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Abstract — The difference between a simulator and an 
emulator resides in the feature of emulation to replace the 
functions of real equipment in operability conditions. When it 
comes to networking, the main distinction between simulation 
and emulation can be confined to the option of connectivity 
with real interfaces that makes possible intercommunication 
between virtualized and real network elements. The paper 
describes a method of integrating real interfaces to 
communicate with simulation modules of OMNeT++ 
environment. The case study presented is oriented towards 
Long Term Evolution eNodeB functionality emulation.

Index Terms — Communication system software, Discrete 
event simulation, Internetworking, Long Term Evolution, 
Network interfaces, Mobile Data Communications, Simulation 
software

I. INTRODUCTION

   With simulators, one of the drawbacks is that, even if 
real protocols are replicated, real messages cannot be passed 
into the simulated environment. Interconnecting real and 
emulated elements is not a new idea. Emulation dedicated 
tools started with complex equipment including a special 
hardware platform. But implementing everything at software 
level seems simpler and more cost-effective. Software 
solutions can have performance limitations, but this type of 
emulators will be used mostly for research and development 
purposes, with an important educational value, where 
functionality is evaluated with respect to performance. 

In the case of networking, implementing everything in 
programming languages like C, at network kernel level, can 
lead to greater performance as compared to using discrete 
event simulation messages. But one of the great benefits of a 
simulator is the graphical programming option that allows 
building a network in a visual way. In the case of 
OMNeT++ the graphical environment is called NED. 
OMNeT++ needs to be extended to interact with real world, 
in order to support a network mixture of both real and 
simulated connected elements, a concept similar to the 
“hardware-in-the-loop” approach in LabVIEW. 

Most of the testing equipment is focused on pushing 

traffic in different scenarios to the real equipment. But the 
dimensions and complexity of new network architectures 
makes end-to-end testing almost impossible only with real 
equipment, even in the case of important telecom vendors, 
so emulation of elements is an important step in 
development and testing.

Long Term Evolution architectures represent an element 
of novelty, and testing access to real equipment that has not 
been released in commercial versions is limited for common
users. For learning and research purposes the only solution is
the emulated equipment.

This paper will describe a socket-based method for 
connecting real interfaces to simulation environment, which
can be applied to different protocols. For example, for the 
LTE (3GPP Long Term Evolution) eNodeB (evolved Node 
B), a real S1_U interface is integrated. Our goal is to devise
an eNodeB emulator, using the same method of emulation
for other interfaces.

II. INTEGRATING REAL INTERFACES IN OMNET++

   The simulation engine used is OMNeT++, a well-know 
open source discrete event simulator, that has reached a 
maturity state in its version 4.0, and which also includes an 
integrated Eclipse development environment.

OMNeT++ is an object-oriented modular network 
simulator, which can be used for: traffic modelling of 
telecommunication networks, protocol modelling and other 
network-related simulations.

Communication between simulation models and real-time 
applications is problematic, especially from the point of 
view of event synchronization, but also from a message 
coordination perspective. For this reason, an adaptation layer 
is introduced.

The PC that runs the event discrete simulator software 
will act as a listening server for a number of applications 
that also run on the real equipment that we try to emulate: 
TCP and UDP sockets are the most used interfaces, but also 
raw sockets can be used. The emulator should be prepared 
any 
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time to accept messages, the same way as a real element.
There are two time domains that need to be coordinated: 

the simulation time of OMNeT++ with the real time used by 
the equipment that generates the traffic on the real interface. 

For that purpose, a scheduler class was implemented, 
based on the model of cSocketRTScheduler that OMNET++ 

offers. This class has the role of receiving real messages and 
buffering them in a byte array variable. Also, the time of
receiving packets is registered.

For reading from and writing to the buffer, an external 
interface class is implemented (extS1UClient). At simulator 
level, the external interface is visible as a separate module, 
which acts as client for another module that is the server 
(S1UServer is incorporated in the eNodeB class). In order to 
start the real listening socket, the external client has to run 
an initialization method that also triggers the listening state.

