
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

179

LTE eNodeB Demonstrator
with Real and Simulated Interfaces

1Titus-Constantin BĂLAN, 2Florin SANDU, 3Szilard CSEREY, 4Virgil CAZACU 13SIEMENS Program
and System Engineering Bd Mihai Kogalniceanu nr.21 bl.C6 RO-500090 Brasov,

2"Transilvania"University of Brasov Bd Eroilor nr. 29A RO-500036, Brasov, 4Bit Defender str. Preciziei,
nr.24, RO-062204, Bucharest, 1titus.balan@siemens.com, 2sandu@unitbv.ro,3szilard.cserey@siemens.com

4vcazacu@bitdefender.com

Abstract — The difference between a simulator and an
emulator resides in the feature of emulation to replace the
functions of real equipment in operability conditions. When it
comes to networking, the main distinction between simulation
and emulation can be confined to the option of connectivity
with real interfaces that makes possible intercommunication
between virtualized and real network elements. The paper
describes a method of integrating real interfaces to
communicate with simulation modules of OMNeT++
environment. The case study presented is oriented towards
Long Term Evolution eNodeB functionality emulation.

Index Terms — Communication system software, Discrete
event simulation, Internetworking, Long Term Evolution,
Network interfaces, Mobile Data Communications, Simulation
software

I. INTRODUCTION

 With simulators, one of the drawbacks is that, even if
real protocols are replicated, real messages cannot be passed
into the simulated environment. Interconnecting real and
emulated elements is not a new idea. Emulation dedicated
tools started with complex equipment including a special
hardware platform. But implementing everything at software
level seems simpler and more cost-effective. Software
solutions can have performance limitations, but this type of
emulators will be used mostly for research and development
purposes, with an important educational value, where
functionality is evaluated with respect to performance.

In the case of networking, implementing everything in
programming languages like C, at network kernel level, can
lead to greater performance as compared to using discrete
event simulation messages. But one of the great benefits of a
simulator is the graphical programming option that allows
building a network in a visual way. In the case of
OMNeT++ the graphical environment is called NED.
OMNeT++ needs to be extended to interact with real world,
in order to support a network mixture of both real and
simulated connected elements, a concept similar to the
“hardware-in-the-loop” approach in LabVIEW.

Most of the testing equipment is focused on pushing

traffic in different scenarios to the real equipment. But the
dimensions and complexity of new network architectures
makes end-to-end testing almost impossible only with real
equipment, even in the case of important telecom vendors,
so emulation of elements is an important step in
development and testing.

Long Term Evolution architectures represent an element
of novelty, and testing access to real equipment that has not
been released in commercial versions is limited for common
users. For learning and research purposes the only solution is
the emulated equipment.

This paper will describe a socket-based method for
connecting real interfaces to simulation environment, which
can be applied to different protocols. For example, for the
LTE (3GPP Long Term Evolution) eNodeB (evolved Node
B), a real S1_U interface is integrated. Our goal is to devise
an eNodeB emulator, using the same method of emulation
for other interfaces.

II. INTEGRATING REAL INTERFACES IN OMNET++

 The simulation engine used is OMNeT++, a well-know
open source discrete event simulator, that has reached a
maturity state in its version 4.0, and which also includes an
integrated Eclipse development environment.

OMNeT++ is an object-oriented modular network
simulator, which can be used for: traffic modelling of
telecommunication networks, protocol modelling and other
network-related simulations.

Communication between simulation models and real-time
applications is problematic, especially from the point of
view of event synchronization, but also from a message
coordination perspective. For this reason, an adaptation layer
is introduced.

The PC that runs the event discrete simulator software
will act as a listening server for a number of applications
that also run on the real equipment that we try to emulate:
TCP and UDP sockets are the most used interfaces, but also
raw sockets can be used. The emulator should be prepared
any

mailto:titus.balan@siemens.com
mailto:sandu@unitbv.ro
mailto:szilard.cserey@siemens.com

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

180

time to accept messages, the same way as a real element.
There are two time domains that need to be coordinated:

the simulation time of OMNeT++ with the real time used by
the equipment that generates the traffic on the real interface.

For that purpose, a scheduler class was implemented,
based on the model of cSocketRTScheduler that OMNET++

offers. This class has the role of receiving real messages and
buffering them in a byte array variable. Also, the time of
receiving packets is registered.

For reading from and writing to the buffer, an external
interface class is implemented (extS1UClient). At simulator
level, the external interface is visible as a separate module,
which acts as client for another module that is the server
(S1UServer is incorporated in the eNodeB class). In order to
start the real listening socket, the external client has to run
an initialization method that also triggers the listening state.

