
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

236

Abstract — This paper describes the digital systems synthesis
based on direct mapping of Petri nets model into FPGA circuit.
A design flow that includes the specification of the system using
Synchronous Petri Nets, verification of the behavioral
properties of the model, generation of the mathematical model
of Hard Petri Nets (HPN), used for automatic generation of the
AHDL code is described. The direct mapping approach avoids
algorithmic complexity inherent in logic synthesis based on
state encoding and substantially reduces the design time and
cost. The method used for modeling and implementation of the
digital systems was validated using MAX+PLUS II design
environment.

Index Terms — AHDL, digital system, direct mapping, FPGA,
MAX+PLUS II, Hard Petri Nets.

I. INTRODUCTION

Advances in semiconductor technology over the last four
decades have resulted in a nearly constant compound growth
in transistor density of approximately 46% per year [1]. This
remarkable achievement has not been matched by an
equivalent increase in integrated circuit designer
productivity, leading to a design gap as illustrated in Figure
1.

Figure 1. The design productivity gap.

The design gap represents the disparity between the
transistors available to a designer and the ability to use them
effectively in a design. Increases in productivity are limited
by the spiraling system complexity engendered by increased
transistor counts. Traditional design methods do not scale to
match the increased complexity.

On the other side, the growth of design productivity
leading to a so called “verification crisis”. According to a
Collett international study, the rate of first silicon success is
steadily declining, dropping to 35% in 2003; 70% of re-spun
designs contain functional bugs [2].

One of the ways to overcome this threat is through
improving the productivity and efficiency of the design
process, particularly by means of new synthesis approaches
that can transform a behavioral specification into an
adequate implementation.

The use of Petri nets for the specification, analysis and

synthesis of digital systems has proved very worthwhile.
Petri nets are mathematically well founded and can be used
to capture causality relations, concurrency of actions and
conflicting conditions from digital systems in a natural and
convenient way. It is possible to translate Petri nets to HDL
(Hardware Description Language), and vice versa, making it
possible to integrate Petri nets tools into existing design
environments.

Two main approaches to digital systems design based on
Petri nets are direct mapping [3] and logic synthesis [4].
Logic synthesis methods often suffer from the state
explosion problem because most modern systems are
typically modeled as concurrent systems. Direct mapping
methods guarantee an implementation by construction. The
size of the obtained circuits is linear on the size of the
specification.

This paper focuses on some of opportunities of Petri nets
utilization in digital systems synthesis based on direct
mapping of the behavioral model in FPGA circuits. A
proposed CAD tool allows digital system specification,
modeling and implementation using ordinary Petri nets. The
synthesizable AHDL code is generated from a Petri net
model. Proposed method makes possible the structured and
flexible FPGA implementation of digital systems.

II. DIRECT MAPING OF A PETRI NET MODEL

In logic synthesis approach boolean equations for the
output signals of the circuit are derived using minimization
methods. This approach suffers from excessive computation
complexity and memory requirements. The circuit
optimization often involves analysis and recalculation of the
whole state space. Thus it cannot be applied to large
specifications. There is no transparent correspondence
between the elements of the original specification, the
intermediate representation of the state space and the
components of the resultant circuit, which complicates the
checking of circuit functionality.

The main idea of the direct mapping approach is that a
Petri net model of a system is converted into a circuit netlist
in such a way that the graph nodes correspond to the circuit
elements and graph arcs correspond to the interconnects
(Figure 2).

The direct mapping method has a linear algorithmic
complexity, is not affected by state explosion, so large
digital systems can be constructed at low cost. Direct
mapping facilities checking of the functional correctness of
the implementation because of the transparent
correspondence between the elements of the initial

HDL Implementation from Petri Nets
Description

Viorica SUDACEVSCHI, Victor ABABII, Emilian GUTULEAC, Valentin NEGURA
Technical University of Moldova

str.Stefan cel Mare, 168, MD-2012, Chisinau
svm@mail.utm.md; avv@mail.utm.md; egutuleac@mail.utm.md; vnegura@yahoo.fr

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 237

specification and the components of the resultant circuit.
Notwithstanding all advantages, this approach is
insufficiently studied and existing techniques for direct
mapping often produce large circuits with inefficient
interface to the environment.

Figure 2. Direct mapping of a Petri net model to the circuit.

III. SYNCHRONOUS PETRI NETS

In order to describe digital systems behavior, to perform
their verification and synthesis, a new extension of ordinary
Petri nets, namely Synchronous Petri nets, is proposed.