For reading incoming packages from the buffer, the
external interface class is using self-destined packages. This 
is a common method used by OMNET++ as trigger for 
events execution. The incoming packets are replayed, one by 
one, in a serialized way into the simulator, in close 
coordination with the scheduler class for time
synchronization. Before each event execution there will be 
some small delays.

The real messages are mapped into the message structure 
of the simulator. The OMNET++ INET framework has 
support for many types of protocols, so the message 
mapping can be done directly to one of the INET classes.

For sending packages, the process is reversed: the 
message is converted into a byte array, and passed to the 
buffer. 

A method of the scheduler class is invoked, so outgoing 
packets are played on the real interface using the socket.

This adaptation layer may prove disadvantageous when 
the number of real messages sent is greater than the 
scheduler class’ ability to process, like the case of flooding 
one interface with traffic. The effect will be a break of the 
socket connection.

In order that the simulation keeps up with real time, the 
OMNET++ simulation should be run in fast or express 
mode. For didactic purpose, normal animation time can be 
used in message analysis. When simulation is running with 
animation and the external interface is waiting for a reply, 
timeout that might occur represent quite a big risk, because 
the simulator time is delayed.

III. LTE ENODEB INTERFACES

   As a demo for integrating the simulator with real 
interfaces, we have chosen to implement the real interfaces 
of the LTE eNodeB. The Long Term Evolution 3GPP 
architecture tries to simplify the telecom networks and one 
of the intentions is to reduce the number of network 
elements. As a step forward from UMTS (Universal Mobile 
Telecommunications System) networks, LTE eNodeB 
combines the functionality of the NodeB and RNC (Radio 
Network Controller), including more routing capabilities, 
and the inter eNodeB handover as a solution for signalling 
overhead limitation in the core network.

So far, the eNodeB real interfaces integration with 
simulation models is focused on the connectivity to the 
System Architecture Evolution, the core network of LTE. As 
User-Plane protocol, the GTPu tunnelling (GPRS Tunnelling
Protocol - user) is used on top of UDP, on the allotted port
2152. For Control-plane, S1AP (S1 Application Part) and 
X2AP are the used protocols, which run on top of SCTP.

Fig. 1  Integration of a real interface into the OMNNeT++ simulator. All 
events are scheduled, all data is buffered, and reading from/ writing to the 

buffer is triggered by the external client OMNeT++ model
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Two interfaces ensure the communication between 
eNodeB and the core network:

 S1_MME is the interface towards MME
(Mobility Management Entity), so it is the main 
interface used for Control-plane communication.

 S1_U is the interface towards the S-GW (Serving 
Gateway) and it is responsible for user plain 

traffic. 

At eNodeB level, the traffic is tunnelled using GTPu. An 
important element of the GTP header is the TEID (tunnel 
endpoint identifier). In downlink traffic, this ID is used by 
the eNodeB to forward the traffic to the correct radio cell.

The eNodeB controls more radio cells (at least 3 cells) at 
the same time, and the internal structure of eNodeB consists 
of  more elements that communicate also at IP level.

For downlink traffic coming from the S-GW, the traffic 
forwarding is done to one of the cells according to the TEID. 

Steps in downlink traffic path establishment at LTE 
eNodeB level:

 MME and eNodeB set during the S1AP Initial 

Context Setup (Radio Access Bearer Setup) a 
TEID for DL traffic. 

 When MME sends Handover Request (S1AP 
PathSwitchRequest), it also includes a GTP-TEID 
within the ERAB field, and the eNodeB should 
reply in the Handover Request Acknowledge that 
it accepts the proposed forwarding of downlink 
data for this bearer.

