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Abstract — In this article we briefly recall a theoretical
treatment previously published [1] and concerning the mag-
netic properties of 2D square lattices composed of (2N+1)2

classical spins isotropically coupled between first-nearest 
neighbors (i.e., showing Heisenberg couplings). Indeed these
layers are good candidates for spintronic junctions. In the 
thermodynamic limit (N+), we recall that (i) a very simple 
closed-form expression may be derived for the zero-field parti-
tion function ZN(0), (ii) the spin correlation vanishes in the 
zero-field limit i.e., there is no remnant magnetization, except 
at T=0 K; (iii) the spin-spin correlation is described by a corre-
lation path confined inside a correlation domain (Theorem 1). 
As a result a general closed-form expression may be respec-
tively derived for the spin-spin correlation between any two 
lattice sites (Theorem 2) and for the susceptibility, without any 
approximation. We finally test previous experimental fits and 
we show that the use of a truncated expansion for the suscepti-
bility was totally justified.

Index Terms — spintronics, classical spins, Heisenberg cou-
plings, magnetic properties, quantum theory

I. INTRODUCTION

From a practical point of view, thin magnetic layers play 
an important role in many areas of technology. Namely, in 
the field of spintronics, these layers may appear at the 
interface between different semiconductors showing or not 
magnetic properties [2]. Indeed, in a magnetic material, spin 
scattering mechanisms are closely dependent on the energy 
level E occupied by the external electrons respectively label-
led s, p or d as well as on their polarization “up” () or
“down” (). In Fig.1 we have summarized the various 
situations which intervene and allow one to understand the 
nature of the spin current passing through a junction, 
notably at the Fermi level EF. Thus, if n(EF) is the 
electron 

density at the Fermi level, we have for (i) a 
nonferromagne-tic metal

)()( FsFs EnEn  
and

)()( FdFd EnEn  
 whereas (ii) for a weak ferromagnet 

)()( FsFs EnEn  
 but 

)()( FdFd EnEn  
. As a result 

the corresponding spin current is composed of electrons s, 
s, d and d but we have �� for the resistivities. 
Spintronics exploits this asymmetry of conduction so that 
there are two channels of conduction. (iii) In the case of a 
strong ferromagnet, the current is composed of electrons s, 
s and d , exclusively, whereas for (iv) a “semimetal” 
(generally an oxide such as CrO2, Fe3O4, …, a metallic 
alloy such as NiMnSb or a semiconductor such as GaMnAs) 
only electrons d play a role. If we define the polarization P 
at the Fermi level as:  
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we shall have a full polarization (100%) in cases (iii) with 
electrons d and in case (iv) with electrons d.  

As a result, the study of the magnetic properties of three-
dimensional (3D) compounds composed of 3d ions is of the 
highest importance. In addition they constitute an interme-
diate step for building up 3D artificial magnets whose 
structure may be imposed (like for magnetic grains used in 
nanotechnologies) and are characterized by local spins of 
high quantum number i.e., spin momenta characterized by a 
spin quantum number plainty greater or equal to 5/2.

Two-dimensional (2D) magnetic layers are also very im-
portant because they may be used at the interface of blocks 
constituting spintronic junctions. This is the reason for 
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Fig.1. Comparison of the spin densities at the Fermi level for different cases of magnetic properties
(the s and s densities have been omitted in case (iv) for clarity)
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which the study of their magnetic properties has drawn 
such an attention in addition to the fact that physics in two 
dimen-sions is very different, notably for interpreting the 
fractional quantum Hall effect [3].

In previous papers [4] we published a treatment concer-
ning the 2D square lattices composed of (2N+1)2 classical 
spins (for instance, ions Mn2+ and Fe3+ characterized by a 
spin quantum number 5/2) isotropically coupled between 
nearest neighbors (i.e., showing Heisenberg couplings). 
However it was based upon an approximation that we shall 
recall. These layers are good candidates for spintronic
junctions. Indeed, when dealing with a ferromagnet, the re-
sistivity strongly depends on the relative orientation of the 
spin current and the local magnetization. When dealing with 
an antiferromagnet, the magnetization is plainly weaker and 
the resistivity will be quasi independent from the local ma-
gnetization.

In the thermodynamic limit (N+), we recall that (i) a 
very simple closed-form expression may be derived for the 
zero-field partition function ZN(0), (ii) the spin correlation 
vanishes in the zero-field limit i.e., there is no remnant ma-
gnetization, except at T=0 K; (iii) the spin-spin correlation is 
described by a correlation path confined inside a correlation 
domain (Theorem 1). As a result a general closed-form ex-
pression may be respectively derived for the spin-spin corre-
lation between any two lattice sites (Theorem 2) and the 
susceptibility, without any approximation. We finally test 
previous experimental fits and we show that the use of a 
truncated expansion for the susceptibility was totally jus-
tified [4], [5]. We shall see in conclusion of this paper that, 
in fact, the approximation used was fully justified except in 
a very sharp temperature domain closed to absolute zero (the 
critical temperature TC).

II. THE ZERO-FIELD PARTITION FUNCTION, THE
SPIN CORRELATIONS AND THE SUSCEPTIBILITY

1. Generalities

In Magnetism the static and/or dynamic physical quanti-
ties of highest interest are the magnetization, the suscepti-
bility and the correlation length. All these parameters share 
a common property: their respective definitions involve the 
presence of spin correlations. In this article we shall exclu-
sively focus on the static properties of the susceptibility , 
in the zero-field limit. Generally it is more convenient to 
reduce the susceptibility  to the susceptibility per lattice 
site i,j. Thus we may define the susceptibility per lattice site 
as:

',',
'

,, kkkjki
k k

jiji GG   (2)

where Gu,u' is the Landé factor directly expressed in B/
unit and characterizing each classical spin momentum:

Gi,j = G    if i+j is even or zero,

                         Gi,j = G'    if i+j is odd , (3)

and where k,k' is the correlation function:

  ',,',,', . kjkijikjkijikk SSSS . (4)

In the previous equation, the bracket notation <…>  means 
that we deal with a thermodynamic average. In other words, 
if we consider a lattice wrapped on a torus, characterized by 
a square unit cell and composed of (2N+1)2 sites, each one 
being the carrier of a classical spin Si,j, we may define the 
correlation between any two spins as:














  

 


N

Ni

ex
ji

N

Nj
NNkjkikjkijijiNN

N
kjkiji Hdddd

Z ,,',',,,,',, exp.........
)0(

1
. SSSSSSSS (5)

where ZN(0) is the zero-field partition function derived 
from the numerator of (5) by replacing the absent spin Si,j or 
Si+k,j+k' by the vector (1,1,1). dS is the elementary surface
swept by the extremity of spin S(,) i.e. dS =cosdd, in 
spherical co-ordinates. ex

jiH ,  is the exchange Hamiltonian

jijiji
ex

ji JJH ,,121,1, )( SSS   (6)

