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Abstract — This paper describes the digital systems synthesis 
based on direct mapping of Petri nets model into FPGA circuit. 
A design flow that includes the specification of the system using 
Synchronous Petri Nets, verification of the behavioral 
properties of the model, generation of the mathematical model 
of Hard Petri Nets (HPN), used for automatic generation of the 
AHDL code is described. The direct mapping approach avoids 
algorithmic complexity inherent in logic synthesis based on 
state encoding and substantially reduces the design time and 
cost.  The method used for modeling and implementation of the 
digital systems was validated using MAX+PLUS II design 
environment.

Index Terms — AHDL, digital system, direct mapping, FPGA, 
MAX+PLUS II, Hard Petri Nets.

I. INTRODUCTION

Advances in semiconductor technology over the last four 
decades have resulted in a nearly constant compound growth 
in transistor density of approximately 46% per year [1]. This 
remarkable achievement has not been matched by an
equivalent increase in integrated circuit designer 
productivity, leading to a design gap as illustrated in Figure
1.

Figure 1. The design productivity gap.

The design gap represents the disparity between the 
transistors available to a designer and the ability to use them 
effectively in a design. Increases in productivity are limited 
by the spiraling system complexity engendered by increased 
transistor counts. Traditional design methods do not scale to 
match the increased complexity. 

On the other side, the growth of design productivity 
leading to a so called “verification crisis”. According to a 
Collett international study, the rate of first silicon success is 
steadily declining, dropping to 35% in 2003; 70% of re-spun 
designs contain functional bugs [2]. 

One of the ways to overcome this threat is through 
improving the productivity and efficiency of the design 
process, particularly by means of new synthesis approaches 
that can transform a behavioral specification into an 
adequate implementation.  

The use of Petri nets for the specification, analysis and 

synthesis of digital systems has proved very worthwhile. 
Petri nets are mathematically well founded and can be used 
to capture causality relations, concurrency of actions and 
conflicting conditions from digital systems in a natural and 
convenient way. It is possible to translate Petri nets to HDL 
(Hardware Description Language), and vice versa, making it 
possible to integrate Petri nets tools into existing design 
environments. 

Two main approaches to digital systems design based on 
Petri nets are direct mapping [3] and logic synthesis [4]. 
Logic synthesis methods often suffer from the state 
explosion problem because most modern systems are 
typically modeled as concurrent systems. Direct mapping 
methods guarantee an implementation by construction. The 
size of the obtained circuits is linear on the size of the 
specification. 

This paper focuses on some of opportunities of Petri nets 
utilization in digital systems synthesis based on direct 
mapping of the behavioral model in FPGA circuits. A 
proposed CAD tool allows digital system specification, 
modeling and implementation using ordinary Petri nets. The 
synthesizable AHDL code is generated from a Petri net 
model. Proposed method makes possible the structured and 
flexible FPGA implementation of digital systems.

II. DIRECT MAPING OF A PETRI NET MODEL

In logic synthesis approach boolean equations for the 
output signals of the circuit are derived using minimization 
methods. This approach suffers from excessive computation
complexity and memory requirements. The circuit 
optimization often involves analysis and recalculation of the 
whole state space. Thus it cannot be applied to large 
specifications. There is no transparent correspondence 
between the elements of the original specification, the 
intermediate representation of the state space and the 
components of the resultant circuit, which complicates the 
checking of circuit functionality.

The main idea of the direct mapping approach is that a 
Petri net model of a system is converted into a circuit netlist 
in such a way that the graph nodes correspond to the circuit 
elements and graph arcs correspond to the interconnects 
(Figure 2). 

The direct mapping method has a linear algorithmic 
complexity, is not affected by state explosion, so large 
digital systems can be constructed at low cost. Direct 
mapping facilities checking of the functional correctness of 
the implementation because of the transparent 
correspondence between the elements of the initial 
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specification and the components of the resultant circuit. 
Notwithstanding all advantages, this approach is 
insufficiently studied and existing techniques for direct 
mapping often produce large circuits with inefficient 
interface to the environment.

Figure 2. Direct mapping of a Petri net model to the circuit.

III. SYNCHRONOUS PETRI NETS

In order to describe digital systems behavior, to perform 
their verification and synthesis, a new extension of ordinary 
Petri nets, namely Synchronous Petri nets, is proposed. 