A Synchronous Petri net (SPN) is a 6-tuple (P, T, A,M0,
Mmax, C), where:

 1 2, ,..., NP p p p is a finite and non-empty set of

places;

 1 2, ,..., LT t t t is a finite and non-empty set of

transitions (TP);
A (P T) (T P)    is a set of arcs that consists of

three subsets:   N I TA A A A ,

   N I TA A A { } , NA - normal arcs, IA -

inhibition arcs, TA - test arcs;

1 2
0 0 0 0

NP P PM { M , M , , M }  is the initial marking,

defined as an initial number of tokens in each place;
1 2 NP P P

max max max maxM { M , M , , M }  is the maximal

marking, defined as a maximal number of tokens in each
place;

C is the synchronization variable that enable the
transitions firing.

Subset
NA defines the normal arcs, through which

tokens are removed from each input place and are added to

each output place. Subsets IA and TA are necessary in

behavioral analyze but do not remove or add tokens.

IV. HARDWARE IMPLEMENTATION OF PETRI NETS

The computer-based synthesis of the digital system from
Petri net level to logic design level request the adaptation of
the Petri net model to its hardware implemented model. The
digital system model is considered as a set of processing
elements with data flow path between them. The
corresponding Petri net model contains two kinds of

processing elements iP
 and jT

. The arcs between them
represent the data flow paths. For hardware implemented

SPN model the data flow depends on the topology of the net.
A Hardware Petri Net (HPN) [5] is defined as reunion

between sets of processing elements and data flows:

0
  S T I In Out

maxRPH T , P , A , A , A , A , A , P , P , M , M ,C ,

where:

 1 2 LT T ,T ,...,T , T is a set of processing

elements that correspond to transition nodes;

 1 2, ,..., NP P P P ,  P is a set of processing

elements that correspond to place nodes;

 , 1,iA A i N   ,   A is a set of increment

connections of the number of tokens in position processing
elements and is defined as follows:

 
1,

1, , 1,
0,


 



 
  



Na
ji j i

ji

ji

a t p
A a j L i N

a otherwise
;

 , 1,  iA A i N ,
  A is a set of decrement

connections of the number of tokens in position processing
elements and is defined as follows:

 
1,

1, , 1,
0,


 



 
  



Na
ji i j

ji

ji

a p t
A a j L i N

a otherwise

;

 , 1, S S
jA A j L ,  SA is a set of state

connections that determine the enable firing condition of the

transition jT related to the marking of the input place iP .

This set is defined as follows:

 
1,

1, , 1,
0,

 
  



Nas
ij i js s

ij s
ij

a p t
A a i N j L

a otherwise

State connection has the ability to check whether a place has
a token. The assertion of a state connection means that the
transition is only enabled if the input place has a token. The
transition firing changes the marking in the input place.

 , 1,T T
jA A j L  ,

TA   is a set of test

connections, which has the same function as the set of state
connections, but the transition firing does not change the
marking in the input place.

 1 ,
1, , 1,

0,

 
  



T
T T ij i j

ij
T
ij

Taa p t
A a i N j L

a otherwise

 , 1,I I
jA A j L  ,

IA   is a set of inhibitor

connections, which provides an enabling function, when the
place stores no tokens. It is defined as follows:

 1 ,
1, , 1,

0,

 
  



III I ij i j
ij ij I

ij

Iaa p t
A a i N j L

a otherwise

; Inhibitor connection has the ability to test whether a place
is empty. The assertion of an inhibitor connection means
that the transition is enabled if the input place has no token.
The firing does not change the marking in the input place.

P

T

PP

TT

PP

T

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

238

 , 1, In In I
jP P j L , InP P is a set of processing

elements jP that represent the input signals in the digital

system;

 , 1, Out Out O
jP P j L , OutP P is a set of processing

elements jP that represent the output signals in the digital

system;
1 2

0 0 0 0
NP P PM { M , M , , M }  - is the initial marking;

1 2 NP P P
max max max maxM { M , M , , M }  - is the maximal

marking;

C - is the synchronization variable.
A conclusion section is not compulsory. Make sure that

the whole text of your paper observes the textual
arrangement on this page.

V. PROCESSING ELEMENTS

The processing element T prepares the data processing
operation. After analyzing of the global state

 IiPmS ii
k ,1),,( at the step k of data

processing, the condition for step 1k  of data processing
operation is formed.

The behavior of the processing element T may be
described as follows: if in each input place of a transition T
there is a token, then the firing condition of T occurs. In this
case tokens are removed from all input places and are placed
into all output places. In figure 3(a) is shown a transition
with four input and three output places. P1 and P2 are
connected with T1 by state arcs, P3 is connected by inhibitor
arc and P4 is connected by a test arc. The logic
implementation of a processing element is shown in Figure
3 (b)).

p1

p2

p3

p4

p5

p6

p7

t1

(a)

1,
S

ja

,
S
n ja

1,
T

ja

,
T
m ja

1,
I

ja

,
I
l ja

...