In the previous equation we recall that J1 and J2 refer to 
the exchange interaction between nearest neighbors 
belonging to the horizontal lines and vertical rows of the lat-
tice, respectively. In addition Ji0 (respectively, Ji0, with 
i=1,2) denotes an antiferromagnetic (respectively, 
ferromagnetic) coupling.   ',, . kjkiji SS  is called the 
spin-spin correla-tion whereas  uS , with u=(i,j) or 
(i+k,j+k'), is the spin correlation.  uS may be directly 
derived from (5) by replacing the absent spin Si,j or Si+k,j+k' in 

  ',, . kjkiji SS by the vector (1,1,1). From a physical 
point of view this correlation   ',, . kjkiji SS  will 
describe the state of cor-relation between any two spins 
located at sites (i,j) and (i+k,j+k'). As for  uS , with 
u=(i,j) or (i+k,j+k'), it is directly linked with the 
magnetization per site. In the zero-field limit to which we 
restrict the present study, it is nothing but the remnant 
magnetization per site. In addition, as we deal with isotropic 
(Heisenberg) couplings, we have the following properties:

  ',,',, .
3

1
. kjkiji

v
kjki

v
ji SS SS ,  v = x, y or z, 

 u
v
uS S

3

1
, (6)

z
z
uy

y
ux

x
uu SSS eeeS  , u = (i,j) or (i+k,j+k'),     

from which we immediately derive for the correlation 
func-tion:

',', 3
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kk  ,  v = x, y or z (7)

Finally we may define the self spin-spin correlation
 2)( v

uS , with v=x, y or z. We have  2S =1 due to the 
fact that the classical spin is considered as a unit vector. 
Consequently, as we deal with isotropic spin-spin couplings, 
we may write:

 2)( x
uS =  2)( y

uS =  2)( z
uS =

3

1
,

3
,
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From now we shall consider the reference site as 
(i,j)=(0,0). Under these conditions, the expression of the 
susceptibility per square unit cell and averaged per lattice 
site may be finally written as:
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 , (9)

In [1] we have seen that, because of the presence of classi-

cal spin moments, all the operators 
ex

jiH ,  commute and the 
exponential factor appearing in the integrand of (5) may be 
written:
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Thus, the particular nature of ex
jiH ,  given by (6) allows 

one to separate the contributions corresponding to the 
exchange coupling involving classical spins belonging to the 
same horizontal line i of the layer (i.e., Si,j1, Si,j1 and Si,j) or 
to the same vertical row j (i.e., Si1,j, Si1,j and Si,j) [1]. Thus, 
for each of the four contributions (one per bond connected 
to the site (i,j) carrying the spin Si,j), we have to expand a 
term

such as exp(AS1.S2) where A is J1 or J2 (the classical 
spins S1 and S2 being considered as unit vectors). If we call 
1,2 the angle between vectors S1 and S2, respectively 

characterized by the couples of angular variables (1,) and 
(2,), it is possible to expand the operator exp(Acos1,2) 
on the infinite basis of spherical harmonics which are eigen-
functions of the angular part of the Laplacian operator on 
the sphere of unit radius S2:
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In the previous equation, the I+1/2(A)'s are modified 
Bessel functions of the first kind. If we set:
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each operator 
 ex

jiH ,exp 
 may be notably expanded on the 

basis of eigenfunctions (the spherical harmonics), whereas 
the ��'s are nothing but the associated eigenvalues. As Oz 
is the axis of quantization in the spin momentum space, we 
shall exclusively focus on the z-z spin-spin correlation or on 
the z spin-correlation. In the most general case we have: 
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At this step, let us note that, due to the previous remarks,
  ',, . kjkiji SS

(as well as ZN(0) and all the derived 
ther-modynamic functions) appears as a characteristic 
polyno-mial expressed by means of eigenfunctions (the

spherical harmonics) and associated eigenvalues (the ��'s) 

of the La-placian operator. 21,' kkF
is the following current 

integral
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2121 ,,' kkkk FF  . This latter 
integral which has been calculated in [1] for expressing the 

zero-field partition function ZN(0) may be written as:

  





 



 12

1
)1'2)(12)(12)(1'2(

4

1

212,1

2121212121
,

2/1
,,1,,1,

kk

L

LL
kkkkkkkkkk L

F

kk



2,12,1

2,12,12,12,1

2,1

2,12,1

2,12,1

12,112,12,112,11

2,1

12,12,11

2,1

2,12,1

''

0

0'0''

0

00'

kkkk

kkkkkkkk

kk

kkkk

kkkk

kkkkkkkk

kk

kkkk

kk

kkkk

ML

mm

LML

mm

L
L

LM

CCCC
 




 (16)

In the previous equation 
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 is a Clebsch-Gordan 

(C.G.) coefficient [6]. The C.G. coefficients appearing in 

(17) (with 
0
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2. Calculation of ZN(0)

The calculation of the zero-field partition function ZN(0) 
involves that of each current integral Fi,j (cf. (17)). Whatever 
the finite or infinite lattice size, the non-vanishing condition 
of Fi,j is mainly due to that of C.G. coefficients for the in-

sites. The first C.G. coefficient 
jiji

jijijiji
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mmC
,,
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will 

not vanish if Mi,j=m'i+1,j+mi,j1 whereas for the second one 
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 we have Mi,j=mi,jm'i,j [6] so that we fi-

nally derive (2N+1)2 equations (one per lattice site) such as:

mi,j1 + m'i+1,j – mi,j – m'i,j = 0     (SRm).          (17)

This is the first selection rule labelled from now SRm: it 
exclusively concerns the various coefficients mi,jand 
m'i,jcharacterizing each site (i,j). The SRm relation is unique 
and temperature-independent; (ii) due to the fact that the -
part of the Fi,j-integrand (exclusively depending on the m's 
and m''s) reduces to unity, Fi,j is a purely real number.  

The second non-vanishing condition of C.G. coefficients 
appearing in each current integral Fi,j (cf (17)) concerns the 
positive (or zero) integers i,j and 'i,j intervening in each 
radial factor of the characteristic polynomial. In addition to 
the triangular inequalities i,j'i,j≤Li,j≤i,j+'i,j and 
i,j1'i1,j≤Li,j≤i,j1'i1,j respectively followed by the 
C.G. coefficients 
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more restrictive vanishing condition when the involved 
mi,j's and m'i,j's are replaced by zero as it clearly appears in
(17) [6]:
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where K is a coefficient which remains unchanged under the 
permutation of integers 1, 2 and 3. As a result 
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, we must have i,j1+'i1,j+Li,j=2A'i,j0. 

If we sum the two previous equations concerning  and ', 
we have (2N+1)2 equations (one per lattice site) such as:

i,j1 + 'i1,j  i,j  'i,j = 2gi,j ,  gi,j = Ai,j  A'i,j Li,j  0

(SR1) (19)

or by assuming the difference:

i,j1 + 'i1,j  i,j  'i,j = 2g'i,j ,  g'i,j = A'i,j Ai,j

(SR2) (20)

(or equivalentlyi,j +'i,ji,j1'i1,j=2g''i,j, with g''i,j=g'i,j). 

Thus, the complete determination of couples (�i,j,mi,j) 
for each lattice site (i,j) will allow the full determination of 
the closed-form expression of ZN(0). It is achieved owing to 
two properties: (i) using principles of invariance which must 

be respected by the expression of ZN(0); (ii) using the spin 
lat-tice symmetries. 