A Synchronous Petri net (SPN) is a 6-tuple (P, T, A,M0, 
Mmax, C), where:

 1 2, ,..., NP p p p is a finite and non-empty set of 

places;

 1 2, ,..., LT t t t is a finite and non-empty set of 

transitions ( TP );
A ( P T ) (T P )    is a set of arcs that consists of 

three subsets:   N I TA A A A , 

   N I TA A A { } , NA - normal arcs, IA -

inhibition arcs, TA - test arcs;   

1 2
0 0 0 0

NP P PM { M , M , , M }   is the initial marking, 

defined as an initial number of tokens in each place;
1 2 NP P P

max max max maxM { M , M , , M }   is the maximal 

marking, defined as a maximal number of tokens in each 
place;

C  is the synchronization variable that enable the 
transitions firing.

Subset 
NA  defines the normal arcs, through which 

tokens are removed from each input place and are added to 

each output place. Subsets IA  and TA are necessary in 

behavioral analyze but do not remove or add tokens.

IV. HARDWARE IMPLEMENTATION OF PETRI NETS

The computer-based synthesis of the digital system from 
Petri net level to logic design level request the adaptation of 
the Petri net model to its hardware implemented model. The 
digital system model is considered as a set of processing 
elements with data flow path between them. The 
corresponding Petri net model contains two kinds of 

processing elements iP
 and jT

. The arcs between them
represent the data flow paths. For hardware implemented 

SPN model the data flow depends on the topology of the net. 
A Hardware Petri Net (HPN) [5] is defined as reunion 

between sets of processing elements and data flows:
                                

0
  S T I In Out

maxRPH T , P , A , A , A , A , A , P , P , M , M ,C ,     

where:

 1 2 LT T ,T ,...,T , T   is a set of processing 

elements that correspond to transition nodes;

 1 2, ,..., NP P P P ,   P    is a set of processing 

elements that correspond to place nodes;

 , 1,iA A i N   ,   A  is a set of increment 

connections of the number of tokens in position processing 
elements and is defined as follows:

 
1,   

1, , 1,
0,


 


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  
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a otherwise
;

 , 1,  iA A i N , 
  A  is a set of decrement 

connections of the number of tokens in position processing 
elements and is defined as follows:

 
1,  

1, , 1,
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ji

ji

a p t
A a j L i N

a otherwise

;

 , 1, S S
jA A j L ,  SA  is a set of state 

connections that determine the enable firing condition of the 

transition jT  related to the marking of the input place iP . 

This set is defined as follows:

 
1,   

1, , 1,
0,

 
  



Nas
ij i js s

ij s
ij

a p t
A a i N j L

a otherwise

State connection has the ability to check whether a place has 
a token. The assertion of a state connection means that the 
transition is only enabled if the input place has a token. The 
transition firing changes the marking in the input place. 

 , 1,T T
jA A j L  , 

TA    is a set of test 

connections, which has the same function as the set of state 
connections, but the transition firing does not change the 
marking in the input place. 

 1 ,   
1, , 1,
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

T
T T ij i j

ij
T
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Taa p t
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a otherwise

 , 1,I I
jA A j L  , 

IA   is a set of inhibitor 

connections, which provides an enabling function, when the 
place stores no tokens. It is defined as follows:

 1 ,    
1, , 1,
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  



III I ij i j
ij ij I

ij

Iaa p t
A a i N j L

a otherwise

;  Inhibitor connection has the ability to test whether a place 
is empty. The assertion of an inhibitor connection means 
that the transition is enabled if the input place has no token. 
The firing does not change the marking in the input place.
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 , 1, In In I
jP P j L , InP P   is a set of processing 

elements jP  that represent the input signals in the digital 

system;

 , 1, Out Out O
jP P j L , OutP P  is a set of processing 

elements jP  that represent the output signals in the digital 

system;
1 2

0 0 0 0
NP P PM { M , M , , M }  - is the initial marking;

1 2 NP P P
max max max maxM { M , M , , M }  - is the maximal 

marking;

C - is the synchronization variable.
A conclusion section is not compulsory. Make sure that 

the whole text of your paper observes the textual 
arrangement on this page.

V. PROCESSING ELEMENTS

The processing element T  prepares the data processing 
operation. After analyzing of the global state 

 IiPmS ii
k ,1),,(   at the step k  of data 

processing, the condition for step 1k   of data processing 
operation is formed.