...

...

CLK

SET

RESET

OUTT
J

Q

Q

K

SET

CLR

(b)
Figure 3. An example of possible connections to a transition (a), logic

implementation of the processing element Transition (b).

The processing element P stores the state value and
performs the increment and decrement operation of the

number of tokens. The increment operation occurs when one
of the input transitions of the processing element P fires.
The decrement operation occurs when one of the output
transition of the processing element P fires. The number of
tokens in P at the step 1k  of data processing, denoted

by 1k
im  , is changed according to the following rules:

max

1

1
1

1 1

1 1

1 () 1, ;

1 () 1 0;

, 1,

() 0 & () 0;

() 1 & () 1;

i

i

i i

i i

L
k k
i ij i i

j

L
k k
i ij i

j
k
i

L L
k
i ij ij

j j

L L
k
i ij ij

j j

m A m m

m A m

m i N

m A A

m A A





 

 









 

 

 

 


   



     
  


  






 

 

 ,

where: k
im is the number of tokens in iP at the step k of

data processing, iL and iL are the total number of

increment and decrement arcs of the place iP ,

1max max
i(m i , N) M   represent the maximal

number of tokens that can be stored in iP . The best way to

implement a place is to use a counter with a combinational
input logic. In Petri net modeling tasks it is important the
exact number of tokens in the place. When a Hardware Petri
net model works as a digital system it is enough to check the
presence or absence of the tokens in the place. In Figure 4(a)
an example of a place with three input and three output
transitions is presented. The logic implementation is given
in Figure 4(b).

t1

t2

t3

t4

p1

t5

(a)

SET

cnt-en

A
B
C
D

Dw/Up
RESET

QA
QB
QC
QD

CLK

Inc

Dec

1 1,a

2 1,a

1 2

,a

1

,ka

1 1

,a

0M
outP

CT

1l ,a
. . .

. . .

OR 1

OR 2

OR 3

(b)
Figure 4. An example of possible connections to a place (a), logic

implementation of the processing element Place (b).

AHDL codes for both processing elements were
elaborated. These codes were executed and simulated using
MAX+PLUS II design tool [6].

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 239

VI. DESIGN FLOW

The digital system design flow is presented in Figure 5.
System specification is done using SPN model.
The proposed Petri net model is analyzed in order to

determine the set of reachable states and to form the
reachability graph in VPNP (Visual Petri Net +)
environment. The behavioral analysis determines the main
properties of the model such as its reachability, liveness and
reversibility. In the result, an XML code of the Petri net
model is obtained.

According to this code HPN model is generated. This
model is translated to an AHDL code of the analyzed digital
system.

This code is executed and simulated using MAX+PLUS
II design tool. In the result, the gatelevel netlist that can be
implemented into FPGA circuit is obtained.

Sistem
specification

Modeling
Analyzing

Optimization

VPNP

Translation
L1

HPN model

0 max

, , , , ,

, , ,

  S

T I

T P A A A

A A M M

Translation
L2

Simulation
Test

MAX+Plus II

FPGA
implementation

netlist

Figure 5. Design flow of the Petri net-based digital systems synthesis.

VII. DESIGN EXAMPLE

As a design example a parallel to sequential code
controller is presented.

A controller consist of a RAM memory for storage of data
to be converted, a 8-bit shift right register Rg, a memory
address counter CT Adr and a Petri net-based control unit
RPH (Figure 6).

The conversion operation begins when START signal
(initiation of data transfer operation) and Reset signal (CT
Adr and RPH reset) are asserted. Signal RD initialize the
read operation from RAM memory on address ADR. Inc
signal is used to increment the address code. EA is the signal
that determines the end of the address space. The extracted
data are written in Rg when signal Load is asserted. Signal
ShR is used to shift right the content of Rg. The number of
shifts is controlled by internal RPH counter. When the
conversion operation is finished signal EoP is asserted.

RAM Rg

RPH

Start

Din Dout

Adr

RD Load ShR

EoP

88

16

CT
Adr

1

Inc

Reset

EA

Figure 6. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design
input is shown in Figure 7. The simulation results are shown
in Figure 8. For simulation was done the conversion of three
4-bits binary words.

p1 p2 p3 p4 p5 p6t1 t2 t3 t4 t5

Start RD Load RDY ShR Dout

t6

p7

p8

t14

p9 p10

t8p13

EA

t15

p14

EoP

INC

p15t16

p11 p12

t9

t7

CtRg

CtAdr

t13

t10

t11

Figure 7. Petri net model of the parallel to sequential code controller.

