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Abstract — In this paper we propose a new hybrid genetic
algorithm with an adaptive fitness function to solve the
problem of extending district heating networks, related to the
prize-collecting Steiner tree problem. The multi-criterial
optimization is achieved by means of weighting the profit and
costs, depending on the application. The experimental results
showed that the algorithm works well for small and sparse
graphs and the running time is reasonable.
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I. INTRODUCTION

The district heating networks (DHN) as part of the district
heating systems (DHS) are very important in the perspective
of finding solutions for the combustible consummation
reduction and building ecological and safe residential areas.
Making new networks is very expensive. The subject of this
paper is the problem of DHN that evolves in order to be
extended in a new area of consumers, using the DHN in use
and the existing plants, or a new plant in a new district.

The main step of the process of extending such networks
leads to the prize-collecting Steiner tree problem (PCST), a
modified variant of the Steiner tree problem. There are some
solutions for PCST, but very few based on genetic
algorithms.

A primal-dual method is proposed in [2]. The algorithm is
based on Goemans and Williamson algorithm and has the
time-complexity of O(nzlogn). In [3] the authors present and
compare three heuristics for a variant of the Steiner tree
problem with revenues that is a Steiner tree with budget and
hop constraints. In the first step the authors use a greedy
method which obtains good approximations in short
computational times. This solution is then improved by
means of a destroy-and-repair method or a tabu-search
algorithm. Some branch-and-cut algorithms based on a
direct graph model are proposed in [7] and [8]. The
algorithms give good results for a set of significant real-
world instances, but the algorithm implementation is
laborious.

The evolutionary algorithms proved to be a good option
for single objective or multi-objective optimization
problems. However, PCST has extremely few approaches by
using genetic algorithms (GAs) or other evolutionary
algorithms (EAs). One of the most important phases in
designing the encoder-decoder step for an evolutionary

algorithm is its genotypic representation. The difficulties of
efficient coding-decoding schema for PCSTs explain the
few proposals which use GA for Steiner trees and in special
PCST problem. A distance network heuristic is proposed in
[4]. It is based on the distance network heuristic designed by
Kou [6]. Prufer encoding [5] is used by some researchers as
well. However, some criticism arises from other authors,
which assert that some good results reported sometimes are
due to sparse graphs and small graphs. We can conclude that
the characteristics of the graph in the PCST problem have an
important influence in choosing the encoding-decoding
schema for GA used in solving minimal PCST.

The paper is organized as follows. In the second section
the PCST problem and our solution are presented. The third
section is reserved to the description of the genetic
algorithm. In the next section some experiments are
explained and analyzed. The last section contains
conclusions and directions for future work.

II. PRIZE-COLLECTING STEINER TREE PROBLEM
(PCST) AND OUR APPROACH

The Steiner minimal tree is an important optimization
problem which consists in finding a tree that connects a
given set of points with minimum costs.

Given a connected and undirected graph G=(V, E), a cost
function ¢: E—R™ and a subset ScV, the Steiner tree
problem (STP) is defined as follows:

Find a tree T = (VT,ET) where S cVrcV, Er c E and
¢(T) is minimal.

A typical DHS consists in one or more production units, a
pipe network and possible heat-exchanger stations. In our
approach we will consider the case with one production unit
and a heating network with n customers [1].

When a new district has to be integrated in a DHN,
keeping the existent production unit, a number of consumers
(terminals in the network) will be connected with minimum
costs and maximum profit. At limit, all the consumers will
be connected. The problem is Prize-Collecting Steiner Tree
(PCST) type and the solution is a rooted tree.

The common way to solve the problem is to select a
subset of profitable customers from the set of all customers
and then to proceed to maximize the profit. The DHN is
extended using this subset as terminal nodes and the cost of
network is evaluated. Many constraints have to be satisfied.
The edges have to follow the streets and the nodes must
represent the street intersections and potential customers.
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One node (the root) represents the heating producer.