For reading incoming packages from the buffer, the
external interface class is using self-destined packages. This
is a common method used by OMNET++ as trigger for
events execution. The incoming packets are replayed, one by
one, in a serialized way into the simulator, in close
coordination with the scheduler class for time
synchronization. Before each event execution there will be
some small delays.

The real messages are mapped into the message structure
of the simulator. The OMNET++ INET framework has
support for many types of protocols, so the message
mapping can be done directly to one of the INET classes.

For sending packages, the process is reversed: the
message is converted into a byte array, and passed to the
buffer.

A method of the scheduler class is invoked, so outgoing
packets are played on the real interface using the socket.

This adaptation layer may prove disadvantageous when
the number of real messages sent is greater than the
scheduler class’ ability to process, like the case of flooding
one interface with traffic. The effect will be a break of the
socket connection.

In order that the simulation keeps up with real time, the
OMNET++ simulation should be run in fast or express
mode. For didactic purpose, normal animation time can be
used in message analysis. When simulation is running with
animation and the external interface is waiting for a reply,
timeout that might occur represent quite a big risk, because
the simulator time is delayed.

III. LTE ENODEB INTERFACES

 As a demo for integrating the simulator with real
interfaces, we have chosen to implement the real interfaces
of the LTE eNodeB. The Long Term Evolution 3GPP
architecture tries to simplify the telecom networks and one
of the intentions is to reduce the number of network
elements. As a step forward from UMTS (Universal Mobile
Telecommunications System) networks, LTE eNodeB
combines the functionality of the NodeB and RNC (Radio
Network Controller), including more routing capabilities,
and the inter eNodeB handover as a solution for signalling
overhead limitation in the core network.

So far, the eNodeB real interfaces integration with
simulation models is focused on the connectivity to the
System Architecture Evolution, the core network of LTE. As
User-Plane protocol, the GTPu tunnelling (GPRS Tunnelling
Protocol - user) is used on top of UDP, on the allotted port
2152. For Control-plane, S1AP (S1 Application Part) and
X2AP are the used protocols, which run on top of SCTP.

Fig. 1 Integration of a real interface into the OMNNeT++ simulator. All
events are scheduled, all data is buffered, and reading from/ writing to the

buffer is triggered by the external client OMNeT++ model

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

181

Two interfaces ensure the communication between
eNodeB and the core network:

 S1_MME is the interface towards MME
(Mobility Management Entity), so it is the main
interface used for Control-plane communication.

 S1_U is the interface towards the S-GW (Serving
Gateway) and it is responsible for user plain

traffic.

At eNodeB level, the traffic is tunnelled using GTPu. An
important element of the GTP header is the TEID (tunnel
endpoint identifier). In downlink traffic, this ID is used by
the eNodeB to forward the traffic to the correct radio cell.

The eNodeB controls more radio cells (at least 3 cells) at
the same time, and the internal structure of eNodeB consists
of more elements that communicate also at IP level.

For downlink traffic coming from the S-GW, the traffic
forwarding is done to one of the cells according to the TEID.

Steps in downlink traffic path establishment at LTE
eNodeB level:

 MME and eNodeB set during the S1AP Initial

Context Setup (Radio Access Bearer Setup) a
TEID for DL traffic.

 When MME sends Handover Request (S1AP
PathSwitchRequest), it also includes a GTP-TEID
within the ERAB field, and the eNodeB should
reply in the Handover Request Acknowledge that
it accepts the proposed forwarding of downlink
data for this bearer.

Fig. 4 The eNodeB module consists of several interconnected sub-modules. The Transport sub-module forwards downlink traffic to the proper
Radio Cell Controller based on the TEID internal mapping to the Radio Controllers

Fig. 2 Protocols used at eNodeB level for User Plane and Control Plane

Fig. 3. GTPu header: the TEID field is an important element when the
forwarding traffic path has to be chosen.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

182

 The eNodeB keeps an internal database for
mapping the radio cells that it controls with the
TEIDs (MAC addresses of Radio Cell Controlling
Elements are mapped to the TEIDs)

 When S-GW sends downlink traffic, that is
GTPutunnelled, the eNodeB forwards the traffic
to the proper cell based on the mapping between
the TEID in the header and the stored MAC
addresses (that are usually fixed addresses in the
eNodeB internal network).

IV. CONNECTING S1_U REAL INTERFACE WITH

ENODEB SIMULATION MODEL

 In our implementation, we started from a signalling
discrete event simulator for LTE-SAE networks and
integrated a real S1_U interface that is connected to the
existing eNodeB module described. For this implementation,
an UDP socket SOCKET_DGRAM was opened on the
allotted GTPu port, 2152.