VIII. CONCLUSIONS

In this paper an approach for the digital systems design
from Petri nets models has been presented. The use of Petri
nets allows interplay of different formal tasks, such as
synthesis, verification and performance evaluation, to be
carried out within the single modeling framework. The
design flow starts with the behavior specification of the
digital system as a Petri net model. The main properties of
the model (reachability, liveness, reversibility) are analyzed
using a VPNP software tool. Then the direct mapping of the
Petri net model into AHDL code is done. The use of
Hardware Petri nets in CAD tools allows the automation of
the FPGA implementation process and substantially reduces
the design time and efforts. The method can be used for the
synthesis of relatively large circuits when space and speed
constrains are not critical.

REFERENCES
[1] Semiconductor Industry Association, “International Technology

Roadmap for Semiconductors, 2005 Edition.”
[2] Jun Yuan, Carl Pixley, Adnan Aziz, Constraint-based verification,

Springer, 2006, 253 pages.
[3] A. Bystrov and A. Yakovlev, Asynchronous Circuit Synthesis by

Direct Mapping: Interfacing to Environment, Proc. ASYNC'02,
Manchester, April 2002.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

240

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A.Yakovlev: Logic Synthesis of Asynchronous Controllers and
Interfaces. Springer Verlag (2002).

[5] V. Sudacevschi, V. Ababii, V. Negură, A Hardware Implementation
of Safe Petri Net Models. Proceedings of the 8th International
Conference on Development and Application Systems, Suceava,
Romania, 25-27 May, 2006, p. 9-13.

[6] V.Ababii, V. Sudacevschi, Safe Petri Nets Models Mapping into
FPGA Using HDL Code. The International Symposium on Systems
Theory, SINTES 12, October 20-22, 2005, Craiova, Romania, Vol.4,
p. 697-699.

Figure 8. Simulation results.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

HDL Implementation from Petri Nets Description

Viorica SUDACEVSCHI, Victor ABABII, Emilian GUTULEAC, Valentin NEGURA

Technical University of Moldova

str.Stefan cel Mare, 168, MD-2012, Chisinau

svm@mail.utm.md; avv@mail.utm.md; egutuleac@mail.utm.md; vnegura@yahoo.fr

Abstract — This paper describes the digital systems synthesis based on direct mapping of Petri nets model into FPGA circuit. A design flow that includes the specification of the system using Synchronous Petri Nets, verification of the behavioral properties of the model, generation of the mathematical model of Hard Petri Nets (HPN), used for automatic generation of the AHDL code is described. The direct mapping approach avoids algorithmic complexity inherent in logic synthesis based on state encoding and substantially reduces the design time and cost. The method used for modeling and implementation of the digital systems was validated using MAX+PLUS II design environment.

Index Terms — AHDL, digital system, direct mapping, FPGA, MAX+PLUS II, Hard Petri Nets.

I. INTRODUCTION

Advances in semiconductor technology over the last four decades have resulted in a nearly constant compound growth in transistor density of approximately 46% per year [1]. This remarkable achievement has not been matched by an equivalent increase in integrated circuit designer productivity, leading to a design gap as illustrated in Figure 1.

[image: image78.emf]P

T

P P

T T

P P

T

Figure 1. The design productivity gap.

The design gap represents the disparity between the transistors available to a designer and the ability to use them effectively in a design. Increases in productivity are limited by the spiraling system complexity engendered by increased transistor counts. Traditional design methods do not scale to match the increased complexity.

On the other side, the growth of design productivity leading to a so called “verification crisis”. According to a Collett international study, the rate of first silicon success is steadily declining, dropping to 35% in 2003; 70% of re-spun designs contain functional bugs [2].

One of the ways to overcome this threat is through improving the productivity and efficiency of the design process, particularly by means of new synthesis approaches that can transform a behavioral specification into an adequate implementation.

The use of Petri nets for the specification, analysis and synthesis of digital systems has proved very worthwhile. Petri nets are mathematically well founded and can be used to capture causality relations, concurrency of actions and conflicting conditions from digital systems in a natural and convenient way. It is possible to translate Petri nets to HDL (Hardware Description Language), and vice versa, making it possible to integrate Petri nets tools into existing design environments.

Two main approaches to digital systems design based on Petri nets are direct mapping [3] and logic synthesis [4]. Logic synthesis methods often suffer from the state explosion problem because most modern systems are typically modeled as concurrent systems. Direct mapping methods guarantee an implementation by construction. The size of the obtained circuits is linear on the size of the specification.

