
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 338

Abstract — Intrusion detection techniques are indispensable
for the security infrastructure in order to detect threats before
damage is produced. New methods have been conceived using
advanced mechanisms, some of them biologically inspired, but
all need some kind of information fusion. To be able to deploy
these methods some functionalities are required for processing
the huge amount of data passing through the network
environment. We have been developing such functionalities in
the Erlang programming language and are presenting them in
this paper.

Index Terms — Computer maintenance, Computer network
reliability, Computer network security, Functional
programming, Network operating systems

I. INTRODUCTION

Several methods have been conceived for intrusion
detection [1], [2], [3] most of them based on advanced
computational intelligence. Due to the huge amount of data
passing through the computer networks, it is of paramount
importance the ability of efficient processing. We are using
Erlang, a concurrent programming language, developed for
distributed system, to better cope with the primary tasks
of data extraction on the path to intrusion detection. To the
best of our knowledge, the functionalities of Erlang have not
been exploited yet in intrusion detection.

A. INTRUSION DETECTION

One of the most valuable assets of a company is its
communication network (according to the “Data Breach
Investigations Report”, 2009)1. Intrusion detection systems
(IDSs) are systems built using software applications,
hardware devices, or both, that try to detect potential
external or even internal threats to the communication
network. They can be classified into two different, but
complementary classes: signature based and anomaly
based.

1) Signature based systems

These systems classify the information extracted from the
communication network, under operation, while relying on a
signature database. This strategy is used by many
commercial applications since it provides a high detection
rate for known threat patterns.

1http://www.csoonline.com/documents/pdfs/2010CyberSecurityResults.

pdf

2) Anomaly based systems

Anomaly based systems [4] use network statistics and
behavioral analysis to specify if the network is under attack,
or not. Since more computations need to be performed or
more observations must be collected, anomaly based IDS
may provide less throughput than signature based IDS. But
at the same time, anomaly based IDS are able to detect new
threat patterns and adapt the detection system accordingly.

In this paper we present some functionalities of the Erlang
programming language, suitable for building an anomaly
based IDS. While the throughput is smaller than the one
provided by the C or C++ based IDS, we believe that the
features Erlang applications provide, such as scalability,
fined grained parallelism, failure contention in lightweight
processes, and the ability to perform live updates, are more
important for intrusion detection.

B. WHAT ERLANG PROVIDES FOR INTRUSION
DETECTION.

Erlang is a dynamically typed concurrent functional
language [5]. The code unit of an Erlang program is the
module, which is a collection of functions. A module has a
public interface given by the functions it explicitly exports
[6]. In order to use its functionality, a module has to be
compiled/interpreted and loaded in the Erlang Virtual
Machive (VM)2 . Erlang mimics inheritance through the use
of parameterized modules [7], and module behaviors
(similar to abstract methods of an abstract class in Java).

A function is identified by name (the function name is an
atom, e.g. myfunction or ’The name of my function’) and
arity3. Each function has to return a value [6] that can be
an atom, a number, a list, a tuple, a globally unique
reference, a process identifier, or even a function due to the
offered support for higher order functions [8].

The Erlang Virtual Machine (VM) supports the creation
of a large number of lightweight processes by spawning
functions [8], which can later be explicitly put in a
hierarchy of processes called supervision tree: a

2 In embedded mode it is loaded at start-up, while in interactive mode only
when a module’s function is referenced.
3 Two functions with the same name, but different number of arguments
are considered to be different. The type of the parameters does not count.
To distinguish among these, one has to specify the arity when exporting
the function -export([myfun/1,myfun/2]), or when using it
F=fun(X)→fun myfun/1 end.

Embarking on the road of Intrusion Detection,
with Erlang

Ioan Alfred LETIA1, Dan Alexandru MARIAN2

1Department of Computer Science
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
letia@cs.utcluj.ro

2Technical University of Cluj-Napoca
Department of Computer Science Cluj-Napoca, Romania

marian.dan.alexandru@gmail.com

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 339

monitoring process can trap exit signals of the processes it
monitors and take the appropriate actions.

Although error handling structures are present, the Erlang
programming philosophy is to let processes crash and
spawn fresh ones [5], [9].

Each process has a globally unique Process Identifier
(PID) across different nodes in the same Erlang system.
The PID is used to address a specific process on any
node in the Erlang system, thus offering location
transparency. A PID can be globally registered using an
atom as an alias.