Let G = (V, E, ¢, p) be an undirected graph, where
vertices are associated with profits defined by a profit
function p: ¥— R" and the edges have costs given by the
function c: E>R".

There are two types of nodes: customer nodes and non-
customer nodes. A street node (non-customer node) has a
zero profit. The customer and the non-customer node sets
are denoted by R and Q, respectively:
R={peV|p(v)=0},R=¢ 1

Q={veV|p(=0} @)

A subset S of customer nodes has to be connected by a
tree 7. The problem is to maximize the difference between
profits and costs, without overflowing the budget:

profi(T) =Y p(v)— D c(e) 3)
subject to C = Z c(e) < B(buget) @)

In order to be sure that the root is included in the solution,
we allocate a high value of the profit for this node.

For the proposed solution based on genetic algorithms,
the encoding is binary and the chromosomes have a length
equal to all the nodes of the problem, both with and without
profit. A gene with a “1” value indicates that the node was
part of the solution, while a “0” value indicates that the node
is temporarily excluded. Since the GA performs a search
without any domain knowledge, a solution will most likely
be an invalid network graph. Therefore, the partial solution
obtained must be completed to form a connected graph that
can represent an acceptable solution. The graphs are
internally represented by their adjacency matrices.

In order to find the intermediary nodes between the profit
nodes selected by the GA, we use the Dijkstra algorithm to
find both the path between any two disconnected profit
nodes, and the minimum cost between them. In this way, a
new graph is constructed. However, we chose to allow the
GA to operate on disconnected graphs as well, and not only
on connected graphs, because this post-processing step
would usually introduce many “1” genes, which in turn
would significantly lower the genetic diversity of the
population, leading to premature convergence and
decreasing the chances of finding the optimal solution.

The next step is to compute the minimum spanning tree,
using Prim’s algorithm, starting with the first node that
represents the root. The tree is then evaluated, and the sum
of profits P is computed only for the profit nodes, as well as
the sum of costs of the network edges C, including those
connecting the non-profit nodes.

The problem is a multi-criterial one. We aim
simultaneously at minimizing the cost and maximizing the
profit, but these objectives are contradictory. The simplest
approach is to give weights to these two criteria. Therefore,
the fitness function F is:

F=P-w,-C-w> (5)
where wp and w¢ are the corresponding weights of the total
profit and the total cost, respectively.

We also included the possibility of establishing a
maximum allowed cost. In this case, many solutions found
by the GA will be rejected. If we assigned a constant
negative fitness to all these invalid solutions, again the

genetic diversity would be greatly reduced. It is very likely
that the GA could not find a solution at all.

In order to solve this problem, we chose an adaptive
fitness function. If the solution does not meet the maximum
cost limitation, the fitness will be:

F=-C (6)

Therefore, at the beginning of the search process, if no
valid solution is found, the GA tries to decrease the cost,
with no regard to the profit. After a few generations, when
the cost has decreased enough to respect the imposed
criterion, the fitness function changes to the expression in
equation 1, and the GA starts to maximize the weighted
profit. In this way, no solutions are excluded a-priori, and
this helps decrease the number of individuals in the
population, which is an important factor regarding the speed
of the algorithm.

III. HYBRID GENETIC ALGORITHM FOR THE PRIZE-
COLLECTING STEINER TREE PROBLEM

The genetic algorithm has the classical structure given by
the pseudo-code from Fig. 1.a. Given the GA solution (the
started graph), the pseudo-code of the specialized algorithm
is presented in Fig. 1.b. :

create initial population
while not maximum number of generations
eached
evaluate fitness of individuals
save best individual into new generation
while not new generation complete
select 2 parents by tournament
generate child by crossover
change child by mutation
insert child into new generation
end while
current generation = new generation
end while
solution = best individual

Figure 1.a.

while exist 2 disconnected profit nodes in
graph
apply Dijkstra algorithm to find
shortest path between these nodes in
initial graph
insert links into the graph
end while
apply Prim’s algorithm on graph starting
with node 1
solution = minimum spanning tree

Figure 1.b.
Figure 1. Genetic Algorithm for the Prize-Collecting Steiner Tree Problem.
In order to show how the algorithm works, let us consider

the graph in Fig 2. After applying the genetic algorithm, the
selected nodes are those presented in Fig 3.
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Figure 2. Simple test network.