This paper focuses on some of opportunities of Petri nets utilization in digital systems synthesis based on direct mapping of the behavioral model in FPGA circuits. A proposed CAD tool allows digital system specification, modeling and implementation using ordinary Petri nets. The synthesizable AHDL code is generated from a Petri net model. Proposed method makes possible the structured and flexible FPGA implementation of digital systems.

II. DIRECT MAPING OF A PETRI NET MODEL

In logic synthesis approach boolean equations for the output signals of the circuit are derived using minimization methods. This approach suffers from excessive computation complexity and memory requirements. The circuit optimization often involves analysis and recalculation of the whole state space. Thus it cannot be applied to large specifications. There is no transparent correspondence between the elements of the original specification, the intermediate representation of the state space and the components of the resultant circuit, which complicates the checking of circuit functionality.

The main idea of the direct mapping approach is that a Petri net model of a system is converted into a circuit netlist in such a way that the graph nodes correspond to the circuit elements and graph arcs correspond to the interconnects (Figure 2).

The direct mapping method has a linear algorithmic complexity, is not affected by state explosion, so large digital systems can be constructed at low cost. Direct mapping facilities checking of the functional correctness of the implementation because of the transparent correspondence between the elements of the initial specification and the components of the resultant circuit. Notwithstanding all advantages, this approach is insufficiently studied and existing techniques for direct mapping often produce large circuits with inefficient interface to the environment.

[image: image1.png]LUOW/seIeD

14
Zz8¢%
Mp

g

201naqy/salen oibo

Figure 2. Direct mapping of a Petri net model to the circuit.

III. Synchronous Petri nets

In order to describe digital systems behavior, to perform their verification and synthesis, a new extension of ordinary Petri nets, namely Synchronous Petri nets, is proposed.

A Synchronous Petri net (SPN) is a 6-tuple (P, T, A,M0, Mmax, C), where:

[image: image2.wmf]{

}

12

,,...,

=

N

Pppp

is a finite and non-empty set of places;

[image: image3.wmf]{

}

12

,,...,

=

L

Tttt

is a finite and non-empty set of transitions (

[image: image4.wmf]Æ

=

Ç

T

P

);

[image: image5.wmf]A(PT)(TP)

Í´È´

 is a set of arcs that consists of three subsets:

[image: image6.wmf]=ÈÈ

NIT

AAAA

,

[image: image7.wmf]ÇÇ=Æ

NIT

AAA{}

,

[image: image8.wmf]N

A

- normal arcs,

[image: image9.wmf]I

A

- inhibition arcs,

[image: image10.wmf]T

A

- test arcs;

[image: image11.wmf]12

0000

N

PPP

M{M,M,,M}

=

K

 is the initial marking, defined as an initial number of tokens in each place;

[image: image12.wmf]12

N

PPP

maxmaxmaxmax

M{M,M,,M}

=

K

 is the maximal marking, defined as a maximal number of tokens in each place;

[image: image13.wmf]C

 is the synchronization variable that enable the transitions firing.

Subset

[image: image14.wmf]N

A

 defines the normal arcs, through which tokens are removed from each input place and are added to each output place. Subsets

[image: image15.wmf]I

A

 and

[image: image16.wmf]T

A

are necessary in behavioral analyze but do not remove or add tokens.

IV. Hardware implementation of Petri nets

The computer-based synthesis of the digital system from Petri net level to logic design level request the adaptation of the Petri net model to its hardware implemented model. The digital system model is considered as a set of processing elements with data flow path between them. The corresponding Petri net model contains two kinds of processing elements

[image: image17.wmf]i

P

 and

[image: image18.wmf]j

T

. The arcs between them represent the data flow paths. For hardware implemented SPN model the data flow depends on the topology of the net.

A Hardware Petri Net (HPN) [5] is defined as reunion between sets of processing elements and data flows:

[image: image19.wmf]0

+-

=<>

STIInOut

max

RPHT,P,A,A,A,A,A,P,P,M,M,C

, where:

[image: image20.wmf]{

}

12

=

L

TT,T,...,T

,

[image: image21.wmf]¹Æ

T

 is a set of processing elements that correspond to transition nodes;

[image: image22.wmf]{

}

12

,,...,

=

N

PPPP

,

[image: image23.wmf]¹Æ

P

 is a set of processing elements that correspond to place nodes;

[image: image24.wmf]{

}

,1,

i

AAiN

++

==

,

[image: image25.wmf]+

¹Æ

A

 is a set of increment connections of the number of tokens in position processing elements and is defined as follows:

[image: image26.wmf]{

}

1,

1,,1,

0,

+

++

+

=¾¾®

===

=

N

a

jiji

ji

ji

atp

AajLiN

aotherwise

;

