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Abstract —Voltage controlled oscillators are present in 
almost every digital communication system. Thus, coupled 
microwave oscillators are the subject of intense research 
activities. Recently, they are used to control the phase in 
microwave antenna arrays as an alternative to electronic beam 
steering methods. Researches are made so that a particular 
phase shift can be obtained by choosing the free-running 
frequencies of the oscillators in the array. In this paper, we 
have analyzed, in different ways, in time domain and also in 
frequency domain, the phase shift between output voltages of 
each pair of coupled oscillators and also, the behavior of 
multiple coupled oscillators

Index Terms — phase shift, synchronization, oscillator, 
microwave, VCO.

I. INTRODUCTION

Voltage controlled oscillators are an important component 
in almost every digital communication system. Recently 
microwave oscillators are used to control the phase in 
microwave antenna arrays as an alternative to electronic 
beam steering methods. This new approach is based on the 
synchronization property of coupled oscillators. All 
oscillators’ networks must satisfy two conditions. 
Elementary oscillators must be able to synchronize stably at 
a common frequency and the phase shift must have a 
constant value. The first requirement may be accomplished
by coupling the oscillators (injection-locking phenomenon)
[2, 8]. The second requirement, controlling the phase shift 
and assuring an appropriate value, is very difficult to put 
into practice. It’s necessary to know the influence of various 
parameters like the free running frequencies or the coupling 
force. If the free running frequencies have certain values 
oscillators synchronize spontaneously with a phase 
relationship related to the original distribution of these free 
running frequencies [4].Thus, coupled microwave oscillators 
are the subject of intense research activities. A voltage 
controlled oscillator (VC)) is a circuit that produces an 
oscillatory output. The frequency of the output signal 
depends on the level of an input voltage signal supplied to 
the VCO. The range of the frequency is chosen according to 
our purpose, but mainly VCOs produce high frequency 
signals. In this paper, we have analyzed, in different ways, 
the phase shift between output voltages of each oscillator 
and also, the behavior of multiple coupled oscillators. 

II. TWO COUPLED VAN DER POL OSCILLATORS

The base of this analysis is represented by VCO’s that 
have different free-running frequencies and are able to lock 

at a common frequency thanks to coupling circuits. Two 
oscillators coupled through a resonant network can be 
synchronizing at the same frequency. But the 
synchronization is highly dependent on the coupling 
network. Coupled microwave oscillators have been modeled 
as simple Van der Pol oscillators [6]. This model provides 
satisfactory results for many applications. Also the 
simplicity of the equations is very helpful.  

In figure 1 are represented two oscillators coupled 
through a series resonant circuit. These oscillators are 
considered identical, except for their free-running 
frequencies. Thus, this work aims to analyze coupling 
oscillators and determine the phase shift, through different 
methods and compare our results with those obtained in [5].
The two voltage-controlled nonlinear resistors in figure 1 
are identically, and their characteristics are approximated by 
piecewise linear continuous curves as in figure 2.

Fig.1. Two parallel resonant circuits coupled through a series RLC 
network.

Fig.2. Piecewise linear approximations of the nonlinear characteristics 
for the nonlinear resistors.

The phase shift between the two oscillators can be 
computed by three procedures: simulation in time domain 
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with Spice, using the complex representation, using the 
equations proposed by R. York [5]. 

Simulation with Spice 

The resonant frequencies for the two oscillators are:
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Resonant frequency of the RLC coupling circuit is:
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The circuit of figure 1 simulated with Spice, has lead to 
two sinusoidal waves at 982.209 MHz (Fig. 4), with 
amplitudes of: Vos1m = 1.4503 V, Vos2m=1.4375 (Fig. 3).

Fig.3. Waveforms present at the output of each oscillator.

The frequency characteristics for the output voltages 
corresponding to two oscillators are shown in figure 4. In 
order to compute the phase shift we can use the following 
relation:

  360_1_21_2  mosmos ttf
(3)

Replacing the numeric values the result is:
 31.291_2 (4)

Taking into account the amplitude of the output voltages, 
the ratio of these amplitudes has the value:
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Fig.4. Synchronization frequency.

The voltages and the currents for the circuit in figure 1, in 
steady-state are sinusoidal and have the synchronization 
frequency f = 982.191 MHz.

Using complex representation:

In this case, the two nonlinear resistors can be substituted 
by two linear resistors with the same negative conductance 
G0. Therefore, we can use to analyze this circuit the complex 
representation [7 - 9]. 
The complex admittance, in the sinusoidal behavior, 
corresponding to the coupled RLC circuit has the following 
expression: 
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The total complex current of the first oscillator is:
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where: G0 is the differential conductance of the first voltage-
controlled nonlinear resistor in the sinusoidal behavior, and 
the current through the second oscillator has the following 
expression:
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The complex current Ic has the expression:
 21 oocc UUYI 

(9)
Solving the equations:
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We obtain the following results:
 jVV osos 4731.08424.0/ 21

 










966.0/

38.29/arg

21

211_2 21

osos

ososvv

VV

VV
osos (11)