This in only a preliminary solution, since the GA does not
guarantee that the profit nodes are connected. If we impose a
positive weight for the cost, the GA will eliminate any
unnecessary links, or unprofitable nodes. It will only select
the profit nodes that give the best outcome. The first node,
the root, is included by default. Using the algorithm
previously presented, the selected profit nodes are connected
using the shortest path in the initial graph of the problem.
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Figure 3. Preliminary GA solution.

The final phase of the approach is to apply Prim’s
algorithm to find the minimum spanning tree on the
resulting connected graph, and this represents the solution.
For the network considered in this example, the solution is
displayed in Fig 4.

0

i |

Figure 4. Final network tree.

IV. EXPERIMENTAL RESULTS

We applied our algorithm to a simple network in order to
analyze the behavior of the algorithm, and to three
benchmark problems, to see how it performs in complex
cases. The results are presented in what follows.

A. SIMPLE NETWORK

In order to test the performance of the algorithm, we start
with a simple test network, displayed in Fig 4. For the
genetic algorithm, we used a configuration of 50
individuals, a stopping criterion of maximum 50
generations, a tournament selection with 3 individuals, a
crossover rate of 0.9, and a mutation rate of 0.02. In order
not to lose the best solution from a generation to another, we
also used elitism, i.e. the best solution in a generation was
directly copied into the next one.

For the first test, we only considered the profit of the
network: wp = 100, we = 0. We did not impose any cost
limitation either. The results of the algorithm are displayed
in Fig 5. The vertices with profit are marked in the form
vertex_index:profit. The same notation is used to present the
cost of a network edge.

Best fitness: 11200
Best chromosome: 00001011000100101011
Selected vertices: 1 2 3 4 5:10 6 7:15 8

9:40 10 11 12:12 13 14 15:5 16 17:5 18

19:18 20:7

Profit: 112

Network edges: 1-2:186 2-3:169 2-14:110
3-4:110 3-20:105 4-5:105 6-7:286 6-
8:250 8-9:83

8-18:208 9-10:111 10-11:191 10-16:1009
11-12:243 12-13:226 13-14:191 14-15:123
16-17:63

18-19:126

Cost: 3895

Figure 5. The results of the algorithm for wp = 100, we = 0.

Next, we also took into account the cost, using wp = 100
and we = 1. The results are presented in Fig. 6. One can
notice a decrease in the total cost. The profit node 17 was
not included in the solution because it is very distant to the
rest of the nodes in the network.
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Best fitness: 7877

Best chromosome: 00001110011101100111
Selected vertices: 1 2 3 4 5:10 6 7:15 8
9:40 10 11 12:12 13 14 15:5 18 19:18 20:7

Profit: 107

Network edges: 1-2:186 2-3:169 2-14:110
3-4:110 3-20:105 4-5:105 6-7:286 6-
8:250 8-9:83

8-18:208 9-10:111 10-11:191 11-12:243
12-13:226 13-14:191 14-15:123 18-
19:126

Cost: 2823

Figure 6. The results of the algorithm for wp = 100, we= 1.
Finally, we imposed a cost limit of 500. In this
case, only a few nodes have been found (Fig. 7).

Best fitness: 240

Best chromosome: 10000000000000000001
Selected vertices: 1 2 3 20:7

Profit: 7

Network edges: 1-2:186 2-3:169 3-20:105
Cost: 460

Figure 7. The results of the algorithm for cost limits 500.