[image: image27.wmf]{

}

,1,

--

==

i

AAiN

,

[image: image28.wmf]-

¹Æ

A

 is a set of decrement connections of the number of tokens in position processing elements and is defined as follows:

[image: image29.wmf]{

}

1,

1,,1,

0,

-

--

-

=¾¾®

===

=

N

a

jiij

ji

ji

apt

AajLiN

aotherwise

;

[image: image30.wmf]{

}

,1,

==

SS

j

AAjL

,

[image: image31.wmf]¹Æ

S

A

 is a set of state connections that determine the enable firing condition of the transition

[image: image32.wmf]j

T

 related to the marking of the input place

[image: image33.wmf]i

P

. This set is defined as follows:

[image: image34.wmf]{

}

1,

1,,1,

0,

=¾¾®

===

=

N

a

s

ijij

ss

ij

s

ij

apt

AaiNjL

aotherwise

State connection has the ability to check whether a place has a token. The assertion of a state connection means that the transition is only enabled if the input place has a token. The transition firing changes the marking in the input place.

[image: image35.wmf]{

}

,1,

TT

j

AAjL

==

,

[image: image36.wmf]T

A

¹Æ

 is a set of test connections, which has the same function as the set of state connections, but the transition firing does not change the marking in the input place.

[image: image37.wmf]{

}

1,

1,,1,

0,

=¾¾®

===

=

T

TT

ijij

ij

T

ij

T

a

apt

AaiNjL

aotherwise

[image: image38.wmf]{

}

,1,

II

j

AAjL

==

,

[image: image39.wmf]I

A

¹Æ

is a set of inhibitor connections, which provides an enabling function, when the place stores no tokens. It is defined as follows:

[image: image40.wmf]{

}

1,

1,,1,

0,

=¾¾®

===

=

I

I

II

ijij

ij

ij

I

ij

I

a

apt

AaiNjL

aotherwise

; Inhibitor connection has the ability to test whether a place is empty. The assertion of an inhibitor connection means that the transition is enabled if the input place has no token. The firing does not change the marking in the input place.

[image: image41.wmf]{

}

,1,

==

InInI

j

PPjL

,

[image: image42.wmf]Î

In

PP

 is a set of processing elements

[image: image43.wmf]j

P

 that represent the input signals in the digital system;

[image: image44.wmf]{

}

,1,

==

OutOutO

j

PPjL

,

[image: image45.wmf]Î

Out

PP

 is a set of processing elements

[image: image46.wmf]j

P

 that represent the output signals in the digital system;

[image: image47.wmf]12

0000

N

PPP

M{M,M,,M}

=

K

 - is the initial marking;

[image: image48.wmf]12

N

PPP

maxmaxmaxmax

M{M,M,,M}

=

K

 - is the maximal marking;

[image: image49.wmf]C

 - is the synchronization variable.

A conclusion section is not compulsory. Make sure that the whole text of your paper observes the textual arrangement on this page.

V. Processing elements

The processing element

[image: image50.wmf]T

 prepares the data processing operation. After analyzing of the global state

[image: image51.wmf]{

}

I

i

P

m

S

i

i

k

,

1

),

,

(

=

"

=

 at the step

[image: image52.wmf]k

 of data processing, the condition for step

[image: image53.wmf]1

k

+

 of data processing operation is formed.

The behavior of the processing element T may be described as follows: if in each input place of a transition T there is a token, then the firing condition of T occurs. In this case tokens are removed from all input places and are placed into all output places. In figure 3(a) is shown a transition with four input and three output places. P1 and P2 are connected with T1 by state arcs, P3 is connected by inhibitor arc and P4 is connected by a test arc. The logic implementation of a processing element is shown in Figure 3 (b)).

		[image: image54.emf]p1

p2

p3

p4

p5

p6

p7

t1

		(a)

		

[image: image55.emf]1,

S

j

a

,

S

nj

a

1,

T

j

a

,

T

mj

a

1,

I

j

a

,

I

lj

a

...

...

...

CLK

SET

RESET

OUT

T

J

Q

Q

K

SET

CLR

		(b)

		Figure 3. An example of possible connections to a transition (a), logic implementation of the processing element Transition (b).