The real-time scheduler class was created for
synchronization. An external S1_U (extS1UClient) interface
client was described. When starting the simulation, the
initiation procedure of this external S1_U client sets the
socket in listening state. S1UPkt.msg class was created for
the message adaptation.

Fig. 5 To the LTE signalling simulation network, an external S1_U Interface was integrated to the eNodeB simulated model.
The OMNET interconnection model is called extS1Client

In Fig. 5, this connection module is shown as an Ethernet
RJ45 interface, because it makes the connection to the real
Ethernet interface on the simulation host PC. The TEID is
extracted form the received buffered message, because this
parameter determines the forwarding traffic path for the
eNodeB.

The TEID with MAC address mapping was statically set
for our test, just for a limited number of examples.
OMNET++ also offers the possibility to integrate a MySQL
Database.

The eNodeB simulation model is capable of
communication with other simulation models and at the same

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

183

time acts as a server to the real interface client. Real packets that are received from a real interface and converted into
simulation messages can be forwarded to other virtual

modules.
For testing the setup on the real interface, a packet player

software was used, Colasoft Packet Builder, playing a GTPu
message from a real GTPu eNodeB trace. The packets were
sent from another PC connected via Ethernet to the PC
running the simulation.

The simulator runs under MS Windows in MINGW
environment. We had difficulties in sending generated
packets from the host PC (from Colasoft Packet Builder) to
the simulator running on the same host. These packages are
considered to be intended for localhost, because we try to
send them to the listening socket on the same machine, and
Windows restricts this functionality. Installing a Microsoft
Loopback adapter did not solve the problem, so running
simulation in Unix is recommended or sending the real
packages from another host, connected to the host where the
simulator is running.

CONCLUSIONS AND FUTURE WORK

 Integrating real interfaces with discrete event simulators
offers the possibility for the virtualized network to take part
in real test scenarios. The visual programming is one of the
benefits of using simulators with graphical interface, because
each element is visible as an object, which is easily integrated
with other elements.

 For emulating real equipment, the equipment behaviour
should be replicated at simulator host level, meaning the
simulator should act as a server, and listen to exterior events.
The same servers, which we replicate in the emulator, also
run on the real emulated equipment. Reaction to external
stimuli is a new function of the simulator, which listens to
incoming messages or generates packages based on an
algorithm. The problem of time synchronization and message
adaptation can be solved by introducing an adaptation layer.

As future work, we are planning to integrate other

interfaces of the eNodeB as well, and this implies that other
servers should run in our simulated environment, and other
sockets should be in listening state, depending on the
emulated protocols. SCTP traffic integration is the next step,
as this protocol is the base for most of the signalling with
LTE core network. For the message adaptation part, the best
solution would be the correlation with the OMNET++ INET
framework, which offers support for many protocols
simulation. Improvement of emulation model can be done by
comparing the testing results with the real equipment tests,
and making a fine tune of the virtual model.

REFERENCES

[1] A.Varga: "OMNeT++ Discrete Event Simulation System Version 3.2

User Manual", 2005, www.omnetpp.org

[2] Florin Sandu, Szilárd Cserey, Titus Constantin Balan, Mihai Romanca:
"Simulation-based UMTS e-learning software, PETRA '08:
Proceedings of the 1st international conference on PErvasive
Technologies Related to Assistive Environments", July 2008

[3] Christoph P. Mayer, Thomas Gamer, "Integrating real world
applicationsinto OMNeT++", Institute of Telematics, Universität
Karlsruhe (TH), Technischer Bericht, Nr. TM-2008-2, Feb 2008

[4] Balan Titus-Constantin, Sandu Florin,” Fourth-Generation Wireless
Networks: Applications and Innovations”, Pages: 405-423 pp, IGI
Global, 2010

[5] Harri Holma, Antti Toskala : “LTE for UMTS - OFDMA and SC-
FDMA Based Radio Access”, Wiley, April 2009

[6] 3rd Generation Partnership Project: “3GPP TS 36.413 Evolved
Universal Terrestrial Radio Access Network”; (E-UTRAN); S1
Application Protocol (S1AP), V9.1.0 (2009-12)

[7] I. Baumgart, B. Heep, and S. Krause. OverSim: “A Flexible Overlay
Network Simulation Framework. Proceedings of 10th IEEE Global
Internet Symposium”. pages 79–84, May 2007.

[8] http://www.omnetpp.org