In Fig 8, the evolution of the best fitness of the GA is
displayed for 3 different runs of the algorithm. The negative
values represent invalid solutions, which however are
improved and soon become valid without being eliminated
from the population. As explained before, the algorithm first
tries to decrease the cost, and then to increase the profit. One
can also notice the fast convergence of the GA, in less than
20 generations for this test problem.
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Figure 8. Best fitness evolution for a cost-limited problem.

Fig. 8 displays the fitness, which is 240. The value
of 500 is the limit for the cost, not for the fitness, since the
latter is the weighted sum of profits and negative costs. The
profit of this configuration is 460, which is close to the
imposed limit.

B. THE BENCHMARK PROBLEMS

For more complex test problems, we used some of the
benchmarks files proposed by Resende [9]: K/00.3, K100.6,
and K700.9. For all the problems, we used the weights of
wp =100 and wc= 1, with no cost limitation.

The graph in problem K/00.3 is not connected. The
algorithm detects this and introduces network edges as
needed between the root (the first node) and each of the
unconnected parts of the graph, with a very large cost. The
solution of the algorithm is presented below (Fig. 9).
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Connected: 1-2
Connected: 1-21

Best fitness: 3984062

Best chromosome:
010000001110010101110100001011100101010011
11001101111111010110011000011000110110
11000001000000101110
Selected vertices: 1
14 15 16 18 19 20 22
31 32 34 35 36 38 41
48 49 50 51 52 53 54
61:16456 62:17797 63:
73 75 76 77 78:15719
88 89 90 91 93 94 95:
100

Profit: 144349

Cost: 10450838

Figure 9. The solution of the algorithm in the K700.3 benchmark case.

For the K100.6 problem, the algorithm finds the
following solution:

2 6 78 9 10 11:20628
23 25 27 29 30:16155
42 43 44:3259 46 47
55 56 58 59 60

28396 64 65 68 70 71
79 81:13488 82 85 86
3222 96 97 98:9229 99

Best fitness: 15430863

Best chromosome:
110001101101100111001010110100011000101011
00000101011100101101000000110001000011
11001011010000001000

Selected vertices: 1 2 5 6:16311 7:249 8
9:10244 10 11 12:11697 13 15 16 17 18 20
21 22 23 24:7954 25 26 27 28 29 30 32 33
37:24691 38 39 41:15668 42 44 45 48 50 52
53 54 55 56 57 59 60 62 63 64 65:9092 67
68 69 70 72 73 74:20033 77 78 79 80 81 82
84 85:21197 86 87 88 90 91 92 94 95
96:22756 97 98 99

Profit: 159892

Cost: 558337

Figure 10. The solution of the algorithm in the K/00.6 benchmark case.

The solution for the K7/00.9 problem is presented in
Fig.11.

Best fitness: 14077005

Best chromosome:
001101100111000110001111010010100010001101
00110110110100100100000010101111000000
10101100010001011101

Selected vertices: 1 2 3:23535 4 5 6 7 9
10 11 12 13 14 16 17 21:11599 22 23
24:17216 26 27 28 29 30 31 32 33:17175 35
37 39 40 41 42 43 44 45 46 47 48:17750
49:18876 50:2678 51 52 54 55:6003 57:18584
59 60 61 63 64 67 68 69 71 72 73 74 77 79
80 81 82 83 84 85 86:10416 87 88 90:2620
91 93 94 95 96 97 98 99 100

Profit: 146452

Cost: 568195

Figure 11. The solution of the algorithm in the K700.11 benchmark case.

V. CONCLUSIONS

We propose a new algorithm for district heating network
extension with new customers. The experimental results
show that the algorithm works well for small and sparse
graphs and the running time is reasonable.

The choices of w, and w. are made experimentally and
depend on application. The cost limit restricts the results, so
the usually preferred solution is no cost limits.