The processing element

[image: image56.wmf]P

 stores the state value and performs the increment and decrement operation of the number of tokens. The increment operation occurs when one of the input transitions of the processing element

[image: image57.wmf]P

 fires. The decrement operation occurs when one of the output transition of the processing element

[image: image58.wmf]P

 fires. The number of tokens in

[image: image59.wmf]P

 at the step

[image: image60.wmf]1

k

+

of data processing, denoted by

[image: image61.wmf]1

k

i

m

+

, is changed according to the following rules:

[image: image62.wmf]max

1

1

1

11

11

1()1,;

1()10;

,1,

()0&()0;

()1&()1;

i

i

ii

ii

L

kk

iijii

j

L

kk

iiji

j

k

i

LL

k

iijij

jj

LL

k

iijij

jj

mAmm

mAm

miN

mAA

mAA

+

-

+-

+-

+

=

-

=

+

+-

==

+-

==

ì

+="<

ï

ï

ï

ï

-=">

ï

ï

==

í

ï

==

ï

ï

ï

ï

==

ï

î

S

S

SS

SS

 ,

where:

[image: image63.wmf]k

i

m

is the number of tokens in

[image: image64.wmf]i

P

 at the step

[image: image65.wmf]k

of data processing,

[image: image66.wmf]i

L

+

 and

[image: image67.wmf]i

L

-

 are the total number of increment and decrement arcs of the place

[image: image68.wmf]i

P

,

[image: image69.wmf]1

maxmax

i

(mi,N)M

"=Î

 represent the maximal number of tokens that can be stored in

[image: image70.wmf]i

P

. The best way to implement a place is to use a counter with a combinational input logic. In Petri net modeling tasks it is important the exact number of tokens in the place. When a Hardware Petri net model works as a digital system it is enough to check the presence or absence of the tokens in the place. In Figure 4(a) an example of a place with three input and three output transitions is presented. The logic implementation is given in Figure 4(b).

		[image: image71.emf]t1

t2

t3t4

p1

t5

		(a)

		

[image: image72.emf]SET

cnt-en

A

B

C

D

Dw/Up

RESET

QA

QB

QC

QD

CLK

Inc

Dec

11

,

a



21 ,

a



12



,

a

1



,k

a

11



,

a



0

M

out

P

CT

1 l,

a



. . .

. . .

OR 1

OR 2

OR 3

		(b)

		Figure 4. An example of possible connections to a place (a), logic implementation of the processing element Place (b).

AHDL codes for both processing elements were elaborated. These codes were executed and simulated using MAX+PLUS II design tool [6].

VI. Design flow

The digital system design flow is presented in Figure 5.

System specification is done using SPN model.

The proposed Petri net model is analyzed in order to determine the set of reachable states and to form the reachability graph in VPNP (Visual Petri Net +) environment. The behavioral analysis determines the main properties of the model such as its reachability, liveness and reversibility. In the result, an XML code of the Petri net model is obtained.

According to this code HPN model is generated. This model is translated to an AHDL code of the analyzed digital system.

This code is executed and simulated using MAX+PLUS II design tool. In the result, the gatelevel netlist that can be implemented into FPGA circuit is obtained.

		

[image: image73.emf]Sistem

specification

Modeling

Analyzing

Optimization

VPNP

Translation

L1

HPN model

0max

,,,,,

,,,



S

TI

TPAAA

AAMM

Translation

L2

Simulation

Test

MAX+Plus II

FPGA

implementation

netlist

		Figure 5. Design flow of the Petri net-based digital systems synthesis.

VII. Design EXAMPLE

As a design example a parallel to sequential code controller is presented.

A controller consist of a RAM memory for storage of data to be converted, a 8-bit shift right register Rg, a memory address counter CT Adr and a Petri net-based control unit RPH (Figure 6).

The conversion operation begins when START signal (initiation of data transfer operation) and Reset signal (CT Adr and RPH reset) are asserted. Signal RD initialize the read operation from RAM memory on address ADR. Inc signal is used to increment the address code. EA is the signal that determines the end of the address space. The extracted data are written in Rg when signal Load is asserted. Signal ShR is used to shift right the content of Rg. The number of shifts is controlled by internal RPH counter. When the conversion operation is finished signal EoP is asserted.

		[image: image74.emf]RAM Rg

RPH

Start

Din

Dout

Adr

RD Load ShR

EoP

8 8

16

CT

Adr

1

Inc

Reset

EA

		Figure 6. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design input is shown in Figure 7. The simulation results are shown in Figure 8. For simulation was done the conversion of three 4-bits binary words.

		[image: image75.emf]p1 p2 p3 p4 p5 p6

t1 t2 t3 t4 t5

Start RD Load RDY ShR Dout

t6

p7

p8

t14

p9 p10

t8

p13

EA

t15

p14

EoP

INC

p15

t16

p11 p12

t9

t7

CtRg

CtAdr

t13

t10

t11

		Figure 7. Petri net model of the parallel to sequential code controller.