(i) Owing to the first property of invariance, the closed-
form expression obtained for the zero-field partition func-
tion ZN(0) must be invariant under the permutation of the 
exchange energies J1 and J2 (diagonal or D-symmetry). The
second property of invariance imposes that the expression of 
ZN(0) must be independent of the bond orientation.

(ii) We essentially wish to determine ZN(0) in the thermo-
dynamic limit (N+) i.e., in the physical case of an infini-
te lattice. As a result it is easier to wrap the lattice on a torus
because there are more symmetry elements than for a 2D 
plane lattice. However, in the physical case N+, ZN(0) 
must be similar in both cases. For both situations, we deal 
with two elements of symmetry (step 1): the horizontal and 
vertical medians (mirror planes M1 and M2). The effect of 
such mirrors is to transform a spherical harmonic into 
another conjugated one and vice versa. Thus we must have 
Fi,j=Fi,j

* (symmetry with respect to the horizontal median _

HM-symmetry _ or mirror M1) and Fi,j=Fi,j
* (symmetry 

with respect to the vertical median _ VM-symmetry _ or 
mirror M2). As all the integrals Fi,j are real due to the SRm
condition (cf (18)) we finally have Fi,j=Fi,j (mirror M1) and
Fi,j=Fi,j (mirror M2). It allows one to derive specific 
relations between the involved coefficients m and . More 
details are given in [1]. In Step 2 we now use a new element 
of symmetry: the torus is characterized by an axis of 
revolution . As a result it means that mirror M2 which 
contains this axis can rotate around it. It then allows one to 
show that two consecutive vertical lines are constituted of 
bonds characterized by the same couple of values ('i,m'j). 

Finally, in Step 3, the D-symmetry operation (exchange of 
indices 1 and 2) permits to derive that mi=m'j and i='j if i=j. 
As we have just shown that all the bonds of the vertical lines 
of the torus are characterized by the same couple ('j,m'j), we 
derive that all the horizontal lines as well as all the vertical 
ones are characterized by the same couple (i,mi)=('j,m'j) or 
equivalently
mi,j = m'i,j = m  ,  i,j = 'i,j =   (i,j)Torus. (21)

This result is in perfect agreement with the geometrical 
properties of a toroidal environment, for each lattice site. In 
summary the property followed by coefficients � (respecti-
vely, m) is similar to the one encountered in the case of a 
finite chain showing cyclic conditions. 
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Fig.2. Plot of the ratio Fin(,,m)/Fin (0,0,0) vs  for various values of  m

Consequently we may write the general expression of the zero-field 

partition function for a finite torus:

  2)12(2)4()0( NTorus
NZ
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where the function (Ji), with i=1,2, is given by (13) and 
the current integral Fin(,,m) may be directly written from 
(17) i.e.,
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In Fig.2 we have reported the ratio Fin(,,m)/Fin(0,0,0) 
(with Fin(0,0,0)=1/4) vs  for various m-values such as 
m. We immediately observe that this ratio rapidly 
decreases for increasing m-values, for a given -value. We 
always have Fin(,,|m|)<Fin(,,0). In addition, in a further 
numerical study achieved for m0 but not reported here by 
lack of place, we have shown that Fin(i,j,0) decreases for 
ji. As a result, when N+, only the integral 
Fin(,,0)belonging to the generic term 
  2)12(),,( N

in mF     24),,( N
in mF   prevails so that the 

value m=0 is selected. Thus, as in the 1D-case with cyclic 
boundary conditions, when the lattice wrapped on a torus 
becomes infinite, the edge effects become negligible. As a 
result the zero-field partition function associated with the 
torus of infinite curvature radii and given by (23) may be 
written:

     22 4
,21
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
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
,

as N  +  (24)
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Fig.3. Thermal variations of the ratio log(r+1/r) for various values of 
where r is defined by (27)

where the integral F, is the new simplified expression of
integral Fin(,,m) given by (24), with here m=0 i.e.,
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The question is now the following one: is it necessary to 
keep all the terms in the �-expansion of ZN(0)? In order  to  
answer  to  this important question  which will condition  the 
respective expressions of the spin-spin correlations and the 
susceptibility we must study the following ratio r:  
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 


 . (26)

The numerical study restricted to the case J=J1=J2 for 
sake of simplicity has been detailed in [1] but the reasoning 
may be easily extended to the general case J1≠J2. As a 
result, we briefly report the thermal behavior of the ratio 

 rr /1  where r is given by (27), for various -values (see 
Fig.3). In the very low-temperature domain we may then 
observe a succession of crossovers, each crossover being 
characterized by a specific temperature called crossover 
temperature TCO. For instance, for the reduced temperature
kBT/|J|0.255,0(J) appears in the dominant term of the 
characteristic polynomial whereas, for 0.255kBT/|J|
0.043,1(J) belongs to the dominant one etc... In that 
case the crossover temperature corresponding to the 
transition between the regimes respectively characterized by 
=0 and =1 is labelled

1,0COT . This study will be very use-
ful later when fitting experimental susceptibilities.

3. Calculation of  z
uS and  

z
kjki

z
ji SS ',, .

The calculation of the numerator of the spin correlation 

 z
uS and the spin-spin correlation  

z
kjki

z
ji SS ',, .  is 

strictly similar to that of ZN(0). It is given by (14) in which 
we have 1

21, kkX  except at sites (i,j) or (i+k,j+k') where 

we use the following transform:

)()()(cos
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The transform law given by (28) does not change coeffi-
cients m and m' so that the selection rule SRm given by (18) 

is unchanged when calculating the numerator of  z
uS and 

 
z

kjki
z

ji SS ',, . . When applying (28) at site (i,j) and/or at 

site (i+k,j+k') in (14) we deal with a new integral 
21,' kkF

which may be written:

1111, 2,12,12,12,121

~~
'  

kkkkkkkk
FCFCF kk  (29)

with:

)()()()(
~

212,12,1212,12,12112,112,1212,112,11212,1 ,
*

',',
*

,,,,',', kkmkkmkkmkkmkk kkkkkkkkkkkkkkkkkk
YYYYdF SSSSS    ,   = ±1,

(30)
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if the transform is applied to )(
212,12,1 ,

*
, kkm kkkk

Y S , for ins-

tance. This integral may be expressed like integral 

21,kkF given by (17). It also contains C.G. coefficients. 

When studying 2,1

~
kk

F  in the numerator of  z
uS  we 

have previously shown that the involved C.G. coefficients 
cannot vanish simultaneously [1]. As a result

 z
jiS , = 0,   

z
kjkiS ', = 0,

 
z

kjki
z

ji
z

kk SS ',,', .  for T > 0 K. (31)

Of course, when T=0 K exactly, we have: |  z
jiS , |=1. This 

result rigorously proves that the critical temperature is ab-
solute zero i.e., TC=0 K.