The running time is high for problems K100.3, 6, 9 and
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the optimization is one of the future research. The extension
of the algorithm for dense and massively graph is another
objective of the future research.

The problem is intensively computational. Therefore, the

parallel algorithms for shorter paths and minimum spanning
tree could be very useful.

(1]
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Abstract — In this paper we propose a new hybrid genetic algorithm with an adaptive fitness function to solve the problem of extending district heating networks, related to the prize-collecting Steiner tree problem. The multi-criterial optimization is achieved by means of weighting the profit and costs, depending on the application. The experimental results showed that the algorithm works well for small and sparse graphs and the running time is reasonable.
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I. INTRODUCTION


The district heating networks (DHN) as part of the district heating systems (DHS) are very important in the perspective of finding solutions for the combustible consummation reduction and building ecological and safe residential areas. Making new networks is very expensive. The subject of this paper is the problem of DHN that evolves in order to be extended in a new area of consumers, using the DHN in use and the existing plants, or a new plant in a new district.


The main step of the process of extending such networks leads to the prize-collecting Steiner tree problem (PCST), a modified variant of the Steiner tree problem. There are some solutions for PCST, but very few based on genetic algorithms. 


A primal-dual method is proposed in [2]. The algorithm is based on Goemans and Williamson algorithm and has the time-complexity of O(n2logn). In [3] the authors present and compare three heuristics for a variant of the Steiner tree problem with revenues that is a Steiner tree with budget and hop constraints. In the first step the authors use a greedy method which obtains good approximations in short computational times. This solution is then improved by means of a destroy-and-repair method or a tabu-search algorithm. Some branch-and-cut algorithms based on a direct graph model are proposed in [7] and [8]. The algorithms give good results for a set of significant real-world instances, but the algorithm implementation is laborious.


The evolutionary algorithms proved to be a good option for single objective or multi-objective optimization problems. However, PCST has extremely few approaches by using genetic algorithms (GAs) or other evolutionary algorithms (EAs). One of the most important phases in designing the encoder-decoder step for an evolutionary algorithm is its genotypic representation. The difficulties of efficient coding-decoding schema for PCSTs explain the few proposals which use GA for Steiner trees and in special PCST problem. A distance network heuristic is proposed in [4]. It is based on the distance network heuristic designed by Kou [6]. Prufer encoding [5] is used by some researchers as well. However, some criticism arises from other authors, which assert that some good results reported sometimes are due to sparse graphs and small graphs. We can conclude that the characteristics of the graph in the PCST problem have an important influence in choosing the encoding-decoding schema for GA used in solving minimal PCST.

The paper is organized as follows. In the second section the PCST problem and our solution are presented. The third section is reserved to the description of the genetic algorithm. In the next section some experiments are explained and analyzed. The last section contains conclusions and directions for future work.

II. PRIZE-COLLECTING STEINER TREE PROBLEM (PCST) AND OUR APPROACH 

The Steiner minimal tree is an important optimization problem which consists in finding a tree that connects a given set of points with minimum costs.

Given a connected and undirected graph G=(V, E), a cost function c: E(R+ and a subset S(V, the Steiner tree problem (STP) is defined as follows:


 Find a tree 
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A typical DHS consists in one or more production units, a pipe network and possible heat-exchanger stations. In our approach we will consider the case with one production unit and a heating network with n customers [1]. 


When a new district has to be integrated in a DHN, keeping the existent production unit, a number of consumers (terminals in the network) will be connected with minimum costs and maximum profit. At limit, all the consumers will be connected. The problem is Prize-Collecting Steiner Tree (PCST) type and the solution is a rooted tree.


The common way to solve the problem is to select a subset of profitable customers from the set of all customers and then to proceed to maximize the profit. The DHN is extended using this subset as terminal nodes and the cost of network is evaluated. Many constraints have to be satisfied. The edges have to follow the streets and the nodes must represent the street intersections and potential customers. One node (the root) represents the heating producer. 


