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Abstract — The correct appreciation of the unbalanced 
states requires the establishment of the ranges and availability 
situations for the multitude of known calculus relations. Their 
verification, as well as the calibration and testing of the virtual 
instruments, dedicated to the unbalanced states, are 
demanding the unbalanced phasors system simulation. 

The method of the equal modulus and equal, consecutive, 
phases, developed in the paper, presents the next advantage: 
the phasors system is defined in comparison with only one 
variable, this one being the phase between two consecutive 
phasors. The analytically study on a definition range of this 
variable (2π), emphasizes the complete covering of the 
unbalanced state indicators range, so any type of asymmetries 
may be described. 

The corresponding functions for the symmetrical 
components, as well as for the unbalanced state indicators, as 
the dissymmetry and asymmetry coefficients, are analytically 
and graphically presented. 

The approaching of the inverse problem affords the 
unbalanced states identification, which have to fulfill certain 
unbalance degrees, expressed through the precised 
dissymmetry and asymmetry coefficients. 

 
Index Terms — calculus relations of the unbalanced states, 

phasors system, dissymmetry and asymmetry coefficients, 
Stokvis-Fortescue theorem, iterative calculus method 

I. INTRODUCTION 
The proliferation of the unbalanced states characterization 

methods leads to the necessity of verifying and comparing 
them in order to distinguish their applicability area. The 
complexity of the proposed relations [1,2] does not represent 
an impediment for their comparative analysis while it may 
be done using CAD, but problems may appear in practice 
when power-meters are used. 

Six scalars variables are corresponding to a three phasors 
system (Y1, Y2, Y3): three amplitudes (or effective values) 
and three phases. If one of these phasors is considered as 
reference (for instance Y1), the amplitudes of the other two 
can be expressed in comparison with the reference phasor 
amplitude (ex.: Y2/Y1 and Y3/Y1), and if its phase will be 
considered equal with zero, that is the reference phasor will 
be placed in the system axis (ex.: ϕ1=0), only four variables 
will remain. In conclusion, a homologous system of three 
phasors has four degree of freedom corresponding to the two 
amplitudes ratios, Y2/Y1 and Y3/Y1 and two phases, ϕ12 and 
ϕ23, between the reference phasor and the second one, 
respectively between the second and the third phasor. [4]. 

Firstly, the problem is to determine the ranges of the four 
independent variables which may generate any type of 
unbalanced running among all possibilities. On the second 

hand, the range of both the characteristic variables and the 
unbalanced running indicators must be estimated. Finally, 
the third aspect of the research is represented by the 
identification of a phazors system which has to correspond 
to certain values of the unbalanced state indicators. 

The utility of the proposed objectives consists in verifying 
the methods and the evaluation relations for the unbalanced 
state and in adjusting the virtual instruments and any type of 
aparatus (counter, power-meter) dedicated to emphasize the 
unbalanced state characteristic variables.  

II. THE UNBALANCED STATE ANALITICAL BASIS 

A. The Stokvis-Fortescue theorem and terminology 
A multi phase system of voltages or currents may have 

different characteristics on the phases, regarding the 
effective values or phases of the periodical, sinusoidal 
quantities, which compose the respective systems. 
Consequently, for an unbalanced system of alternative, 
sinusoidal variables (Y1, Y2, Y3), the symmetrical 
components set, formed by the direct (positive) succession 
(sequence) quantity Yd, inverse (negative) Yi and homopolar 
(zero succession) Yh, may be determined in accordance with 
the Stokvis-Fortescue theorem: 
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where is the rotation operator and the three 
phased system (

3/2jea π=
Y1, Y2, Y3) can be relative to voltages or 

currents. Referring to the terminology, the use of both 
families of notions is preferred: the classical one, naming 
the symmetrical components as of direct, inverse and 
homopolar sequence and the new one, influenced by the 
anglo-saxone scientific literature, naming the same 
components, respectively, as of positive, negative and zero 
sequence. The omopolar therm is preferred to the homopolar 
one, even the index "h" is used in order to avoid the 
confusion with the initial values (with the index "zero"). 
Also, for the direct (positive) and inverse (negative) 
sequence quantities, the annotation with the index d and i 
has been chosen instead the annotation with the polarity 
signs (+, respectively -) to the exponent in order to facilitate 
the identification. These options are justified, on the hand, 
by the existence of a big number of specialists familiar with 
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the established terms and, on the other hand, by the 
confusions which can be created using the polarity terms to 
the exponent and to avoid the following expressions: "the 
zero sequence component is zero" or "the case of zero null 
component".[4] 

In the context of calculus relations proliferation, for 
which the availability domain remains unspecified, is 
important to underline that the symmetrical component 
systems are strictly calculated according to the relations (1), 
which presents the disadvantage to be in complex and less 
software are working in this plan.  

