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Abstract — There is a variety of codes that derive from the 

delay modulation or Miller code. Unlike Miller code, some are 
D.C.-constrained. They are also RLL (Run-Length Limited). A 
thorough spectral analysis of three DC-free Miller-like codes 
was performed. The derived coding factor formulae and the 
p.s.d. representations confirm the D.C.-free properties of this 
code. 
 

Index Terms — Codes, Digital filters, Markov processes, 
Spectral analysis 

I. INTRODUCTION 
There is a variety of codes that derive from the delay 

modulation or Miller code [1-5]. Unlike Miller code, some 
are D.C.-constrained. They are also RLL (Run-Length 
Limited) codes. Generally speaking, a RLL code is 
described by the tuple (d, k, C), where 

d - minimum runlength 
k - maximum runlength 
C - maximum instantaneous value of the accumulated 

charge. 
The parameters d and k represent the lower bound and the 

upper bound of the number of consecutive zeros between 
two adjacent ones (or transitions), respectively. 

In digital magnetic signal recording the data are stored as 

flux transitions and this implies a NRZ-M or differential 
encoding.  

If the transition takes place at the mid-point of the bit 
interval, the code is known as NRZI (Non Return to Zero 
Inverted). Here a bit ‘1’ represents a transition and ‘0’ 
represents no transition in the binary level output of the 
coder.  

So, there are two possible meanings of the tuple (d, k, C), 
depending on the presence or absence of differential 
encoding. In NRZI notation, the values of d and k are 
diminished by –1. 

Miller code is also known under the names of delay 
modulation, DM-code, High Density Digital Recording, 
HDDRII or MFM (Modified Frequency Modulation) code. 

 The Miller code was one of the first RLL codes to be 
used in magnetic data recording.  

It can be considered as a particular 1B2B code, as each 
input data bit is mapped into two output symbols. 

 In DM coding a mark is represented by a transition at the 
midpoint of the symbol period, while a space is represented 
by a transition at the end of the symbol period, excepting the 
single spaces or the last zeros in a string of spaces, which 
are coded as no transition. 

There is a small D.C. component that is introduced by the 
sequences of the type 101, which have non-zero RDS and 
introduce intervals without ttransitions of length 2T, T being 
the bit duration. 

In order to make the code D.C.-free or improve its 
synchronization features, some constraints were imposed 
and several new codes derived from Miller codes were 
devised. The DC-free are known as Miller squared or  2M , 
Howells Woodman Miller and Ferreira code. Jordan and 
Radev codes are not D.C –free but have better properties. 

II. FERREIRA CODE 
The Ferreira code [1] is a DC-free RLL code described as  

(0,3,3) with a minimum Hamming distance equal to 4. mind
Figure 1 FSTD of Ferreira (0,3,3) code 
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The Ferreira code (0, 3, 3) was introduced by Ferreira in 
1983. The finite state transition diagram (FSTD) associated 

to this code is represented in figure 1. 
The patterns  and  increase or diminish the 

charge with 2 units, while the patterns  and 
++ −−

−+ +−  keep 
the charge unchanged. So, loops are possible only if the 
code words  and   are involved. −+ +−

The coding factor was obtained as shown in eq.(1), where 
x f Tπ= .  

It is represented in figure 2 for three values of the 
probability p.  

Decreasing the probability p makes the patterns +−  and 
 predominant and the code becomes more similar to bi-

phase L, which has maximum energy at .  
−+

1fn =

 
Here fn is the normalized frequency with respect to the 

bit rate.  
An increase of probability p results in more energy being 

transferred at low frequency, as the patterns  and ++ −−  
become predominant. 

The finite state transition diagram (FSTD) represented in 
figure 1 can be modified in order to alter the coding factor, 
as shown in figure 3.  

The code keeps it D.C.-free character but becomes a (0, 5,  
5) code with  equal to 2. mind

Its coding factor was determined as illustrated in eq.(2) 
and is represented in figure 4 for three values of the 
probability p. 

  Figure 2 Coding factors of Ferreira (0, 3, 3) code 

Figure 4 Coding factors of  (0,5,5) code 

A comparison of the coding factors of (0, 3, 3) and (0, 5, 
5) codes is illustrated in figure 5.  

Figure 3 FSTD of Ferreira (0,5,5) code 

Figure 5 A Comparison of  p.s.d. for (0,5,5) and (0,3,3) codes 

The (0, 5, 5) code has more energy in the low-frequency 
area, as its DSV (Digital Sum Variation) is bigger. 