Processes share no memory and communicate through
message passing. A message is guaranteed to arrive to
the destination, unless the case in which the destination is
down4. Each process has an associated message mailbox,
and messages are taken out using the selective receive
construct [8].

 In order to reduce memory consumption (allocated
dynamically), processes not often used (e.g. processes
waiting for client requests) can explicitly request to be put
on hibernation until a new message arrives [10].

The Erlang scheduler supports soft real-time deadlines
and has priority classes [11], [10]. Garbage collection is
automatically carried out, but only when this is actually
needed [10].

Erlang is a language that was designed for
Telecommunication applications [5] and has features that
make it useful when building an IDS.

Although Erlang is a dynamically typed functional
language, along with lists and tuples it has the binary type
which helps in representing raw data in a memory efficient
way. The built-in bit syntax and the regular expression
module allow analyzing network packets in a simple
manner.

The failure contention in lightweight concurrent
processes along with the supervision tree ensure that
crashed Erlang processes will be automatically re-
spawned. The hot code loading mechanism allows updating
the detection system without the need of shutting it down or
restarting it later.

Distributed applications can be easily built since Erlang’s
inter-process communication is done using message passing
and the enforced location transparency allows distributing
the processing and the communication load across different
nodes in the same thrust group. It does not matter on which
node an Erlang process runs, since it is uniquely addressed
using its PID or using a globally registered alias.

The hibernation mechanism, allowing process to be put
in a state in which they consume as less resources as
possible, is a feature that IDS could benefit of. Practically,
it makes possible to have many instances of the same
classifier or many types of collaborative classifiers available
at the same time.

What Erlang solves are robustness and scalability issues.
It was our choice since it allowed us to experiment with
different algorithms and easily distribute the processing
load. Furthermore, we were also encouraged by its fault
recovery promise.

4 In case of communication between two Erlang nodes, a “reliable” point-
to-point connection is established using TCP.

At the same time, Erlang has issues that make it less
recommended: limited support for encrypted
communication and permission control, and the absence of
a built-in function for sniffing network packets.

For addressing issues that appear during application
development, the Erlang system offers frameworks for
developing C or Java applications.

We have used the C based approach to develop a packet
sniffer, in the hope that this would increase the speed and
will provide better access to Input/Output functions. The
development was difficult at start, due to the scarce
documentation.

We approach the IDS design as a pattern recognition task
[12]. The paper describes possible ways of gathering
observations, and later processing them. In the next section
we will present common issues encountered when building
an IDS and we provide simple solutions.

II. THE RECOGNITION PROBLEM IN INTRUSION DETECTION

The notion of event and observation are central to our
discussion. We consider an event to be an act that changes
the state of the system. It can be a software event, a program
crash or a security constraint violation, or a hardware event
such as device failure.

Sensors capture the changes in state of the system’s
components in the form of observations. They try to capture
the occurrence of such events and their impact on the
overall system.

Launching a program in execution or receiving a network
packet are events, while consulting the network interface
statistics or the list of running processes are considered
observations. Based on these observations, the IDS will
decide whether the system is under attack or under normal
operation.

Obtaining such observations should not change the
system’s state. This is a desideratum that cannot be
fulfilled in practice, since making an observation requires
an application to be run: collecting processor statistics
requires a program, such as ps, to be run for a short time
period.

This is a kind of noise induced by the observation.
Anomaly based IDS are sensitive to this, since they
require building a model of the system under normal
operation, and later using it for comparisons. As a
consequence, Anomaly based IDS have issues regarding
false negative and false positive detection rates.
Commercial signature based IDS have better false negative
rates since they just try to identify an already discovered
signature.

One way to overcome this is to gather observations
from multiple hosts, and hope that the induced noise is the
same and its overall significance can be decreased.

C. Data collection

Gathering system wide observations is challenging not
only because Operating System’s (OS) querying tools
differ and observations are affected by noise, but also
because computers are used for different sets of tasks.
Furthermore, different application and maybe even
different OS, are used for accomplishing even the same task.

Observations might incur a security and a privacy risk,

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 340

since making observations sometimes requires
administrative privileges. It is one thing to run an
application with administrative privileges on user’s
workstation, and a different thing to run it on the
network’s gateway.