B. The iterative calculus method 
Developing (1) through the explaining of the a and a2 

operators and identifying the arguments of the trigonometric 
functions such as the sums may be written in an iterative 
form, based on the same summing index, the following set 
of calculus relations for the symmetrical components is 
proposed: 
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corresponding to the direct (positive sequence) Yd, inverse 
(negative sequence) Yi and homopolar (zero sequence) Yh 
components. If the variables Yk, for kЄ {1,2,3}, are 
amplitudes or effective values, the variables (Yd, Yi, Yh) are 
resulting like amplitudes, respectively like effective values. 
It can be remarked that according to (2)-(4), the phases of he 
symmetrical components may be determined as well; the 
real and imaginary parts of the expressions appear in this 
order and are comprised between square brackets, in the 
relations (2) and (3), respectively between round brackets, in 
(4). 

The relations set (2)-(4) represents a scalar, iterative, 
calculus basis for the symmetrical components, which guide 
to identical results as the Stokvis-Fortescue theorem [4].  

III. SIMULATION AND ANALYSIS OF THE 
UNBALANCED STATE 

A. The method of the equal modulus and equal, 
consecutive, phases 

The verification of the symmetrical components calculus 
relations on as large as possible range of the dissymmetry 
coefficient, was made in [4] through the variation of the 
phase ϕ  between the successive phasors of the three phase 
system inside the interval ϕ ∈[-2π/3, 2π/3]. This fact 
permitted the scalling of a large domain of unbalanced 
states, starting from the direct sequence system, established 
for ϕ =-2π/3, passing through the omopolar sequence one 
when ϕ=0 and arriving to the inverse sequence (negative) 
one, for which ϕ =2π/3, even if the phasors modulus was 
mentained equals. 

Applying the same simulation method of the unbalanced 
states, the analytically identifying of the unbalanced state 

quantities and indicators is made further on together with the 
graphical representations of these ones. In addition, the 
range of the variable ϕ  will be extended to a complete 
interval (2π), in order to cover all possible unbalanced 
states.     

Consequently, the unbalanced state simulation method 
consists in the following steps: 

- the phasor modulus are considered equals, 
Y1=Y2=Y3  (5) 

 

- the phases of the three phasors, expressed in comparison 
with the variable ϕ∈[-2π/3, 4π/3] and considering the first 
phasor in the axis of the reference system, are given by the 
relations: 

ϕϕϕϕϕ 2;;0 321 ===  (6) 

so that the three-phase system will be symmetrical for ϕ =  
±2π/3 and omopolar for ϕ = 0. 

Introducing in (2) the phase quantities corresponding to 
the hypothesis mathematically expressed through (5) and 
(6), the modulus of the direct component is obtained as 
follows: 

144
3

21 ++= xcosxcosYYd  (7) 

where the notation 32 /x πϕ +=  has been used.    
Making the possible restriction and explaining the 

modulus function, a parts defined function is obtained as 
following: 
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The method is analogously used for the inverse 
succession component, for which the initial relation is (3) 
and resulting a similar parts defined function, like the next 
one: 
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Finally, the next function was identified for the omopolar 
component: 

( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛∈+−

⎥⎦
⎤

⎢⎣
⎡−∈+

=
.,.pt,cosY

;,.pt,cosY

Yh

3
4

3
212

3

3
2

3
212

3
1

1

ππϕϕ

ππϕϕ  (10) 

The three functions, expressed by the relations (8)-(10), 
are periodical with the period (2π); the graphical 
representations of these ones are given in figure 1 for the 
range of the independent variable [ ]3/4,3/2 ππϕ −∈  and 
considering the phasor modulus Y1 = 100. 