Let G = (V, E, c, p) be an undirected graph, where vertices are associated with profits defined by a profit function p: V( R+  and the edges have costs given by the function c: E( R+. 


There are two types of nodes: customer nodes and non-customer nodes. A street node (non-customer node) has a zero profit. The customer and the non-customer node sets are denoted by R and Q, respectively:
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A subset S of customer nodes has to be connected by a tree T. The problem is to maximize the difference between profits and costs, without overflowing the budget:
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In order to be sure that the root is included in the solution, we allocate a high value of the profit for this node. 


For the proposed solution based on genetic algorithms, the encoding is binary and the chromosomes have a length equal to all the nodes of the problem, both with and without profit. A gene with a “1” value indicates that the node was part of the solution, while a “0” value indicates that the node is temporarily excluded. Since the GA performs a search without any domain knowledge, a solution will most likely be an invalid network graph. Therefore, the partial solution obtained must be completed to form a connected graph that can represent an acceptable solution. The graphs are internally represented by their adjacency matrices.


In order to find the intermediary nodes between the profit nodes selected by the GA, we use the Dijkstra algorithm to find both the path between any two disconnected profit nodes, and the minimum cost between them. In this way, a new graph is constructed. However, we chose to allow the GA to operate on disconnected graphs as well, and not only on connected graphs, because this post-processing step would usually introduce many “1” genes, which in turn would significantly lower the genetic diversity of the population, leading to premature convergence and decreasing the chances of finding the optimal solution.


The next step is to compute the minimum spanning tree, using Prim’s algorithm, starting with the first node that represents the root. The tree is then evaluated, and the sum of profits P is computed only for the profit nodes, as well as the sum of costs of the network edges C, including those connecting the non-profit nodes.


The problem is a multi-criterial one. We aim simultaneously at minimizing the cost and maximizing the profit, but these objectives are contradictory. The simplest approach is to give weights to these two criteria. Therefore, the fitness function F is:
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where wP and wC are the corresponding weights of the total profit and the total cost, respectively.


We also included the possibility of establishing a maximum allowed cost. In this case, many solutions found by the GA will be rejected. If we assigned a constant negative fitness to all these invalid solutions, again the genetic diversity would be greatly reduced. It is very likely that the GA could not find a solution at all. 


In order to solve this problem, we chose an adaptive fitness function. If the solution does not meet the maximum cost limitation, the fitness will be:


F = –C 
(6)


Therefore, at the beginning of the search process, if no valid solution is found, the GA tries to decrease the cost, with no regard to the profit. After a few generations, when the cost has decreased enough to respect the imposed criterion, the fitness function changes to the expression in equation 1, and the GA starts to maximize the weighted profit. In this way, no solutions are excluded a-priori, and this helps decrease the number of individuals in the population, which is an important factor regarding the speed of the algorithm.

III. HYBRID GENETIC ALGORITHM FOR THE PRIZE-COLLECTING STEINER TREE PROBLEM 


 The genetic algorithm has the classical structure given by the pseudo-code from Fig. 1.a. Given the GA solution (the started graph), the pseudo-code of the specialized algorithm is presented in Fig. 1.b. :


create initial population


while not maximum number of generations 

eached


evaluate fitness of individuals



save best individual into new generation



while not new generation complete




select 2 parents by tournament 




generate child by crossover 




change child by mutation




insert child into new generation 



end while



current generation = new generation 


end while


solution = best individual


Figure 1.a.

while exist 2 disconnected profit nodes in graph



apply Dijkstra algorithm to find 

shortest path between these nodes in initial graph



insert links into the graph


end while


apply Prim’s algorithm on graph starting with node 1


solution = minimum spanning tree


Figure 1.b.


Figure 1. Genetic Algorithm for the Prize-Collecting Steiner Tree Problem.