The behavior of the processing element T may be 
described as follows: if in each input place of a transition T 
there is a token, then the firing condition of T occurs. In this 
case tokens are removed from all input places and are placed 
into all output places. In figure 3(a) is shown a transition 
with four input and three output places. P1 and P2 are 
connected with T1 by state arcs, P3 is connected by inhibitor 
arc and P4 is connected by a test arc. The logic 
implementation of a processing element is shown in Figure 
3 (b)).
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Figure 3. An example of possible connections to a transition (a), logic 

implementation of the processing element Transition (b).

The processing element P  stores the state value and 
performs the increment and decrement operation of the 

number of tokens. The increment operation occurs when one 
of the input transitions of the processing element P  fires. 
The decrement operation occurs when one of the output 
transition of the processing element P  fires. The number of 
tokens in P at the step 1k  of data processing, denoted 

by 1k
im  , is changed according to the following rules:
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 ,

where: k
im is the number of tokens in iP at the step k of 

data processing, iL  and iL  are the total number of 

increment and decrement arcs of the place iP , 

1max max
i( m i , N ) M    represent the maximal 

number of tokens that can be stored in  iP . The best way to 

implement a place is to use a counter with a combinational 
input logic. In Petri net modeling tasks it is important the 
exact number of tokens in the place. When a Hardware Petri 
net model works as a digital system it is enough to check the 
presence or absence of the tokens in the place. In Figure 4(a) 
an example of a place with three input and three output 
transitions is presented. The logic implementation is given 
in Figure 4(b).
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Figure 4. An example of possible connections to a place (a), logic 

implementation of the processing element Place (b).

AHDL codes for both processing elements were 
elaborated. These codes were executed and simulated using 
MAX+PLUS II design tool [6].
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VI. DESIGN FLOW

The digital system design flow is presented in Figure 5. 
System specification is done using SPN model. 
The proposed Petri net model is analyzed in order to 

determine the set of reachable states and to form the 
reachability graph in VPNP (Visual Petri Net +) 
environment. The behavioral analysis determines the main 
properties of the model such as its reachability, liveness and 
reversibility. In the result, an XML code of the Petri net 
model is obtained. 

According to this code HPN model is generated. This 
model is translated to an AHDL code of the analyzed digital 
system. 

This code is executed and simulated using MAX+PLUS 
II design tool. In the result, the gatelevel netlist that can be 
implemented into FPGA circuit is obtained.

Sistem
specification

Modeling
Analyzing

Optimization

VPNP

Translation
L1

HPN model

0 max

, , , , ,

, , ,

  S

T I

T P A A A

A A M M

Translation
L2

Simulation
Test

MAX+Plus II

FPGA
implementation

netlist

Figure 5. Design flow of the Petri net-based digital systems synthesis.

VII. DESIGN EXAMPLE

As a design example a parallel to sequential code 
controller is presented.

A controller consist of a RAM memory for  storage of data 
to be converted, a 8-bit shift right register Rg, a memory 
address counter CT Adr and a Petri net-based control unit 
RPH (Figure 6). 

The conversion operation begins when START signal 
(initiation of data transfer operation) and Reset signal (CT 
Adr and RPH reset) are asserted. Signal RD initialize the 
read operation from RAM memory on address ADR. Inc
signal is used to increment the address code. EA is the signal 
that determines the end of the address space.  The extracted 
data are written in Rg when signal Load is asserted. Signal 
ShR is used to shift right the content of Rg. The number of 
shifts is controlled by internal RPH counter. When the 
conversion operation is finished signal EoP is asserted.

RAM Rg

RPH

Start

Din Dout

Adr

RD Load ShR

EoP

88

16

CT
Adr

1

Inc

Reset

EA

Figure 6. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design 
input is shown in Figure 7. The simulation results are shown 
in Figure 8. For simulation was done the conversion of three 
4-bits binary words. 

p1 p2 p3 p4 p5 p6t1 t2 t3 t4 t5

Start RD Load RDY ShR Dout

t6

p7

p8

t14

p9 p10

t8p13

EA

t15

p14

EoP

INC

p15t16

p11 p12

t9

t7

CtRg

CtAdr

t13

t10

t11

Figure 7. Petri net model of the parallel to sequential code controller.