It may be noticed from both the expressions (8)-(10) and 
the graphical representation that the functions Yi(ϕ) şi Yh(ϕ) 
result through the function Yd(ϕ) translation to the right side 
of the axis (0ϕ) with 4π/3, respectively with 2π/3.    
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Figure 1. The symmetrical components Yd, Yi, Yh graphical 
representations for a phasors system generated through the method of the 
equal modulus and equal, consecutive, phases. 

The Yd(ϕ) function, given by (8), is continuous in the 
points where will be null: 

{ Zk,k23/2;k2 ∈+∈ }πππϕ   (11) 

these ones representing minimum and angular points of 
the function. 

The maximum of the function Yd(ϕ), YdM =Y1 is given for 
{ } Zk,k23/2 ∈+−∈ ππϕ   (12) 

a local maximum point is existing as well, given by the 
relation: 

{ }( ) Zk,3/Yk23/Y 1dMl ∈=+∈ ππϕ  (13) 

Similar considerations can be made for the function Yi(ϕ), 
correspondent to the inverse (negative) succession: 

- the function will be annulled and presents minimum 
points (and angular) to the abscissa: 

{ } Zk,k23/4;k2 ∈+∈ πππϕ   (14) 

- the maximum of the function Yi(ϕ), YiM =Y1 is given for 
the abscissa: 

{ } Zk,k23/2 ∈+∈ ππϕ   (15) 

- the local maximum points are given by the relation: 
{ }( ) Zk,3/Yk23/Y 1dMl ∈=+−∈ ππϕ   (16) 

In addition, the same characteristics for the Yh(ϕ) 
function, corresponding to the homopolar (zero succession) 
component are succinctly presented: 

- the function is cancelled and presents minimum (and 
angular) points to the abscissa: 

{ Zk,k23/2;k23/2 ∈++−∈ }ππππϕ   (17) 

- the maximum of Yi(ϕ), YiM =Y1 is given at the abscissa: 
{ } Zk,k2 ∈∈ πϕ   (18) 

- the local maximum points are given by the relation:    
( ){ }( ) Zk,3/Y1k2Y 1hMl ∈=+∈ πϕ   (19) 

B. The dissymmetry and asymmetry coefficients 
The dissymmetry coefficient, named as well as negative 

unbalance factor (proposed notation - ), is defined 
through the percentage ratio between the inverse (negative) 
succession Y

−
Yk

i and direct (positive) succession Yd 
components, given by the relation:  

.%,
Y
YK

d

i
%id 100⋅=   (20) 

The asymmetry coefficient, named as well as zero 
unbalance factor (proposed notation - ), is defined 
through the ratio between the omopolar (zero succession) 
and direct (positive) succession components, in percent: 

0
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Y
YK

d

h
%hd 100⋅=   (21) 

If, in the relation (20), which defines the dissymmetry 
coefficient, the determined expressions for the inverse 
succession (9) and direct succession (8) components are 
replaced according to the ranges of the corresponding 
functions and renouncing to percentage expression, the 
following relation for this factor is obtained: 
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Analogously, is proceeded for the asymmetry coefficient 
(21) for which is determined the dimensionless expression: 
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The graphical representations for both coefficients are 
presented in figure 2, for the same defining domain of the 
independent variable [ ]3432 /,/ ππϕ −∈ . The both 
functions, Kid(ϕ) şi Khd(ϕ), are not defined for the values 

{ } Zk,k/;k ∈+∈ πππϕ 2322 . 
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Figure 2. The dissymmetry and asymmetry coefficients Kid, Khd graphical 
representations for a phasors system generated by the equal amplitudes and 
equal consecutive phases method. 