In order to show how the algorithm works, let us consider the graph in Fig 2. After applying the genetic algorithm, the selected nodes are those presented in Fig 3.
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Figure 2. Simple test network.

This in only a preliminary solution, since the GA does not guarantee that the profit nodes are connected. If we impose a positive weight for the cost, the GA will eliminate any unnecessary links, or unprofitable nodes. It will only select the profit nodes that give the best outcome. The first node, the root, is included by default. Using the algorithm previously presented, the selected profit nodes are connected using the shortest path in the initial graph of the problem.
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Figure 3. Preliminary GA solution.

The final phase of the approach is to apply Prim’s algorithm to find the minimum spanning tree on the resulting connected graph, and this represents the solution. For the network considered in this example, the solution is displayed in Fig 4.


[image: image9.png]?— 226 12-12 243
©

el _a_ 161 4<£

=
186
9-40
g
@— 110 —é) 250
= =
W W

0 —(®)

9tl

98¢

19-18

7-15






Figure 4. Final network tree.

IV. EXPERIMENTAL RESULTS


 We applied our algorithm to a simple network in order to analyze the behavior of the algorithm, and to three benchmark problems, to see how it performs in complex cases. The results are presented in what follows.


A. SIMPLE NETWORK

 In order to test the performance of the algorithm, we start with a simple test network, displayed in Fig 4. For the genetic algorithm, we used a configuration of 50 individuals, a stopping criterion of maximum 50 generations, a tournament selection with 3 individuals, a crossover rate of 0.9, and a mutation rate of 0.02. In order not to lose the best solution from a generation to another, we also used elitism, i.e. the best solution in a generation was directly copied into the next one.


For the first test, we only considered the profit of the network: wP = 100, wC = 0. We did not impose any cost limitation either. The results of the algorithm are displayed in Fig 5. The vertices with profit are marked in the form vertex_index:profit. The same notation is used to present the cost of a network edge.


Best fitness: 11200


Best chromosome: 00001011000100101011 


Selected vertices: 1 2 3 4 5:10 6 7:15 8 9:40 10 11 12:12 13 14 15:5 16 17:5 18 19:18 20:7


Profit: 112


Network edges: 1-2:186  2-3:169  2-14:110  3-4:110  3-20:105  4-5:105  6-7:286  6-8:250  8-9:83  


8-18:208  9-10:111  10-11:191  10-16:1009  11-12:243  12-13:226  13-14:191  14-15:123  16-17:63  


18-19:126


Cost: 3895


Figure 5. The results of the algorithm for wP = 100, wC = 0.

Next, we also took into account the cost, using wP = 100 and wC = 1. The results are presented in Fig. 6. One can notice a decrease in the total cost. The profit node 17 was not included in the solution because it is very distant to the rest of the nodes in the network. 



Best fitness: 7877


Best chromosome: 00001110011101100111 


Selected vertices: 1 2 3 4 5:10 6 7:15 8 9:40 10 11 12:12 13 14 15:5 18 19:18 20:7


Profit: 107


Network edges: 1-2:186  2-3:169  2-14:110  3-4:110  3-20:105  4-5:105  6-7:286 6-8:250  8-9:83  


8-18:208  9-10:111  10-11:191  11-12:243  12-13:226  13-14:191  14-15:123  18-19:126


Cost: 2823


Figure 6. The results of the algorithm for wP = 100, wC = 1.


Finally, we imposed a cost limit of 500. In this case, only a few nodes have been found (Fig. 7).

Best fitness: 240


Best chromosome: 10000000000000000001


Selected vertices: 1 2 3 20:7


Profit: 7


Network edges: 1-2:186  2-3:169  3-20:105


Cost: 460

Figure 7. The results of the algorithm for cost limits 500.