In the hands of an attacker the required observations
might show the vulnerable points and give the means of
attacking the network or the common users [13]. If these
observations are sent to a remote site for processing, this risk
is further enhanced.

Valuable sources of information are syslog messages.
They are unencrypted messages that capture, more or
less, the significant events of the system and are ranked
accordingly. Applications offering this service are available
on all major OSs.

Developing a syslog sensor is a simple task in Erlang
(Listing 1). Listing 2 shows two possible outputs.

The sensor follows a Publish-Subscribe pattern. The UDP
sensor is created by spawning the init function located in
the module udp sensor with the arguments Port, the
UDP port on which it will listen, and the a priori list of
listening processes, Listeners (Line 4). New listeners can
be added by sending a message to the sensor, in the form
of a tuple composed from the atom add receiver and the
receiver’s own PID (Lines 26-27,17-19).

The actual UDP sensor is created using the gen_ udp
interface (Line 7), by opening Port 514 (Line 50), with a
buffer of 16384 bytes (Line 7)5. The Socket variable will
bind to the corresponding socket identifier, and it will be
used in the listen function to selectively receive messages
from that socket.

 The message will be kept in binary representation
(Line 7). The sensor waits for a message to arrive in a loop
(Lines 12-23), and uses a selective receive to fetch either a
syslog message (Line 14), or a request to add a process as
a subscriber (Line 17). After receiving a message the
process goes into hibernation.

If a message does not match any of these patterns, the
message is kept in the internal mailbox. Unmatched
messages increase the memory consumption, so to
overcome this issue the Error variable (Line 20) was used.
It will match and bind to every message, at a time, thus
removing from the queue the messages that were not
matched by the previous two patterns.

All the operations that regard the process of getting a
message from the network are transparent to the user.

A subscriber process receives a tuple of the form
{udp,Socket,Host,Port,Binary}, where the atom udp
designates the transport protocol, the variable Socket the
OS socket used, the Host variable designates the IP
address of the sender, the Port variable the port number
on which the packet has been received and finally the actual
message encoded in binary form.

5

Administrative privileges may be needed.

Listing 1. UDP

Listing 2. Output

{udp,#Port<0.503>,
 {192,168,0,1},
 514,
 <<"<110>Fri Feb 12 13:09:32 2010 router System Log: Blocked
incoming TCP connection request from 79.136.116.120:20867 to
188.24.20.60:20097">>}{udp,#Port<0.503>,
 {192,168,0,1},
 514,
 <<"<110>Fri Feb 12 13:09:32 2010 router System Log: Blocked
incoming TCP connection request from 79.136.116.120:20867 to
188.24.20.60:20097">>}

1. -module(udp_sensor).
2. -compile(export_all).
3. sensor(Port,Listeners)->
4. spawn_link(?MODULE,init,[Port,Listeners]).
5.
6. init(Port,Listeners) ->
7. case gen_udp:open(Port,[binary,{recbuf, 16384}]) of
8. {ok,Socket} -> listen(Socket,Listeners);
9. {error,eacces} -> exit('Raised privileges needed')
10. end.
11.
12. listen(Socket,Listeners) ->
13. receive
14. {udp,Socket,_Host,_Port,_Bin} = Message ->

 send_message(Message,Listeners),
15. erlang:hibernate(?MODULE,listen,
16. [Socket,Listeners]);
17. {add_receiever,ReceiverPID} ->
18. NewList = [ReceiverPID|Listeners],

 erlang:hibernate(?MODULE,listen,
19. [Socket,NewList]);
20. Error -> io:format("Error : ~p~n",[Error]),
21. listen(Socket,Listeners)
22. end.
23.
24. send_message(Message,Subscribers)->
25. [Subscriber ! Message || Subscriber<-Subscribers].
26.
27. add_subscriber(Sensor,ReceiverPID)->
28. Sensor ! {add_receiever,ReceiverPID}.
29.
30. subscriber_example(Name)->
31. receive
32. Message -> io:format("Subscriber:
33. ~p~n~p~n",[Name,Message]),
34. erlang:hibernate(?MODULE,
35. subscriber_example,[Name])
36. end.
37. subcriber_create(Name)->
38. spawn(fun()->
39. subscriber_example(Name)
40. end).
41. test(Port)->
42. SubscriberPID = subcriber_create("S1"),
43. SensorPID = sensor(Port,[SubscriberPID]),
44. AnotherSubcriberPID = subcriber_create("S2"),
45. ?MODULE:add_subscriber(SensorPID,
46. AnotherSubcriberPID),
47. SensorPID.
48.
49. test(Port,TestPID)->sensor(Port,[TestPID]).
50. test()-> test(514).