VIII. CONCLUSIONS 

In this paper an approach for the digital systems design 
from Petri nets models has been presented. The use of Petri 
nets allows interplay of different formal tasks, such as 
synthesis, verification and performance evaluation, to be 
carried out within the single modeling framework. The 
design flow starts with the behavior specification of the 
digital system as a Petri net model. The main properties of 
the model (reachability, liveness, reversibility) are analyzed 
using a VPNP software tool. Then the direct mapping of the 
Petri net model into AHDL code is done. The use of 
Hardware Petri nets in CAD tools allows the automation of 
the FPGA implementation process and substantially reduces 
the design time and efforts.  The method can be used for the 
synthesis of relatively large circuits when space and speed 
constrains are not critical.
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I. INTRODUCTION


Advances in semiconductor technology over the last four decades have resulted in a nearly constant compound growth in transistor density of approximately 46% per year [1]. This remarkable achievement has not been matched by an equivalent increase in integrated circuit designer productivity, leading to a design gap as illustrated in Figure 1.
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Figure 1. The design productivity gap.

The design gap represents the disparity between the transistors available to a designer and the ability to use them effectively in a design. Increases in productivity are limited by the spiraling system complexity engendered by increased transistor counts. Traditional design methods do not scale to match the increased complexity. 


On the other side, the growth of design productivity leading to a so called “verification crisis”. According to a Collett international study, the rate of first silicon success is steadily declining, dropping to 35% in 2003; 70% of re-spun designs contain functional bugs [2]. 


One of the ways to overcome this threat is through improving the productivity and efficiency of the design process, particularly by means of new synthesis approaches that can transform a behavioral specification into an adequate implementation.  


The use of Petri nets for the specification, analysis and synthesis of digital systems has proved very worthwhile. Petri nets are mathematically well founded and can be used to capture causality relations, concurrency of actions and conflicting conditions from digital systems in a natural and convenient way. It is possible to translate Petri nets to HDL (Hardware Description Language), and vice versa, making it possible to integrate Petri nets tools into existing design environments. 


Two main approaches to digital systems design based on Petri nets are direct mapping [3] and logic synthesis [4]. Logic synthesis methods often suffer from the state explosion problem because most modern systems are typically modeled as concurrent systems. Direct mapping methods guarantee an implementation by construction. The size of the obtained circuits is linear on the size of the specification. 


This paper focuses on some of opportunities of Petri nets utilization in digital systems synthesis based on direct mapping of the behavioral model in FPGA circuits. A proposed CAD tool allows digital system specification, modeling and implementation using ordinary Petri nets. The synthesizable AHDL code is generated from a Petri net model. Proposed method makes possible the structured and flexible FPGA implementation of digital systems.

II. DIRECT MAPING OF A PETRI NET MODEL

In logic synthesis approach boolean equations for the output signals of the circuit are derived using minimization methods. This approach suffers from excessive computation complexity and memory requirements. The circuit optimization often involves analysis and recalculation of the whole state space. Thus it cannot be applied to large specifications. There is no transparent correspondence between the elements of the original specification, the intermediate representation of the state space and the components of the resultant circuit, which complicates the checking of circuit functionality.


The main idea of the direct mapping approach is that a Petri net model of a system is converted into a circuit netlist in such a way that the graph nodes correspond to the circuit elements and graph arcs correspond to the interconnects (Figure 2). 

The direct mapping method has a linear algorithmic complexity, is not affected by state explosion, so large digital systems can be constructed at low cost. Direct mapping facilities checking of the functional correctness of the implementation because of the transparent correspondence between the elements of the initial specification and the components of the resultant circuit. Notwithstanding all advantages, this approach is insufficiently studied and existing techniques for direct mapping often produce large circuits with inefficient interface to the environment.
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Figure 2. Direct mapping of a Petri net model to the circuit.

III. Synchronous Petri nets

In order to describe digital systems behavior, to perform their verification and synthesis, a new extension of ordinary Petri nets, namely Synchronous Petri nets, is proposed. 


A Synchronous Petri net (SPN) is a 6-tuple (P, T, A,M0, Mmax, C), where:
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IV. Hardware implementation of Petri nets 

The computer-based synthesis of the digital system from Petri net level to logic design level request the adaptation of the Petri net model to its hardware implemented model. The digital system model is considered as a set of processing elements with data flow path between them. The corresponding Petri net model contains two kinds of processing elements 
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A Hardware Petri Net (HPN) [5] is defined as reunion between sets of processing elements and data flows:
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 is a set of increment connections of the number of tokens in position processing elements and is defined as follows:
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A


 is a set of decrement connections of the number of tokens in position processing elements and is defined as follows:
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 is a set of state connections that determine the enable firing condition of the transition 
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State connection has the ability to check whether a place has a token. The assertion of a state connection means that the transition is only enabled if the input place has a token. The transition firing changes the marking in the input place. 