In Fig 8, the evolution of the best fitness of the GA is displayed for 3 different runs of the algorithm. The negative values represent invalid solutions, which however are improved and soon become valid without being eliminated from the population. As explained before, the algorithm first tries to decrease the cost, and then to increase the profit. One can also notice the fast convergence of the GA, in less than 20 generations for this test problem.
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Figure 8. Best fitness evolution for a cost-limited problem.


Fig. 8 displays the fitness, which is 240. The value of 500 is the limit for the cost, not for the fitness, since the latter is the weighted sum of profits and negative costs. The profit of this configuration is 460, which is close to the imposed limit.


B.  THE BENCHMARK PROBLEMS

For more complex test problems, we used some of the benchmarks files proposed by Resende [9]: K100.3, K100.6, and K100.9. For all the problems, we used the weights of 
wP = 100 and  wC = 1, with no cost limitation.


The graph in problem K100.3 is not connected. The algorithm detects this and introduces network edges as needed between the root (the first node) and each of the unconnected parts of the graph, with a very large cost. The solution of the algorithm is presented below (Fig. 9).


Connected: 1-2


Connected: 1-21


Best fitness: 3984062


Best chromosome: 01000000111001010111010000101110010101001111001101111111010110011000011000110110


11000001000000101110 


Selected vertices: 1 2 6 7 8 9 10 11:20628 14 15 16 18 19 20 22 23 25 27 29 30:16155 31 32 34 35 36 38 41 42 43 44:3259 46 47 48 49 50 51 52 53 54 55 56 58 59 60 61:16456 62:17797 63:28396 64 65 68 70 71 73 75 76 77 78:15719 79 81:13488 82 85 86 88 89 90 91 93 94 95:3222 96 97 98:9229 99 100


Profit: 144349


Cost: 10450838


Figure 9. The solution of the algorithm in the K100.3 benchmark case.


For the K100.6 problem, the algorithm finds the following solution:


Best fitness: 15430863


Best chromosome: 11000110110110011100101011010001100010101100000101011100101101000000110001000011


11001011010000001000 


Selected vertices: 1 2 5 6:16311 7:249 8 9:10244 10 11 12:11697 13 15 16 17 18 20 21 22 23 24:7954 25 26 27 28 29 30 32 33 37:24691 38 39 41:15668 42 44 45 48 50 52 53 54 55 56 57 59 60 62 63 64 65:9092 67 68 69 70 72 73 74:20033 77 78 79 80 81 82 84 85:21197 86 87 88 90 91 92 94 95 96:22756 97 98 99


Profit: 159892


Cost: 558337


Figure 10. The solution of the algorithm in the K100.6 benchmark case.

The solution for the K100.9 problem is presented in Fig.11.

Best fitness: 14077005


Best chromosome: 00110110011100011000111101001010001000110100110110110100100100000010101111000000


10101100010001011101


Selected vertices: 1 2 3:23535 4 5 6 7 9 10 11 12 13 14 16 17 21:11599 22 23 24:17216 26 27 28 29 30 31 32 33:17175 35 37 39 40 41 42 43 44 45 46 47 48:17750 49:18876 50:2678 51 52 54 55:6003 57:18584 59 60 61 63 64 67 68 69 71 72 73 74 77 79 80 81 82 83 84 85 86:10416 87 88 90:2620 91 93 94 95 96 97 98 99 100


Profit: 146452


Cost: 568195


Figure 11. The solution of the algorithm in the K100.11 benchmark case.

V. CONCLUSIONS

We propose a new algorithm for district heating network extension with new customers. The experimental results show that the algorithm works well for small and sparse graphs and the running time is reasonable. 


The choices of wp and wc are made experimentally and depend on application. The cost limit restricts the results, so the usually preferred solution is no cost limits.


The running time is high for problems K100.3, 6, 9 and the optimization is one of the future research. The extension of the algorithm for dense and massively graph is another objective of the future research. 


The problem is intensively computational. Therefore, the parallel algorithms for shorter paths and minimum spanning tree could be very useful.
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