VIII. Conclusions

In this paper an approach for the digital systems design from Petri nets models has been presented. The use of Petri nets allows interplay of different formal tasks, such as synthesis, verification and performance evaluation, to be carried out within the single modeling framework. The design flow starts with the behavior specification of the digital system as a Petri net model. The main properties of the model (reachability, liveness, reversibility) are analyzed using a VPNP software tool. Then the direct mapping of the Petri net model into AHDL code is done. The use of Hardware Petri nets in CAD tools allows the automation of the FPGA implementation process and substantially reduces the design time and efforts. The method can be used for the synthesis of relatively large circuits when space and speed constrains are not critical.

REFERENCES

[1] Semiconductor Industry Association, “International Technology Roadmap for Semiconductors, 2005 Edition.”

[2] Jun Yuan, Carl Pixley, Adnan Aziz, Constraint-based verification, Springer, 2006, 253 pages.

[3] A. Bystrov and A. Yakovlev, Asynchronous Circuit Synthesis by Direct Mapping: Interfacing to Environment, Proc. ASYNC'02, Manchester, April 2002.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.Yakovlev: Logic Synthesis of Asynchronous Controllers and Interfaces. Springer Verlag (2002).

[5] V. Sudacevschi, V. Ababii, V. Negură, A Hardware Implementation of Safe Petri Net Models. Proceedings of the 8th International Conference on Development and Application Systems, Suceava, Romania, 25-27 May, 2006, p. 9-13.

[6] V.Ababii, V. Sudacevschi, Safe Petri Nets Models Mapping into FPGA Using HDL Code. The International Symposium on Systems Theory, SINTES 12, October 20-22, 2005, Craiova, Romania, Vol.4, p. 697-699.

		[image: image76.png]MName: “alue: T 100.0ns 200.0ns 300.0ns 400.0ns 500.0ns B00.0ns 700.0ns B00.0ns El
T A (I R AR
e

[z P1_Start
o= P13_EA
|- P2_RD
g P3_Load

o

o

o

o

0 T
|- P4_RDY 0

o

o

o

o

L []
11

Foo P5_SHR
f- PB_Dout
foo F7_nc
foo P14_Eop
¥ Counter Dout | DO [12)3 4 5 (6 (7 [5 0 11 12
¥ CounterP9 | DO [BERE 4 5 2)1 [BERE 4
¥ CounterP10 | DO [0 4 5 20 [BERE 4 3 2 [

		Figure 8. Simulation results.

� EMBED Visio.Drawing.5 ���

240

239

[image: image77.emf]P

T

P P

T T

P P

T

_1289335808.unknown

_1289806532.unknown

_1314730565.unknown

_1314732019.unknown

_1314732616.unknown

_1314778657.vsd

netlist�

VPNP�

Sistem specification�

Modeling
Analyzing
Optimization�

Translation
L1�

HPN model�

Translation
L2�

�

Simulation
Test
�

MAX+Plus II�

FPGA
implementation�

_1314730626.unknown

_1314730083.unknown

_1314730240.unknown

_1313856022.vsd

SET�

cnt-en�

A
B
C
D�

Dw/Up�

RESET�

QA
QB
QC
QD�

CLK�

Inc�

Dec�

CT�

. . .�

. . .�

OR 1�

OR 2�

OR 3�

_1314728281.unknown

_1314721914.vsd

P�

T�

P�

P�

T�

T�

P�

P�

T�

_1313855932.vsd

...�

...�

...�

CLK�

SET�

RESET�

_1289643568.unknown

_1289806407.unknown

_1289643615.unknown

_1289643626.unknown

_1289643598.unknown

_1289591276.unknown

_1289643515.unknown

_1289591440.unknown

_1289591176.unknown

_1289591264.unknown

_1230379255.unknown

_1230718605.unknown

_1235288037.unknown

_1235574003.unknown

_1235574422.unknown

_1235574451.unknown

_1235574358.unknown

_1235302514.unknown

_1235302640.unknown

_1235302468.unknown

_1231667914.unknown

_1235287978.unknown

_1230718848.unknown

_1230718924.unknown

_1230379539.unknown

_1230379552.unknown

_1230379304.unknown

_1230379321.unknown

_1230379284.unknown

_1230377188.unknown

_1230378818.unknown

_1230378850.unknown

_1230379245.unknown

_1230378875.unknown

_1230378827.unknown

_1230378667.unknown

_1230378766.unknown

_1230378615.unknown

_1230375875.unknown

_1230377156.unknown

_1196163570.unknown

_1196231104.unknown

_1230375850.unknown

_1196171202.unknown

_1182070979.unknown

_1196071082.unknown

_1140702850.unknown