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 341

Since two functions with the same name, but different
arity are distinct, the application can be tested by providing
the Internet port number used for listening (Line, the port
number and a subscriber PID, or using no argument.

SNMP sensors are another important source of
information. The Simple Network Management Protocol
(SNMP) is used for managing and gathering (querying)
information from network devices. SNMP support is
commonly available only for business rated network devices
and not for cheap consumer ones. The Erlang system
supports SNMPv1, SNMPv2c, SNMPv36. One could use
this system to get notifications from Erlang Nodes, to see
whether the sniffing agent at a remote site is running or to
get information from networking devices (routers) or hosts.

Abstract Syntax Notation 1(ASN1) and Interface
Description Language (IDL) are also supported. ASN1 is
used for defining the Management Information Base (MIB)
object of the SNMP, and IDL is a way to communicate with
foreign applications by establishing a common interface.

As in any other language, running external applications
and fetching their output is possible in Erlang. Parsing is
facilitated by the functional nature and the Prolog-like
syntax of Erlang. The applications will run with the
privileges of the Erlang VM.

A group of Erlang nodes that share a common secret,
known as the cookie, form a thrust group. Nodes in a
thrust group communicate, by default, using unencrypted
message passing. Combined with the fact that a node can
create processes, make Remote Procedure Calls (RPC)
a n d execute foreign application on a different node, in
the same thrust group, Erlang is rather insecure.
Furthermore, functions are first class objects and can be
sent across nodes, so if the security of an Erlang node is
compromised then the entire group is under threat.

The Machine module (Listing 3) shows some Built- in
Functions (BIFs) for changing the thrust group secret
cookie and provides an insight on how Erlang could be
used to collect relevant information from the observed
computers.

Three use case scenarios are presented: getting a list of
files, getting network interface information and retrieving
statistics about host processes.

Since an arbitrary length string of characters delimited by
’ ’ is interpreted as an Erlang atom, we can use a hole
sentence as a function name. This improves code clarity,
since one could build a program that looks as a text (the
'What are the Erlang Runtime Statistics'() function). The
downside is the increase in code size. This strategy was used
when getting network interface information or Erlang VM
statistics ('Parse command output disregarding first
line'("netstat -i ").).

In contrast, succinct programs can be written using
function composition, but this has a direct impact on code
clarity. This strategy was used in case of retrieving
information about recent file changes and OS processes.

For running an application we use the function cmd from
module os to run the command Cmd. In the case of
function parse_cmd_out the output resulting from running
the external application is split into lines and then into

6 http://www.erlang.org/doc/apps/snmp/index.html

specific components using regular expressions.
re:split will return a list of matched elements
{return,list}. Since the trim option was used, if the last
element is the empty list then it is removed.

The Abstract Syntax Tree (AST) was manipulated using
the construct (Function)(Arg) to perform the function
composition of the split and os:cmd functions.

Last but not least, another important issue regards
network packet sniffing. Erlang does not provide any
function calls for this. Therefore we had created a C Node
agent, using the well supported PCAP library. Although it
would have been easier to use an Erlang Port Driver,
sniffing packets requires administrative privileges and
therefore the Erlang VM should have been run with such
privileges. The C Node approach was chosen due to
security considerations, in order to ensure isolation.

D. Data processing

An IDS requires data to be represented in a convenient
format. Here we discuss data pre-processing for an Erlang
based IDS.

The list, the tuple, and the binary data types are the
most common. Therefore, the large majority of the
Erlang’s libraries work on lists and tuples, rather than
binaries. They can be transformed into lists using
binary_to_list (Listing 4), but this increases the memory
consumption. Strings are represented as lists of integers, so
they also consume more memory7 than in other languages.

In Listing 4 we illustrate the bit syntax that Erlang
offers. A sample run is provided in Listing 5. The flooding
function (Line 13) tests whether the source address is a
broadcast address. This situation should not happen in
practice. If there is an Ethernet packet matching the first
clause, true will be returned, otherwise the second clause
(Line 17) will match returning false.