When calculating the numerator of  
z

kjki
z

ji SS ',, . , we 

have two integrals 
21,' kkF , one at site (i,j) and one at site

(i+k,j+k'). We now have four contributions, each of them 

respectively containing the products 11 ',,

~~
  kjkiji ll FF , 

11 ',,

~~
  kjkiji ll FF , 11 ',,

~~
  kjkiji ll FF  and 11 ',,

~~
  kjkiji ll FF ,

with l= or l=', each one being similar to that one appearing 

in the calculation of ZN(0). The detailed calculation of the 

numerator of  
z

kjki
z

ji SS ',, .  is given in [1]. Below we 

just report the main results by lack of place.

Theorem 1: For calculating the numerator of the spin-spin 
correlation  

z
kjki

z
ji SS ',, . , one must take into account 

two domains: a correlation domain which is a rectangle of 
vertices (i,j), (i,j+k'), (i+k,j+k') and (i+k,j) within which all 
the correlation paths are confined, and a remaining domain 
called wing domain. In both domains we have m=m0 (for a 
finite lattice) and m=0 (for an infinite lattice). In addition all 
the bonds of the wing domain are characterized by the same 
coefficient 0, including the bonds linked with the 
correlation domain.

Theorem 2: All the correlation paths show the same 
length inside the correlation domain which is the shortest 
possible one in agreement with Feynman's principle. They
involve the same number of horizontal and vertical bonds 
than the horizontal and vertical sides of the correlation 
rectangle, for the 2D square lattice. The corresponding spin-
spin correla-tion  

z
kjki

z
ji SS ',, .  is then expressed owing 

to (33)-(36).
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where ,0 is the Dirac function and with:
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4. Calculation of the susceptibility

As  we  now  know  the  closed-form  expression  of   the  

spin-spin correlation (cf (33)-(36)), it then possible to ex-
press the susceptibility owing to (2). We have:
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We observe that, in the generic expression of the suscepti-
bility given by (37), we deal with a �-series, as for ZN(0). 
Furthermore, if we examine the numerator, it also appears 
the current term 

     24
,21

NFJJ  
coming from 

ZN(0). This term has been studied in [1], in the particular 
case J1=J2. We have seen (cf Fig.3) that, there is a succes-
sion of crossovers, each crossover being characterized by a 
specific temperature called crossover temperature TCO.
Thus, for the reduced temperature kBT/|J|0.255,�0(�J) ap-

pears in the dominant term of the characteristic polynomial 
whereas, for 0.255kBT/|J|0.043,�1(�J) belongs to the 
dominant one etc... In addition, when the temperature is 
cooling down, near absolute zero, we have a succession of 
closer and closer crossovers (due to the fact that the various 
crossover temperatures TCO are closer and closer). In other
words, all the eigenvalues, characterized  by an increasing 
�-value, successively play a role. But, when T0 K, i.e., 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

320

near the critical point, all these eigenvalues intervene due to 
the fact that the crossover temperatures vanish with .

Fits of experimental results

We do not achieved here the low-temperature study of the 
susceptibility by lack of place. But, as noted for the study of 
the zero-field partition function ZN(0), we may assert that the 
closed-form expression, previously obtained for the suscep-
tibility by restricting the various -expansions to =0 [4], 
remains valid here for reduced temperatures such as 
kBT/|J|0.255 and T0K, near the critical point TC=0 K. The 
other terms characterized by0 in (37) will only play a 
role below 0.255, as explained for ZN(0) in [1]. More  parti-

cularly, this role will be enhanced in the reduced tempera-
ture range [0',0.255[, with '0.

From a practical point of view, in order to see if an 
experimental fit is valid or not by restricting the -expansion 
of the susceptibility given by (37) to =0, one must compare 
the reduced Néel température kBTN/|J| to 0.255 (if we deal 
with 2 different exchange energies J1 and J2 we shall have to 
compare 21/ JJTk NB  to 0.255).

In a previous paper [5], we fitted the experimental 
susceptibilities measured for the three compounds
MnL2(N3)2n, with L=DENA (compound 1), 4acpy 
(compound 2) and minc (compound 3), with the following 
meaning for the ligand abbreviation L: L=DENA (diethyl-
nicotinamide), 4acpy (4-acetylpyridine) and minc (methyl 
isonicotinate). In these new family of compounds, the co-or-
dination polyhedra of the Mn atoms show a common apex, 
and the 4.2 Å Mn–Mn intralayer distance is twice the Mn–F 
bond distance in the well-known prototype K2MnF4. As a 
result we deal with quasi-2D lattices composed of classical 
spins (S=5/2) i.e., Mn atoms, each one occupying the sum-
mit of a square unit cell. Each centrosymmetric Mn atom is 
octahedrally co-ordinated to four azido bridges and ligands 
L in trans arrangement. In addition, from a magnetic point 
of view, these compounds are characterized by isotropic 
(Heisenberg) couplings between first-nearest spin neighbors.

These fits have been achieved through the closed-form 
expression of the susceptibility given by (37) and restricted 
to the first term of the -expansion i.e., =0. There are repor-
ted again in Fig.4.
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Fig. 4. Fit of the experimental susceptibility  (open circles) for a polycrystalline sample of  the antiferromag-
net MnL2(N3)2n characterized by a 2D classical Heisenberg square lattice with the theoretical expres-

                  sion of the susceptibility  given by (37-40) reduced to the first term =0 of the -expansion
In Table I, we compare the reduced Néel température 

21/ JJTk NB to 0.255, for compounds 1 (L=DENA), 2

(L=4acpy) and 3 (L=minc). We immediately observe that, 

for the 3 compounds, we always have 21/ JJTk NB 

0.255. As a result, these numerical tests totally validate the 
previous fits a posteriori.

TABLE I
COMPARISON OF THE NÉEL REDUCED TEMPERATURE FOR COMPOUNDS

1, 2 AND 3 PREVIOUSLY FITTED [5] WITH RESPECT TO 0.255

L DENA 4acpy minc

J1/kB (K) 4.15 ± 0.02 7.63 ± 0.15 5.80 ± 0.07

J2/kB (K) 4.15 ± 0.02 2.02 ± 0.11 0.11 ± 0.003

Néel Tem-
perature
TN ( K) 

 2.0  28.0  2.0  

Reduced Néel 
Temperature

21/ JJTk NB

0.482 7.132 2.238

III. CONCLUSION

In this article we have recalled the general method used in 
[1] for deriving the characteristic polynomial associated  
with the zero-field partition function ZN(0) of a finite lattice 
wrapped on a torus. The spin correlation vanishes if T�0 
but remains finite at T=0 K, thus proving that absolute zero
plays the role of critical temperature.
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We have seen again that, for calculating the numerator of 
the spin-spin correlation  

z
kjki

z
ji SS ',, . , we have to take 

into account two domains: a correlation domain which is a 
rectangle of vertices (i,j), (i,j+k'), (i+k,j+k') and (i+k,j)
within which all the correlation paths are confined, and a 
remaining domain called wing domain. In both domains we 
have m=m0 (for a finite lattice) and m=0 (for an infinite 
lattice). In addition all the bonds of the wing domain are 
characterized by the same coefficient 0, including the bonds 
linked with the correlation domain (Theorem 1). Then we 
have also recalled that all the correlation paths show the 
same length inside the correlation domain which is the 
shortest possible one in agreement with Feynman's princi-
ple. They respectively involve the same number of horizon-
tal and vertical bonds than the horizontal and vertical sides 
of the correlation rectangle, for the 2D square lattice (Theo-
rem 2).