Fig. 4  The eNodeB module consists of several interconnected sub-modules. The Transport sub-module forwards downlink traffic to the proper 
Radio Cell Controller based on the TEID internal mapping to the Radio Controllers

Fig. 2  Protocols used at eNodeB level for User Plane and Control Plane

Fig. 3.  GTPu header: the TEID field is an important element when the 
forwarding traffic path has to be chosen.
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 The eNodeB keeps an internal database for 
mapping the radio cells that it controls  with the 
TEIDs (MAC addresses of Radio Cell Controlling 
Elements are mapped to the TEIDs)

 When S-GW sends downlink traffic, that is 
GTPutunnelled, the eNodeB forwards the traffic 
to the proper cell based on the mapping between 
the TEID in the header and the stored MAC 
addresses (that are usually fixed addresses in the 
eNodeB internal network).

IV. CONNECTING S1_U REAL INTERFACE WITH 

ENODEB SIMULATION MODEL

   In our implementation, we started from a signalling 
discrete event simulator for LTE-SAE networks and 
integrated a real S1_U interface that is connected to the 
existing eNodeB module described. For this implementation,
an UDP socket SOCKET_DGRAM was opened on the 
allotted GTPu port, 2152.

The real-time scheduler class was created for 
synchronization. An external S1_U (extS1UClient) interface 
client was described. When starting the simulation, the 
initiation procedure of this external S1_U client sets the 
socket in listening state. S1UPkt.msg class was created for
the message adaptation. 

Fig. 5  To the LTE signalling simulation network, an external S1_U Interface was integrated to the eNodeB simulated model. 
The OMNET interconnection model is called extS1Client

In Fig. 5, this connection module is shown as an Ethernet 
RJ45 interface, because it makes the connection to the real 
Ethernet interface on the simulation host PC. The TEID is 
extracted form the received buffered message, because this 
parameter determines the forwarding traffic path for the 
eNodeB.

The TEID with MAC address mapping was statically set 
for our test, just for a limited number of examples. 
OMNET++ also offers the possibility to integrate a MySQL 
Database. 

The eNodeB simulation model is capable of 
communication with other simulation models and at the same 
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time acts as a server to the real interface client. Real packets that are received from a real interface and converted into 
simulation messages can be forwarded to other virtual 

modules.
For testing the setup on the real interface, a packet player 

software was used, Colasoft Packet Builder, playing a GTPu 
message from a real GTPu eNodeB trace. The packets were 
sent from another PC connected via Ethernet to the PC 
running the simulation.

The simulator runs under MS Windows in MINGW 
environment. We had difficulties in sending generated 
packets from the host PC (from Colasoft Packet Builder) to 
the simulator running on the same host. These packages are 
considered to be intended for localhost, because we try to 
send them to the listening socket on the same machine, and 
Windows restricts this functionality. Installing a Microsoft 
Loopback adapter did not solve the problem, so running 
simulation in Unix is recommended or sending the real 
packages from another host, connected to the host where the 
simulator is running.

CONCLUSIONS AND FUTURE WORK

   Integrating real interfaces with discrete event simulators 
offers the possibility for the virtualized network to take part 
in real test scenarios. The visual programming is one of the 
benefits of using simulators with graphical interface, because 
each element is visible as an object, which is easily integrated 
with other elements.

   For emulating real equipment, the equipment behaviour 
should be replicated at simulator host level, meaning the 
simulator should act as a server, and listen to exterior events. 
The same servers, which we replicate in the emulator, also 
run on the real emulated equipment. Reaction to external 
stimuli is a new function of the simulator, which listens to 
incoming messages or generates packages based on an 
algorithm. The problem of time synchronization and message 
adaptation can be solved by introducing an adaptation layer. 

As future work, we are planning to integrate other 

interfaces of the eNodeB as well, and this implies that other 
servers should run in our simulated environment, and other 
sockets should be in listening state, depending on the
emulated protocols. SCTP traffic integration is the next step, 
as this protocol is the base for most of the signalling with 
LTE core network.  For the message adaptation part, the best 
solution would be the correlation with the OMNET++ INET 
framework, which offers support for many protocols 
simulation. Improvement of emulation model can be done by 
comparing the testing results with the real equipment tests, 
and making a fine tune of the virtual model.
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