In the second test (Line 18) we check whether the source
and the destination addresses are the same, situation that
should not happen in practice. While in the previous
example we hard-coded a value (Line 14), in this case we
use variable binding (Lines 18,19).

In order to be more expressive, the function name is given
by the atom ’Is it the same?’. The side-effect free
is_binary function is used to check whether the provided
argument is of binary type.

The binary to list function converts the binary argument
to a list of integers.

The format for specifying a number in a given base is
Base#Number. Please note the lower-case hexadecimal
representation ffffff (Line 9) of the broadcast address.
If upper-case letters would have been used, then this
would have been interpreted as a variable.

7

Usually a string is an array of chars usually stored on 2 bytes, but since in
Erlang strings are lists of integer and an integer might need 4 or 8 bytes in
x64 architectures, memory consumption is higher.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 342

Listing 3. Machine Listing 4. Bit Syntax

Listing 5. Sample run

Listing 6. Parsing

E. Data pre-processing

Depending on the observations type, whether they are
application output, syslog messages or packets sniffed from
the local network, different strategies can be adopted among
which regular expressions and the bit syntax.

In the case of syslog messages, we extract information
about dropped packets by using regular expressions on the
data in Listing 2, in a similar manner to that in Listing 3 to
obtain the information presented in Listing 6.

In the case of sniffed network packets, the bit syntax
makes it easy to extract features from a Protocol Data Unit
as previously shown. Furthermore, with the help of bistring
we have access at bit level, not only at byte level.

This enables us to perform noise filtering and / or

{blocked,tcp,
{source,{ip,79,136,116,120},{port,20867}},
{destination,{ip,188,24,20,60},{port,20097}}

}

erl -sname e2@mercury

1> c(bit_syntax,[debug_info]). %compile module
{ok, bit_syntax}
2> D = bit_syntax:data().
<<0,23,154,219,234,116,0,29,9,96,222,135,8,0,69,0,0,52,87,
 19,64,0,64,6,129,249,192,168,1,...>>
3> bit_syntax:extract_ethernet_frame_data(D).
{<<0,23,154,219,234,116>>,
 <<0,29,9,96,222,135>>,
 <<8,0>>,
 <<69,0,0,52,87,19,64,0,64,6,129,249,192,168,1,3,152,46,7,
 222,202,243,0,80,80,...>>}
4> bit_syntax:flooding(D).
 false
5> bit_syntax:'Is it the same?'(D).
 false

1. -module(bit_syntax).
2. %Extract the Ethernet frame and format it as a tuple
3. extract_ethernet_frame_data(
4. <<MAC_Destination:6/binary, %6 bytes = 48 bits
5. MAC_Source:6/binary,
6. Type:2/binary,
7. Rest/binary>>) %Rest is what remains, including CRC
8. when is_binary(B)->
9. {MAC_Destination,
10. MAC_Source,
11. Type,
12. Rest}.
13. flooding(<<_:6/binary,
14. 16#ffffff:6/binary,
15. _/binary>>=B
16.)when is_binary(B)-> true;
17. flooding(X) when is_binary(X) -> false.

18. 'Is it the same?'(<<Same:6/binary,
19. Same:6/binary,
20. _/binary>>=B
21.) when is_binary(B)->true;
22. 'Is it the same?'(B) when is_binary(B)->false.
23. binarytolist(D) when is_binary(D) -> binary_to_list(D).
24. data()-> <<0,23,154,219,234,116,0,29,9,96,222,135,8,0,

69,0,0,52,87,19,64,0,64,6,129,249,192,168,1,3,152,46,7,222,20
2,243,0,80,80,215,70,118,54,56,116,241,128,17,0,69,13,32,0,0,
1,1,8,10,2,69,134,183,48,133,64,99>>.

-module(machine).
%Public functions
-export(['What are the Erlang Runtime Statistics'/0,

find_accessed_files/2,netstat_out/0,
ps_out/0, ps_out/1,secret/0,set_secret/1,test/1]).

%Retrieve Erlang Statistics
'What are the Erlang Runtime Statistics'()-> statistics(runtime).
%Retrieve shared secret cookie
secret()-> erlang:get_cookie().
%Ser secret cookie
set_secret(Secret) when is_atom(Secret)->

erlang:set_cookie(node(),Secret).