The closed-form expression of the spin-spin correlation 
has allowed to derive the susceptibility in the important phy-
sical case of an infinite torus which also behaves as an 
infinite 2D plane lattice. By restricting the corresponding -
expansion to the first term =0, we have retrieved a previous 
result [4]. In this article, we have shown that this approxi-
mation remains valid for reduced temperatures such as 
kBT/|J|0.255 and T0 K, near the critical point TC=0 K. The 
other terms characterized by 0 in (37) only play a role 
below 0.255, as explained for ZN(0) in [1]. More particular-
ly, this role will be enhanced in the reduced temperature 
range [0',0.255[, with '0, so that one may expect 
interesting crossover phenomena, near absolute zero, in the 
critical domain.

Finally we have verified that previous experimental fits 
[5] were valid while using a -expansion of the susceptibi-
lity reduced to the first term =0. In this purpose, we have 
compared the reduced Néel température 21/ JJTk NB  to 
0.255, for three compounds previously studied. In all cases 
we always have 21/ JJTk NB  0.255. As a result, these 
numerical tests totally validate the previous fits a posteriori. 
They finally allow one to give a good test of the present 
theoretical model developed without any approximation.
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Abstract — In this article we briefly recall a theoretical treatment previously published [1] and concerning the magnetic properties of 2D square lattices composed of (2N+1)2 classical spins isotropically coupled between first-nearest neighbors (i.e., showing Heisenberg couplings). Indeed these layers are good candidates for spintronic junctions. In the thermodynamic limit (N(+(), we recall that (i) a very simple closed-form expression may be derived for the zero-field partition function ZN(0), (ii) the spin correlation vanishes in the zero-field limit i.e., there is no remnant magnetization, except at T=0 K; (iii) the spin-spin correlation is described by a correlation path confined inside a correlation domain (Theorem 1). As a result a general closed-form expression may be respectively derived for the spin-spin correlation between any two lattice sites (Theorem 2) and for the susceptibility, without any approximation. We finally test previous experimental fits and we show that the use of a truncated expansion for the susceptibility was totally justified.

Index Terms — spintronics, classical spins, Heisenberg couplings, magnetic properties, quantum theory 

I. INTRODUCTION


From a practical point of view, thin magnetic layers play an important role in many areas of technology. Namely, in the field of spintronics, these layers may appear at the interface between different semiconductors showing or not magnetic properties [2]. Indeed, in a magnetic material, spin scattering mechanisms are closely dependent on the energy level E occupied by the external electrons respectively label-led s, p or d as well as on their polarization “up” (() or “down” ((). In Fig.1 we have summarized the various situations which intervene and allow one to understand the nature of the spin current passing through a junction, notably at the Fermi level EF. Thus, if n(EF)  is  the  electron 

density at the Fermi level, we have for (i) a nonferromagne-tic metal 
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 whereas (ii) for a weak ferromagnet 
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. As a result the corresponding spin current is composed of electrons s(, s(, d( and d( but we have ((( for the resistivities. Spintronics exploits this asymmetry of conduction so that there are two channels of conduction. (iii) In the case of a strong ferromagnet, the current is composed of electrons s(, s( and d( , exclusively, whereas for (iv) a “semimetal” (generally an oxide such as CrO2, Fe3O4, …, a metallic alloy such as NiMnSb or a semiconductor such as GaMnAs) only electrons d( play a role. If we define the polarization P at the Fermi level as:    
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(1)

we shall have a full polarization (100%) in cases (iii) with electrons d( and in case (iv) with electrons d(.  

As a result, the study of the magnetic properties of three-dimensional (3D) compounds composed of 3d ions is of the highest importance. In addition they constitute an interme-diate step for building up 3D artificial magnets whose structure may be imposed (like for magnetic grains used in nanotechnologies) and are characterized by local spins of high quantum number i.e., spin momenta characterized by a spin quantum number plainty greater or equal to 5/2.

Two-dimensional (2D) magnetic layers are also very im-portant because they may be used at the interface of blocks constituting spintronic junctions. This is the reason for 
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which the study of their magnetic properties has drawn such an attention in addition to the fact that physics in two dimen-sions is very different, notably for interpreting the fractional quantum Hall effect [3].


In previous papers [4] we published a treatment concer-ning the 2D square lattices composed of (2N+1)2 classical spins (for instance, ions Mn2+ and Fe3+ characterized by a spin quantum number 5/2) isotropically coupled between nearest neighbors (i.e., showing Heisenberg couplings). However it was based upon an approximation that we shall recall. These layers are good candidates for spintronic junctions. Indeed, when dealing with a ferromagnet, the re-sistivity strongly depends on the relative orientation of the spin current and the local magnetization. When dealing with an antiferromagnet, the magnetization is plainly weaker and the resistivity will be quasi independent from the local ma-gnetization.


In the thermodynamic limit (N(+(), we recall that (i) a very simple closed-form expression may be derived for the zero-field partition function ZN(0), (ii) the spin correlation vanishes in the zero-field limit i.e., there is no remnant ma-gnetization, except at T=0 K; (iii) the spin-spin correlation is described by a correlation path confined inside a correlation domain (Theorem 1). As a result a general closed-form ex-pression may be respectively derived for the spin-spin corre-lation between any two lattice sites (Theorem 2) and the susceptibility, without any approximation. We finally test previous experimental fits and we show that the use of a truncated expansion for the susceptibility was totally jus-tified [4], [5]. We shall see in conclusion of this paper that, in fact, the approximation used was fully justified except in a very sharp temperature domain closed to absolute zero (the critical temperature TC).


II. THE ZERO-FIELD PARTITION FUNCTION, THE SPIN CORRELATIONS AND THE SUSCEPTIBILITY

1. Generalities


In Magnetism the static and/or dynamic physical quanti-ties of highest interest are the magnetization, the suscepti-bility and the correlation length. All these parameters share a common property: their respective definitions involve the presence of spin correlations. In this article we shall exclu-sively focus on the static properties of the susceptibility , in the zero-field limit. Generally it is more convenient to reduce the susceptibility  to the susceptibility per lattice site i,j. Thus we may define the susceptibility per lattice site as:
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(2)

where Gu,u' is the Landé factor directly expressed in B/( unit and characterizing each classical spin momentum:


Gi,j = G    if i+j is even or zero,

                         Gi,j = G'    if i+j is odd ,

 (3)

and where k,k' is the correlation function:
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(4)