Restricting the definition domain to [ ]3/4,3/2 ππϕ −∈ , 
for which the graphical representations are made, it can be 
demonstrated that the function Kid(ϕ) presents equal limits 
to the left and to the right, even it is not defined in origin: 
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  (24) 

In the ϕ=2π/3 abscissa point, the function Kid(ϕ) presents 
a vertical asymptote. The range of the function is Kid(ϕ) ∈[0, 
∞), totally covered by the branch of the function from the 
right side of the asymptote, that is for [ ]3/4,3/2 ππϕ ∈ , 
while the branch from the left side of the asymptote, for 
which the argument is placed in the range 

[ ]3/2,3/2 ππϕ −∈ , covers the range Kid(ϕ) ∈[0,1)∪(1, 
∞). 
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Regarding the function Khd(ϕ), expressed by (23), it has 
as a vertical asymptote the Y axis, with the equation ϕ=0 
equation, i.e. at the abscissa for which the function Kid(ϕ) is 
not defined, and for the abscissa where Kid(ϕ) has the 
vertical asymptote ϕ=2π/3, where is not defined, it presents 
equal limits, to the left and to the right: 
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                                 (25) 

The range of the function is Khd(ϕ) ∈[0, ∞), totally 
covered by the branch from the left side of the asymptote, 
that is for [ )0,3/2πϕ −∈ , while the function branch from 
the right side of the asymptote, for which the argument is 
placed in the interval ( ]3/4,0 πϕ ∈ , covers the interval 
Khd(ϕ) ∈[0,1)∪(1, ∞). 

C. The inverse problem 
In many situations, the determination of an 

unsymmetrical phasors system that presents unbalanced 
state indicators with précised values can be useful. The 
generation method of the unbalanced state, proposed in [4] 
and developed in the present paper, has the advantage of 
using only one variable, that is ϕ, the angle between the 
consecutive phasors. The determination of this angle for 
certain values of the dissymmetry and asymmetry factors 
can completely and correctly identify the initial phasors 
system, according to the premises of the equal modulus and 
equal, consecutive phases method.         

Returning to the Kid(ϕ) function graphic, which has the 
range Kid(ϕ)∈[0, ∞), it can be noticed that for any function 
value from the range of the function, excepting the Kid(ϕ)=1 
case, exist two distinguished solutions: one for the 
independent value from the domain [ ) ( )3/2,00,3/2 ππϕ ∪−∈  
and the other one for the domain . ( )3/4,3/2 ππϕ∈

For the value Kid(ϕ)=1 it exists one solution, in the 
interval ( 3/4,3/2 )ππϕ ∈ , determinable directly from (22); 
this is ϕ=π, for which the phasors system is a pulsating type 
one, so it can be decomposed in two rotating systems, with 
equal modules, but in opposition as sense (the direct one and 
the inverse one).     

Concretely, the inverse function of Kid(ϕ), given by the 
(22) relation is searched. Keeping the part definition for this 
function, the ϕ angle identification, which will determine the 
phasors system, corresponding to a set factor Kid , is given 
by the relation: 
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For instance, for Kid=2, the solutions ϕ∈{60°; 158,2°} are 
corresponding and for Kid=0,2, the solutions ϕ∈{-98,2°; 
222,1°} are found. 

 
 

Proceeding in the same way for the asymmetry coefficient, 
given by (23), its inverse function is determined as follows:   
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Some examples can be, in this case also, probative: the 
case Khd=1 presents only one solution, ϕ=-π/3; for Khd=0,2 
two solutions are identified as ϕ∈{-102,1°; 218,2°}, which 
can be followed on the corresponding graphic (figure 2). 

IV. IV. CONCLUSIONS 
The utilization of the Stokvis-Fortescue theorem is 

essentially to characterize and analyze the unbalanced states. 
The derived scalar relations, like the iterative calculus ones, 
are very useful and practical for the analytical approach of 
the phasors unbalance systems.    

The phasors unbalanced systems generation is simple and 
efficient through the proposed method that is the method of 
the equal modulus and equal, consecutive, phases. The 
simplicity derives from the use of only one variable, namely 
the ϕ angle between two consecutive phasors and the 
efficiency is sustained by covering of a complete range of a 
function, from zero to plus infinite, for both unbalance state 
indicators, as the dissymmetry and asymmetry coefficients.   

The analytical study of the symmetrical components and 
of the dissymmetry and asymmetry coefficients, as well as 
the graphical representation of the corresponding functions 
of these variables, on the hole interest domain, facilitates the 
apprehension and handling of the phenomena related to the 
unbalanced states.   

The inverse problem solving gives the possibility to 
identify the unbalanced systems with imposed asymmetry 
and dissymmetry coefficients, which may be useful to verify 
some calculus relations or for the calibration of some 
dedicated apparatus. 
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