[image: image35.wmf]{


}


,1,


TT


j


AAjL


==


, 

[image: image36.wmf]T


A


¹Æ


 is a set of test connections, which has the same function as the set of state connections, but the transition firing does not change the marking in the input place. 
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is a set of inhibitor connections, which provides an enabling function, when the place stores no tokens. It is defined as follows:
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;  Inhibitor connection has the ability to test whether a place is empty. The assertion of an inhibitor connection means that the transition is enabled if the input place has no token. The firing does not change the marking in the input place.
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  is a set of processing elements 
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 that represent the input signals in the digital system;
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 is a set of processing elements 
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V. Processing elements 

The processing element 
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 prepares the data processing operation. After analyzing of the global state 
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 of data processing, the condition for step 
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 of data processing operation is formed.


The behavior of the processing element T may be described as follows: if in each input place of a transition T there is a token, then the firing condition of T occurs. In this case tokens are removed from all input places and are placed into all output places. In figure 3(a) is shown a transition with four input and three output places. P1 and P2 are connected with T1 by state arcs, P3 is connected by inhibitor arc and P4 is connected by a test arc. The logic implementation of a processing element is shown in Figure 3 (b)).
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		Figure 3. An example of possible connections to a transition (a), logic implementation of the processing element Transition (b).





The processing element 
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 stores the state value and performs the increment and decrement operation of the number of tokens. The increment operation occurs when one of the input transitions of the processing element 
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 fires. The decrement operation occurs when one of the output transition of the processing element 
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, is changed according to the following rules:
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where: 
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 are the total number of increment and decrement arcs of the place 
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 represent the maximal number of tokens that can be stored in  
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. The best way to implement a place is to use a counter with a combinational input logic. In Petri net modeling tasks it is important the exact number of tokens in the place. When a Hardware Petri net model works as a digital system it is enough to check the presence or absence of the tokens in the place. In Figure 4(a) an example of a place with three input and three output transitions is presented. The logic implementation is given in Figure 4(b).
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		Figure 4. An example of possible connections to a place (a), logic implementation of the processing element Place (b).





AHDL codes for both processing elements were elaborated. These codes were executed and simulated using MAX+PLUS II design tool [6].


VI. Design flow

The digital system design flow is presented in Figure 5. 


System specification is done using SPN model. 


The proposed Petri net model is analyzed in order to determine the set of reachable states and to form the reachability graph in VPNP (Visual Petri Net +) environment. The behavioral analysis determines the main properties of the model such as its reachability, liveness and reversibility. In the result, an XML code of the Petri net model is obtained. 


According to this code HPN model is generated. This model is translated to an AHDL code of the analyzed digital system. 


This code is executed and simulated using MAX+PLUS II design tool. In the result, the gatelevel netlist that can be implemented into FPGA circuit is obtained.
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		Figure 5. Design flow of the Petri net-based digital systems synthesis.





VII. Design EXAMPLE


As a design example a parallel to sequential code controller is presented.


A controller consist of a RAM memory for  storage of data to be converted, a 8-bit shift right register Rg, a memory address counter CT Adr and a Petri net-based control unit RPH (Figure 6). 


The conversion operation begins when START signal (initiation of data transfer operation) and Reset signal (CT Adr and RPH reset) are asserted. Signal RD initialize the read operation from RAM memory on address ADR. Inc signal is used to increment the address code. EA is the signal that determines the end of the address space.  The extracted data are written in Rg when signal Load is asserted. Signal ShR is used to shift right the content of Rg. The number of shifts is controlled by internal RPH counter. When the conversion operation is finished signal EoP is asserted.
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		Figure 6. Parallel to sequential code controller.





The corresponding Petri net model that is used as a design input is shown in Figure 7. The simulation results are shown in Figure 8. For simulation was done the conversion of three 4-bits binary words. 
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		Figure 7. Petri net model of the parallel to sequential code controller.





VIII. Conclusions 


In this paper an approach for the digital systems design from Petri nets models has been presented. The use of Petri nets allows interplay of different formal tasks, such as synthesis, verification and performance evaluation, to be carried out within the single modeling framework. The design flow starts with the behavior specification of the digital system as a Petri net model. The main properties of the model (reachability, liveness, reversibility) are analyzed using a VPNP software tool. Then the direct mapping of the Petri net model into AHDL code is done. The use of Hardware Petri nets in CAD tools allows the automation of the FPGA implementation process and substantially reduces the design time and efforts.  The method can be used for the synthesis of relatively large circuits when space and speed constrains are not critical.
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		Figure 8. Simulation results.
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