Equations proposed by R. York:

R. York proves that the ability of two oscillators to lock 
to a common frequency is affected by the following 
parameters [1, 5]:
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In the following, the oscillators free-running frequencies ω01

and ω02, and the synchronization frequency of the system ω, 
are referred to the frequency of the coupling circuit, of the 
oscillators, ω0c, using the substitutions below:

,00101 c ,00202 c

cc 0
(12)

The formula proposed by R. York to compute the phase shift 

           Frequency

0.970G 0.975G 0.980G 0.985G 0.990G 0.995G 1.000G 1.005G
V(1 V(5

0

0.5

1.0

1.5

2.0

(982.191M,1.329
0)

           Time

498.0ns 498.4ns 498.8ns 499.2ns 499.6ns 500.0ns
V(1) V(5)

-2.0V

-1.0V

0V

1.0V

2.0V

(498.567n,1.4503)(498.464n,1.4375)



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

228

between the two oscillators has the following expression:
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where A2 is the magnitude of the output voltage 
corresponding to the second oscillator.

Using the numeric values of the circuit parameters 
corresponding to the circuit in figure 1, the result is: 

 81.371_2 (14)

III. FOUR PARALLEL RESONANT CIRCUITS
COUPLED THROUGH A SERIES RLC NETWORK

Figure 5 represents four oscillators coupled through a 
series resonant circuit. These oscillators are considered 
identical, except for their free-running frequencies. The four 
voltage-controlled nonlinear resistors from figure 5 are 
identical, and their characteristics are approximated by 
piecewise linear continuous curves as in Fig. 9. 

Fig.5. Four parallel resonant circuits coupled through a series RLC 
network.

Simulation with Spice 

The coupled system in figure 5 was simulated with Spice
and we obtained the four sinusoidal waves at 962.148 MHz 
and with amplitudes of: 657.879 mV, 691.56 mV, 658.604 
mV, and 693.495 mV at the output of each oscillator (Fig. 6 
and 7). The average phase shift between adjacent oscillators 
was found to be equal to 29o

Fig.6. Waveforms present at the output of each oscillator.

The frequency characteristics for the output voltages 
corresponding to four oscillators are shown in Fig. 7.

Fig.7. Synchronization frequency.

Using complex representation:

Due to the fact that self-sustained oscillation is possible 
only in nonlinear systems, in order to be able to analyze our 
circuit using complex representation we have substituted the 
nonlinear resistors by linear resistors that have the same 
negative conductance G0. Therefore, we can apply to 
analyze this circuit the complex representation.

We have considered as independent variables the complex 
output oscillators’ voltages. After solving the equations in 
sinusoidal behavior and processing our results, the medium 
value obtained for the phase shift is 28.74°.

Equations proposed by R. York:

R.York has resumed and generalized previous methods in 
order to analyze any number of coupled oscillators both 
narrow band and broadband.  Analyzing our circuit with the 
equation used by R. York (13) and comparing with previous 
results, we conclude they are very similar. In this last case 
the medium phase-shift is 28.73°.

IV. SIX PARALLEL RESONANT CIRCUITS COUPLED
THROUGH A SERIES RLC NETWORK

Figure 5 represents six oscillators coupled through a 
series resonant circuit. These oscillators are considered 
identical, except for their free-running frequencies. The six
voltage-controlled nonlinear resistors in figure 8 are 
identically, and their characteristics are approximated by 
piecewise linear continuous curves as in figure 9.

Fig.8. Six parallel resonant circuits coupled through a series RLC 
network.
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Fig.9. Piecewise linear approximations of the nonlinear characteristics 

for the nonlinear resistors.

The coupled system in figure 8 was simulated with Spice 
and we obtained the six sinusoidal waves at 962.097 MHz 
and with amplitudes of: 657.778 mV, 691.890 mV, 678.882 
mV, 709.933 mV, 696.693 MV, and 736.491 mV at the 
output of each oscillator (Fig. 10 and 11). The average phase 
shift between adjacent oscillators was found to be equal to 
29°.

Fig.10. Waveforms present at the output of each oscillator in the case of 
six oscillators array.

Fig.11. Frequency characteristics for the output voltages corresponding 
to six oscillators.

These results show that it is possible to adjust, with a high 
accuracy; the free-running frequencies required in achieve 
the desired phase shift in an n–element array and also, the 
validation of the results with the three methods is realized.

V. CONCLUSION

The way oscillators work and the phase shift are very 
important in orienting the radiation pattern, in a phased 
antenna array, in a certain direction. Researches are made so 
that a particular phase shift can be obtained by choosing the 
free-running frequencies of the oscillators in the array. But a 
big problem with autonomous circuits is our limited control 
of solution characteristics. This lack of control is determined 
by their nonlinear behavior and by their dependence of 
parameters values. In this paper different types of analysis
were applied in order to compare the results obtained and 
also, for a better understanding of the influence the 
parameters have in the oscillators’ synchronization. The 
main limit we encounter is that the analysis is made around 
the synchronization frequency. Thus, there is a risk of 
malfunction outside this region.   
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