To generate a D.C.-free code the encoder must be a FRDS 
(Finite Running Digital Sum) automaton. This results in 
certain rigid relationships between the individual states and 
also in the interconnection of states.  

As each state owns a certain charge attribute, when the 
encoder is in that state the disparity or accumulated charge 
can take only the value of the charge attribute. It was 
assumed that the encoder starts from a zero charge state.  

One should consider the case of binary codes. Suppose 
that the encoder maps m information bits into n code bits 
(mBnB code).  

If n is even, then only states with even charge attributes 
can exist.  

If n = 2, which corresponds to many usual codes currently 
used (CMI, bi-phase, Hedeman, Miller, etc.), the 
interconnection of states can be done only for states having 
charge attributes that differ either by zero or two units. 
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Searching for a D.C.-free code is made possible and also 
easier by observing several rules: 

1. Look for symmetry and make use of it.  
2. Assign a suitable set of waveform patterns O  to data 

bits 0 and 1. For the non-zero waveforms there should be 
dual isomorphic waveform patterns in the set, each 
expecting to compensate the charge of the other. This 
requires that the total number of assigned waveforms should 
be even. 

I. JORDAN CODE 
In Jordan code [2] a binary ‘1’ is represented either by a 

transition at the mid-point of the bit interval, or by 
transitions at the beginning and at the end of the bit interval. 

 This happens in such a way that, when the distance 
between two successive transitions is one bit interval, the 
second transition is associated to a binary ‘1’ in the input 
data. 

A binary ‘0’ is represented by a transition that takes place 
either at the beginning or at the end of the bit interval.  

 
So, a string composed of two zeros determines the 

appearance of a interval of length 2T without transitions (the 
same level L or H), if preceded either by a bit’1’ coded by 
transitions at the beginning and at the end of the bit interval, 
or by a ‘0’ preceded by a bit’1’, coded by a transition at the 
mid-point of the bit interval. 

The Jordan code contains mainly low frequency 
components when coding repetitive strings composed of 
marks (‘1’) or spaces (‘0’), in opposition with Miller code 

that exhibits the same property for the input sequence 
composed of alternating mark and spaces (0101…).  

The Jordan code is described by the state transition 
diagram in figure 6.  

Its coding factor is given by eq.(3) where x f Tπ=  and 
is represented in figure 7 for three values of the probability p 
of a mark (bit “1”) at the coder input.  

 Figure 7 Coding factor of Jordan code 
 
The coding factor of Jordan code is identical with that of 

DM code for 0.5p = , but differs from it for other values of 
the probability p of a mark. 

II. RADEV CODE 
This code was introduced by Radev and Stoyanov [3] in 

1984 and was denoted as new 1B2B code.  
The Radev code preserves the narrow power spectral 

density of the DM code and provides 10 % level transitions 
more and also, a better balancing.  

It offers also an error multiplication factor of 0.75 and 
error monitoring capabilities, which make it a better choice, 
as compared with Miller code. 

This code was designed with the purpose of offering 
increased transition density for a string composed of 
alternating marks and spaces, which corresponds to an idle 
digital transmission channel.  

This increases the timing content of the line coded signal 
and eases bit synchronization.  

 
The Radev code is described by the state transition 

diagram in figure 8. Its coding factor is given by eq. (4). 

Figure 6 FSTD of Jordan code 
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The p.s.d. of Rad th that of DM and 
Jo

 

ev code is identical wi
rdan code for 0.5p = , but differs from it for other values 

of probability p. Denoting 0.5p x= − , so x takes values 
from 0.5−  to 0.5+ , we get eq.(5), where y f Tπ= .   

As only even powers of x are found in the formula of the 
coding factor and the cosine functions possess even 

( , ) ( , ) 0.5 0.5C f p x C f p x x

s

− = + − ≤ ≤        (6) 
For comparison purposes figu  illustrates the coding 
ctors of Miller, Jordan and R des for 0.6p

ymmetry, we can conclude that the coding factor shows 
even symmetry defined by, 

re 9
fa adev co = . 

The calculations of the coding factors were performed in 
MATHEMATICA, using the methods in [5], [6] and [8].  

III  

like

T d coding factor formulae and the p.s.d. 

A  was evidenced for the 
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. CONCLUSION
A thorough spectral analysis of several DC-free Miller-
 codes was performed, expressing their power spectral 

density both as a function of normalized frequency fn with 
respect to the bit rate and the probability p of a mark at the 
coder input.  

he derive
representations confirm the D.C.-free properties of the 
Ferreira codes.   

n even symmetry around 5.0=p
first time in the formula of power spectral density of Radev 
code. 
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