%Retrieve a list of file names from Directory
find_accessed_files(Directory,DaysBefore)

when is_list(Directory)
 and is_number(DaysBefore)->
((find_accessed_files_fun())

(Directory))(DaysBefore).

%Parse output of the netstat command
netstat_out()->
 'Parse command output disregarding first line'("netstat -i ").
%Parse output of “ps elf” on Linux and display the output as a
%list of tuples
ps_out()->ps_out(" elf").

%Test functions
test(recent_changes)->
 ?MODULE:find_accessed_files("/home/marian",1);
test(ps)->?MODULE:ps_out();
test(netstat)->?MODULE:netstat_out().

%% Private functions, that are not visible outside the module
find_accessed_files_fun()->
 fun(Directory)->
 fun (DaysBefore)->

(split)((os_cmd)
 ((string_print)

("find ~p -atime ~p -print", [Directory,DaysBefore])),"\n")
 end
 end.
remove_empty(ListOfLists)->

lists:filter(fun(List)-> List=/=[] end,
 ListOfLists).

ps_out(Options)->
parse_cmd_out("ps "++Options).

'Parse command output disregarding first line'(Cmd)->
 case catch (tl)((split)((os:cmd)(Cmd),"\n")) of
 {'EXIT',_} -> {kernel_interface,

'Cannot get interface data'};
 Tail -> {kernel_interface,parse_line_by_line(Tail)}
 end.

parse_cmd_out(Cmd)->
(parse_line_by_line)(((split)((os:cmd)(Cmd),"\n"))).

parse_line_by_line([HeaderRow|Rows])->
 Header = (remove_empty)((split)(HeaderRow," +")),
 lists:map(fun(Row)->
 (lists:zip) (Header,(remove_empty)((split)

(Row," +",length(Header))))
end,Rows).

string_print(Format,Argument) when is_list(Argument)->
(lists:flatten)((io_lib:format)(Format,Argument)).

%Use regular expressions to extract data
split(Text,Exp)->

re:split(Text,Exp,[{return,list},trim]).
split(Text,Exp,Parts)-> re:split(Text,Exp,[{return,list},
 trim,{parts,Parts}]).
%Execute OS command or run external program and fetch
%output
os_cmd(Command)->os:cmd(Command).

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 343

normalize the data we have collected in an easy manner.

1) Noise Filtering

The observations we make affect the system whose state
we want to observe. Let’s consider a centralized
architecture in which sensors placed on multiple hosts
send observations to one or more Erlang nodes for
processing. For doing this, the observations must be
encoded as a TCP/IP Protocol Data Unit, or simply packet,
and carried through the network. This involves a number of
system calls, which increase, for example, the number of
processor interrupts and context switches.

We consider this to be noise, and we must filter it,
either by using noise tolerant algorithms or by adding
supplementary resources. In the later case, one obvious
solution is adding a dedicated network interfaces for
sending observations, but this is not a scalable solution.
Another strategy is to combine host based intrusion
detection with network based intrusion detection [14].

With Erlang this can be easily achieved. Sniffed network
packets can be filtered using the bit syntax, meaningful data
from OS’s logs or syslog messages can be extracted and
outliers identified. Furthermore, we can query the system to
see what the impact of the IDS on the system is.

2) Normalization

A common issue related to gathering observations is that
they depend on the underlying context [15]. Anomaly based
IDS learn the context and then establish whether a set of
observation values are a sign of an attack, or not.

In the case of a distributed approach [16] in which
multiple hosts collaborate in detecting an attack, problems
arise from how much and what data to share.

If the host based values are aggregated into categorical or
real valued observations, they might be of limited utility
for neighboring nodes. If they have utility, then we expect
them to increase the host’s processing load.

Sharing the attack data can cause security problems
and increase the network traffic, but at the same time it
could allow a host to learn the behavior of its peers.
Comparing its own behavior to that data and taking into
consideration its peers behavior, it might detect if the peer
was compromised by an attacker. But, in the absence of a
reference host, establishing what is normal for multiple
hosts is a difficult task. The obvious solution is to have a
group of nodes (Erlang nodes) that would process
observations from all the hosts, and decide if an individual
host or the network is under attack.