In the previous equation, the bracket notation <…>  means that we deal with a thermodynamic average. In other words, if we consider a lattice wrapped on a torus, characterized by a square unit cell and composed of (2N+1)2 sites, each one being the carrier of a classical spin Si,j, we may define the correlation between any two spins as:
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(5)

where ZN(0) is the zero-field partition function derived from the numerator of (5) by replacing the absent spin Si,j or Si+k,j+k' by the vector (1,1,1). dS is the elementary surface swept by the extremity of spin S(,() i.e. dS =cosdd(, in spherical co-ordinates.
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In the previous equation we recall that J1 and J2 refer to the exchange interaction bet​ween nearest neighbors belonging to the horizontal lines and vertical rows of the lat​tice, respectively. In addition Ji0 (respec​tively, Ji0, with i=1,2) denotes an antiferroma​gnetic (respectively, ferromagnetic) cou​pling.
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 is called the spin-spin correla-tion whereas 
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 by the vector (1,1,1). From a physical point of view this correlation 
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 will describe the state of cor-relation between any two spins located at sites (i,j) and (i+k,j+k'). As for 
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, with u=(i,j) or (i+k,j+k'), it is directly linked with the magnetization per site. In the zero-field limit to which we restrict the present study, it is nothing but the remnant magnetization per site. In addition, as we deal with isotropic (Heisenberg) couplings, we have the following properties:
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,  v = x, y or z, 
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, u = (i,j) or (i+k,j+k'),     


from which we immediately derive for the correlation func-tion:
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Finally we may define the self spin-spin correlation 
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(8)


From now we shall consider the reference site as (i,j)=(0,0). Under these conditions, the expression of the susceptibility per square unit cell and averaged per lattice site may be finally written as:
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In [1] we have seen that, because of the presence of classi-cal spin moments, all the operators 
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 commute and the exponential factor appearing in the integrand of (5) may be written:
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Thus, the particular nature of 
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 given by (6) allows one to separate the contributions corresponding to the exchange coupling involving classical spins belonging to the same horizontal line i of the layer (i.e., Si,j1, Si,j1 and Si,j) or to the same vertical row j (i.e., Si1,j, Si1,j  and Si,j) [1]. Thus, for each of the four contributions (one per bond connected to the site (i,j) carrying the spin Si,j),  we have to expand a term

such as exp(AS1.S2) where A is J1 or J2 (the classical spins S1 and S2 being considered as unit vectors). If we call 1,2 the angle between vectors S1 and S2, respectively characterized by the couples of angular variables (1,() and (2,(), it is possible to expand the operator  exp(Acos1,2)  on the infinite basis of spherical harmonics which are eigen-functions of the angular part of the Laplacian operator on the sphere of unit radius S2:
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In the previous equation, the I+1/2(A)'s are modified Bessel functions of the first kind. If we set:
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(12)

each operator 
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 may be notably expanded on the basis of eigenfunctions (the spherical harmonics), whereas the 's are nothing but the associated eigenvalues. As Oz is the axis of quantization in the spin momentum space, we shall exclusively focus on the z-z spin-spin correlation or on the z spin-correlation. In the most general case we have: 
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At this step, let us note that, due to the previous remarks, 
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 (as well as ZN(0) and all the derived ther-modynamic functions) appears as a characteristic polyno-mial expressed by means of eigenfunctions (the spherical harmonics) and associated eigenvalues (the 's) of the La-placian operator.
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zero-field partition function ZN(0) may be written as:
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In the previous equation 
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 is a Clebsch-Gordan (C.G.) coefficient [6]. The C.G. coefficients appearing in (17) (with 
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2. Calculation of ZN(0)

The calculation of the zero-field partition function ZN(0) involves that of each current integral Fi,j (cf. (17)). Whatever the finite or infinite lattice size, the non-vanishing condition of Fi,j is mainly due to that of C.G. coefficients for the in-sites. The first C.G. coefficient 
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will not vanish if Mi,j=m'i+1,j+mi,j1 whereas for the second one 
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 we have Mi,j=mi,jm'i,j [6] so that we fi-nally derive (2N+1)2 equations (one per lattice site) such as:

mi,j1 + m'i+1,j – mi,j – m'i,j = 0     (SRm).          (17)

This is the first selection rule labelled from now SRm: it exclusively concerns the various coefficients mi,jand m'i,jcharacterizing each site (i,j). The SRm relation is unique and temperature-independent; (ii) due to the fact that the (-part of the Fi,j-integrand (exclusively depending on the m's and m''s) reduces to unity, Fi,j is a purely real number.  

The second non-vanishing condition of C.G. coefficients appearing in each current integral Fi,j (cf (17)) concerns the positive (or zero) integers i,j and 'i,j intervening in each radial factor of the characteristic polynomial. In addition to the triangular inequalities (i,j'i,j(≤Li,j≤i,j+'i,j and (i,j1'i1,j(≤Li,j≤i,j1'i1,j respectively followed by the C.G. coefficients 
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 (with Mi,j(0 or Mi,j=0), we have a more restrictive vanishing condition when the involved mi,j's and m'i,j's are replaced by zero as it clearly appears in (17) [6]:
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,  if 1 + 2 + 3 = 2g,  
(18)


where K is a coefficient which remains unchanged under the permutation of integers 1, 2 and 3. As a result 
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 will not vanish if i,j+'i,j+Li,j=2Ai,j(0 whereas, for 
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, we must have i,j1+'i1,j+Li,j=2A'i,j(0. If we sum the two previous equations concerning  and ', we have (2N+1)2 equations (one per lattice site) such as:

i,j1 + 'i1,j  i,j  'i,j = 2gi,j ,  gi,j = Ai,j  A'i,j Li,j ( 0

(SR1)





 (19)

or by assuming the difference:

i,j1 + 'i1,j   i,j  'i,j = 2g'i,j ,  g'i,j = A'i,j Ai,j

(SR2)





 (20)

 (or equivalentlyi,j +'i,ji,j1'i1,j=2g''i,j, with g''i,j=g'i,j). 

Thus, the complete determination of couples (i,j,mi,j) for each lattice site (i,j) will allow the full determination of the closed-form expression of ZN(0). It is achieved owing to two properties: (i) using principles of invariance which must be respected by the expression of ZN(0); (ii) using the spin lat-tice symmetries. 

(i) Owing to the first property of invariance, the closed-form expression obtained for the zero-field partition func-tion ZN(0) must be invariant under the permutation of the exchange energies J1 and J2 (diagonal or D-symmetry). The second property of invariance imposes that the expression of ZN(0) must be independent of the bond orientation. 


(ii) We essentially wish to determine ZN(0) in the thermo-dynamic limit (N(+() i.e., in the physical case of an infini-te lattice. As a result it is easier to wrap the lattice on a torus because there are more symmetry elements than for a 2D plane lattice. However, in the physical case N(+(, ZN(0) must be similar in both cases. For both situations, we deal with two elements of symmetry (step 1): the horizontal and vertical medians (mirror planes M1 and M2). The effect of such mirrors is to transform a spherical harmonic into another conjugated one and vice versa. Thus we must have Fi,j=Fi,j* (symmetry with respect to the horizontal median _ HM-symmetry _ or mirror M1) and Fi,j=Fi,j* (symmetry with respect to the vertical median _ VM-symmetry _ or mirror M2). As all the integrals Fi,j are real due to the SRm condition (cf (18)) we finally have Fi,j=Fi,j (mirror M1) and Fi,j=Fi,j (mirror M2). It allows one to derive specific relations between the involved coefficients m and . More details are given in [1]. In Step 2 we now use a new element of symmetry: the torus is characterized by an axis of revolution . As a result it means that mirror M2 which contains this axis can rotate around it. It then allows one to show that two consecutive vertical lines are constituted of bonds characterized by the same couple of values ('i,m'j). 

