that need to be

performed for loading µC/OS-II on TS7300 development
board. This includes PLL configuration, cache activation
and writing a bootloader that copies the image sent serially
to the SDRAM. For testing and development purpose the
UART serial download has been used. Using this system in
an application requires adding a bigger EEPROM memory
that can host the entire application code. An alternative
option can be the redesigning of hardware, so that stand-
alone flash memories can be used.

Even though Technologic Systems TS7300 was initially
developed for use with Linux, we found that its real time
computing power comes to life when using true RT
operating systems such as µC/OS-II. Practical results of task
switching times, interrupt latencies and jitter will be
presented in a future paper.

ACKNOWLEDGMENT
We would like to thank Mr. Jean Labrosse for helping us

with porting µC/OS-II to Analog Devices ADuC7026 back
in 2005 and for optimizing system performance and memory
footprint for a few of our educational projects.

REFERENCES
[1] Cottet F., Delacroix J., Kaiser C., Mammeri Z., "Scheduling In Real-

Time Systems, " John Wiley & Sons Ltd, England, 2002, pp 1-41.
[2] J. Labrosse, "MicroC/OS-II The Real Time Kernel ", 2nd Ed, CMP

Books, 2002, pp. 20-150.
[3] Technologic Systems, TS7300 Manual Hardware and Software

Revision 1.5 Jul 2008
[4] Technologic Systems, TS7300 Schematic 1 May 2006
[5] http://www.micrium.com
[6] Cirrus Logic, EP93xx User Guide, September 2007
[7] IAR Embedded Workbench, ARM IAR Assembler- Reference Guide
[8] IAR Embedded Workbench, IDE User Guide
[9] http://www.cirrus.com EP9302 Rev E2 Silicon
[10] Samsung Electronics, 256Mb H-die SDRAM Specification, Revision

1.0, October 2005

 88

http://www.micrium.com/
http://www.cirrus.com/

	I. INTRODUCTION
	II. HARDWARE ARCHITECTURE
	III. PROGRAMMING AND BOOTING PROCESS
	IV. SOFTWARE CONFIGURATION
	V. CONCLUSION