Finally, in Step 3, the D-symmetry operation (exchange of indices 1 and 2) permits to derive that mi=m'j and i='j if i=j. As we have just shown that all the bonds of the vertical lines of the torus are characterized by the same couple ('j,m'j), we derive that all the horizontal lines as well as all the vertical ones are characterized by the same couple (i,mi)=('j,m'j) or equivalently

mi,j = m'i,j = m  ,  i,j = 'i,j =   ((i,j)(Torus.

(21)

This result is in perfect agreement with the geometrical properties of a toroidal environment, for each lattice site. In summary the property followed by coefficients  (respecti-vely, m) is similar to the one encountered in the case of a finite chain showing cyclic conditions. 
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Fig.2. Plot of the ratio Fin(,,m)/Fin (0,0,0) vs  for various values of  m


Consequently we may write the general expression of the zero-field partition function for a finite torus:




[image: image76.wmf]´


p


=


+


2


)


1


2


(


2


)


4


(


)


0


(


N


Torus


N


Z


 




[image: image77.wmf](


)


(


)


(


)


[


]


2


)


1


2


(


2


1


0


,


,


+


+


-


=


+¥


=


b


-


l


b


-


l


´


å


å


N


in


m


m


F


J


J


l


l


l


l


l


l


l



(22)

where the function (Ji), with i=1,2, is given by (13) and the current integral Fin(,,m) may be directly written from (17) i.e.,
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 (23)


In Fig.2 we have reported the ratio Fin(,,m)/Fin(0,0,0) (with Fin(0,0,0)=1/4) vs  for various m-values such as (m((. We immediately observe that this ratio rapidly decreases for increasing (m(-values, for a given -value. We always have Fin(,,|m|)<Fin(,,0). In addition, in a further numerical study achieved for m0 but not reported here by lack of place, we have shown that Fin(i,j,0) decreases for ji. As a result, when N(+(, only the integral Fin(,,0)belonging to the generic term 
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 prevails so that the value m=0 is selected. Thus, as in the 1D-case with cyclic boundary conditions, when the lattice wrapped on a torus becomes infinite, the edge effects become negligible. As a result the zero-field partition function associated with the torus of infinite curvature radii and given by (23) may be written:
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Fig.3. Thermal variations of the ratio log(r+1/r) for various values of  where r is defined by (27)

where the integral F, is the new simplified expression of integral Fin(,,m) given by (24), with here m=0 i.e.,
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.(25)

The question is now the following one: is it necessary to keep all the terms in the -expansion of ZN(0)? In order  to  answer  to  this important question  which will condition  the respective expressions of the spin-spin correlations and the susceptibility we must study the following ratio r:  
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The numerical study restricted to the case J=J1=J2 for sake of simplicity has been detailed in [1] but the reasoning may be easily extended to the general case J1≠J2. As a result, we briefly report the thermal behavior of the ratio 
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 where r is given by (27), for various -values (see Fig.3). In the very low-temperature domain we may then observe a succession of crossovers, each crossover being characterized by a specific temperature called crossover temperature TCO. For instance, for the reduced temperature kBT/|J|(0.255,0(J) appears in the dominant term of the characteristic polynomial whereas, for 0.255(kBT/|J|( 0.043,1(J) belongs to the dominant one etc... In that case the crossover temperature corresponding to the transition between the regimes respectively characterized by =0 and =1 is labelled 
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3. Calculation of 
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The calculation of the numerator of the spin correlation 
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 is strictly similar to that of ZN(0). It is given by (14) in which we have 
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 except at sites (i,j) or (i+k,j+k') where we use the following transform:
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with:
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(28)


The transform law given by (28) does not change coeffi-cients m and m' so that the selection rule SRm given by (18) is unchanged when calculating the numerator of 
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. When applying (28) at site (i,j) and/or at site (i+k,j+k')  in (14) we deal with  a  new  integral 
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which may be written:
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with:




[image: image99.wmf])


(


)


(


)


(


)


(


~


2


1


2


,


1


2


,


1


2


1


2


,


1


2


,


1


2


1


1


2


,


1


1


2


,


1


2


1


2


,


1


1


2


,


1


1


2


1


2


,


1


,


*


'


,


'


,


*


,


,


,


,


'


,


'


,


k


k


m


k


k


m


k


k


m


k


k


m


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


k


Y


Y


Y


Y


d


F


S


S


S


S


S


l


l


l


l


l


e


+


e


+


-


-


+


+


ò


=


,   = ±1,


(30)


if the transform is applied to 
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, for ins-tance. This integral may be expressed like integral 
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given by (17). It also contains C.G. coefficients. When studying 
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 we have previously shown that the involved C.G. coefficients cannot vanish simultaneously [1]. As a result
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(31)


Of course, when T=0 K exactly, we have: |
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|=1. This result rigorously proves that the critical temperature is ab-solute zero i.e., TC=0 K.


When calculating the numerator of 
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, we have two integrals 
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, one at site (i,j) and one at site (i+k,j+k'). We now have four contributions, each of them respectively containing the products 
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with l= or l=', each one being similar to that one appearing 

in the calculation of ZN(0). The detailed calculation of the numerator of 
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 is given in [1]. Below we just report the main results by lack of place.

Theorem 1: For calculating the numerator of the spin-spin correlation 
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, one must take into account two domains: a correlation domain which is a rectangle of vertices (i,j), (i,j+k'), (i+k,j+k') and (i+k,j) within which all the correlation paths are confined, and a remaining domain called wing domain. In both domains we have m=m0 (for a finite lattice) and m=0 (for an infinite lattice). In addition all the bonds of the wing domain are characterized by the same coefficient 0, including the bonds linked with the correlation domain.


Theorem 2: All the correlation paths show the same length inside the correlation domain which is the shortest possible one in agreement with Feynman's principle. They involve the same number of horizontal and vertical bonds than the horizontal and vertical sides of the correlation rectangle, for the 2D square lattice. The corresponding spin-spin correla-tion 
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 is then expressed owing to (33)-(36).
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(32)

where ,0 is the Dirac function and with:
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4. Calculation of the susceptibility


As  we  now  know  the  closed-form  expression  of   the  


spin-spin correlation (cf (33)-(36)), it then possible to ex-press the susceptibility owing to (2). We have:
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with:




[image: image124.wmf](


)


e


+


e


+


e


+


e


+


e


+


e


+


+


+


b


=


c


l


l


l


l


l


l


l


l


l


,


3


,


2


,


1


2


2


,


,


2


'


2


)


'


(


2


W


W


GG


W


G


G


F


F


C


,  =± 1,





(37)



[image: image125.wmf]e


+


e


+


e


+


e


+


e


+


+


+


+


=


l


l


l


l


l


,


2


,


1


2


,


2


2


,


1


,


1


4


]


)


(


1


][


)


(


1


[


u


u


u


u


W


,  

[image: image126.wmf])]


)


(


1


(


)


)


(


1


(


[


2


2


,


1


,


2


2


,


2


,


1


,


2


e


+


e


+


e


+


e


+


e


+


+


+


+


=


l


l


l


l


l


u


u


u


u


W


 
(38)




[image: image127.wmf]]


)


(


1


][


)


(


1


[


2


,


2


2


,


1


,


3


e


+


e


+


e


+


-


-


=


l


l


l


u


u


W


,  

[image: image128.wmf](


)


(


)


l


l


l


l


l


l


l


,


,


,


F


F


J


J


u


i


i


i


e


+


e


+


e


+


b


-


l


b


-


l


=


, i = 1, 2




(39)


We observe that, in the generic expression of the suscepti-bility given by (37), we deal with a -series, as for ZN(0). Furthermore, if we examine the numerator, it also appears the current term 
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coming from ZN(0). This term has been studied in [1], in the particular case J1=J2. We have seen (cf Fig.3) that, there is a succes-sion of crossovers, each crossover being characterized by a specific temperature called crossover temperature TCO. Thus, for the reduced temperature kBT/|J|(0.255,0(J) ap-pears in the dominant term of the characteristic polynomial whereas, for 0.255(kBT/|J|(0.043,1(J) belongs to the dominant one etc... In addition, when the temperature is cooling down, near absolute zero, we have a succession of closer and closer crossovers (due to the fact that the various crossover temperatures TCO are closer and closer). In other words, all the eigenvalues, characterized  by an increasing -value, successively play a role. But, when T(0 K, i.e., near the critical point, all these eigenvalues intervene due to the fact that the crossover temperatures vanish with .

Fits of experimental results


We do not achieved here the low-temperature study of the susceptibility by lack of place. But, as noted for the study of the zero-field partition function ZN(0), we may assert that the closed-form expression, previously obtained for the suscep-tibility by restricting the various -expansions to =0 [4], remains valid here for reduced temperatures such as kBT/|J|(0.255 and T(0K, near the critical point TC=0 K. The other terms characterized by0 in (37) will only play a role below 0.255, as explained for  ZN(0) in [1]. More  parti-


cularly, this role will be enhanced in the reduced tempera-ture range [0',0.255[, with '(0.


From a practical point of view, in order to see if an experimental fit is valid or not by restricting the -expansion of the susceptibility given by (37) to =0, one must compare the reduced Néel température kBTN/|J| to 0.255 (if we deal with 2 different exchange energies J1 and J2 we shall have to compare 
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In a previous paper [5], we fitted the experimental susceptibilities measured for the three compounds ((MnL2(N3)2(n(, with L=DENA (compound 1), 4acpy (compound 2) and minc (compound 3), with the following meaning for the ligand abbreviation L: L=DENA (diethyl-nicotinamide), 4acpy (4-acetylpyridine) and minc (methyl isonicotinate). In these new family of compounds, the co-or-dination polyhedra of the Mn atoms show a common apex, and the 4.2 Å Mn–Mn intralayer distance is twice the Mn–F bond distance in the well-known prototype K2MnF4. As a result we deal with quasi-2D lattices composed of classical spins (S=5/2) i.e., Mn atoms, each one occupying the sum-mit of a square unit cell. Each centrosymmetric Mn atom is octahedrally co-ordinated to four azido bridges and ligands L in trans arrangement. In addition, from a magnetic point of view, these compounds are characterized by isotropic (Heisenberg) couplings between first-nearest spin neighbors.

These fits have been achieved through the closed-form expression of the susceptibility given by (37) and restricted to the first term of the -expansion i.e., =0. There are repor-ted again in Fig.4.
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Fig. 4. Fit of the experimental susceptibility ( (open circles)  for a polycrystalline sample of  the antiferromagnet ((MnL2(N3)2(n( characterized by a 2D classical Heisenberg square lattice with the theoretical expres-

                  sion of the susceptibility ( given by (37-40) reduced to the first term =0 of the -expansion

In Table I, we compare the reduced Néel température 
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to 0.255, for compounds 1 (L=DENA), 2 (L=4acpy) and 3 (L=minc). We immediately observe that, for the 3 compounds, we always have 
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 0.255. As a result, these numerical tests totally validate the previous fits a posteriori.


TABLE I


Comparison of the Néel reduced temperature for compounds


 1, 2 and 3 previously fitted [5] with respect to 0.255 


		L

		DENA

		4acpy

		minc



		J1/kB (K)

		4.15 ± 0.02

		7.63 ± 0.15

		5.80 ± 0.07



		J2/kB (K)

		4.15 ± 0.02

		2.02 ± 0.11

		0.11 ± 0.003



		Néel Temperature


TN ( K) 

		( 2.0  

		28.0

		( 2.0  



		Reduced Néel Temperature
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		0.482

		7.132



		2.238







III. CONCLUSION

In this article we have recalled the general method used in [1] for deriving the characteristic polynomial associated  with the zero-field partition function ZN(0) of a finite lattice wrapped on a torus. The spin correlation vanishes if T0 but remains finite at T=0 K, thus proving that absolute zero plays the role of critical temperature. 


We have seen again that, for calculating the numerator of the spin-spin correlation 
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, we have to take into account two domains: a correlation domain which is a rectangle of vertices (i,j), (i,j+k'), (i+k,j+k') and (i+k,j) within which all the correlation paths are confined, and a remaining domain called wing domain. In both domains we have m=m0 (for a finite lattice) and m=0 (for an infinite lattice). In addition all the bonds of the wing domain are characterized by the same coefficient 0, including the bonds linked with the correlation domain (Theorem 1). Then we have also recalled that all the correlation paths show the same length inside the correlation domain which is the shortest possible one in agreement with Feynman's princi-ple. They respectively involve the same number of horizon-tal and vertical bonds than the horizontal and vertical sides of the correlation rectangle, for the 2D square lattice (Theo-rem 2). 

The closed-form expression of the spin-spin correlation has allowed to derive the susceptibility in the important phy-sical case of an infinite torus which also behaves as an infinite 2D plane lattice. By restricting the corresponding -expansion to the first term =0, we have retrieved a previous result [4]. In this article, we have shown that this approxi-mation remains valid for reduced temperatures such as kBT/|J|(0.255 and T(0 K, near the critical point TC=0 K. The other terms characterized by 0 in (37) only play a role below 0.255, as explained for ZN(0) in [1]. More particular-ly, this role will be enhanced in the reduced temperature range [0',0.255[, with '(0, so that one may expect interesting crossover phenomena, near absolute zero, in the critical domain.

Finally we have verified that previous experimental fits [5] were valid while using a -expansion of the susceptibi-lity reduced to the first term =0. In this purpose, we have compared the reduced Néel température 
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 to 0.255, for three compounds previously studied. In all cases we always have 
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 0.255. As a result, these numerical tests totally validate the previous fits a posteriori. They finally allow one to give a good test of the present theoretical model developed without any approximation.
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Case (iv)



Semimetal







Case (iii)



Strong Ferromagnet 







Case (ii)



Weak Ferromagnet







Case (i)



Nonferromagnetic Metal







Fig.1. Comparison of the spin densities at the Fermi level for different cases of magnetic properties



(the s( and s( densities have been omitted in case (iv) for clarity)
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