F. Dimensionality reduction

In the case of sniffed network packets, the bit syntax
makes it easy to extract features from a Protocol Data Unit
(PDU). In Listing 4, we use binary pattern matching to
check the source and destination addresses. While an
FF.FF.FF.FF.FF (in hexadecimal) is a valid destination
address (the broadcast address), it is not a valid source
address: its purpose is to flood the local network.

Problems also arise with the data itself. Let’s consider
multiple identical syslog messages, from the same host.
Processing them requires resources, so we might take the
first one, and disregard the rest. Doing so, we lose
information: a message that appears 10 times might be more

important than the same message occurring only once.
To illustrate this, let’s take syslog messages related to

invalid user logins: it might happen for a user to wrongly
type its password one time, but when this happens 10
times this is a sign of an intrusion attempt.

In the case of host based intrusion detection, if we
augment the message with additional data to express the
number of times it appeared, state should be stored across
reboots. A malicious user might, or the OS would, reboot
the system after a number of invalid attempts, to mask the
intrusion attempt in the first case or to protect itself in the
later. When hosts send syslog login messages to a
processing node a stateful approach is required to keep a
count of login attempts.

1) Feature selection

Features should be selected such that the difference
between attack and normal observations should be
significant in order to facilitate the clustering /
classification. The attack vs. normal difference’s extremes
range from 1 bit to as large as the whole packet payload.
The first case, happens when the attacker spoofs IP
addresses, or not, and sends packets with the TCP RST
(reset) bit flag set to cause the tear-down of the network
connection between the sender and the intended receiver,
while the second case is common when in the middle of a
TCP connection establishment (SYN=1, ACK=0) a large
payload is present8 to cause a buffer overflow. These
extreme cases are old and have been addressed, but they
help to keep things into perspective.

To overcome such issues, in a centralized approach
multiple hosts send messages to a single Erlang node. In
turn, this will collect all the observations and correlate them
to see whether an underlying exists. Starting from the raw
data, a search is performed to see what features are
significant and what group of features best describes the
state of the system.

Population based genetic algorithms can be easily
implemented due to the concurrency and the
communication facilities offered by Erlang.

Furthermore, one could create and use Erlang expressions
at run-time, using the erl_scan:string, erl_parse:parse_exprs,
erl_eval:add_binding and erl_eval:exprs functions.

2) Feature projection

Reducing a set of features to a single real value and
using a threshold to decide whether an attack is undergoing
is a common strategy in Intrusion Detection. Artificial
Immune Systems and Novelty detection algorithms [3] are
such an example. The principle is to label new packets as
self or non-self based on their similarity with previously
encounter packets under normal operation. This requires
building a model of network packets (either inbound or
outbound traffic, or both).

Another interesting strategy is the use of Bloom filters.
They are a memory efficient way for checking if a feature
value has been previously encountered [18]. Such a filter
uses many hash functions for transforming a feature or a
group of features into a single integer that is an index in a

8

As an example the RFC 793, section 3.4 requires data in SYN packages
and must be kept until the connection is established [17].

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 344

bit string. By setting the corresponding bit on, the bit string
becomes a memory for the presented features and it is used
for testing whether a pattern has been encountered or not.

G. Prediction

Due to the offered concurrency support and process
encapsulation, algorithms can simultaneously run on the
same, or on different, input data and using past performance
statistics decide which classifier guesses better or what
clustering algorithm has best tolerance to noise.

K-means and K-medoid help in building clusters on
which more expensive classification algorithms would be
applied. As an illustrative example, let’s consider that we
have 10 clusters. In the training phase, for each cluster we
evaluate a set of classification algorithms and choose, for
each cluster, the best one. When a packet is present, the
clustering algorithm tells what it resemblance to and the
classification algorithm tells what it thinks it is: normal or
attack.

Although we perform redundant work, the classification
task should improve since inside the designated cluster we
expect the differences to be small and significant, and the
amount of noise to be reduced.

The examples in a cluster can also be used for building a
Bloom filter, which will be later used for establishing the
membership of examples to a cluster.

The development of classification algorithms is further
facilitated by the distributed nature of Erlang. Interesting
example for this are Artificial Immune Systems for Intrusion
Detection. Erlang has features making it suitable for
building such a system: parallelism, message passing
communication, lightweight processes, and the hibernation
concept.

In the following, we provide some guidelines of how AIS
can be implemented in Erlang. The AIS’s cell can be
viewed as regular Erlang process. Such cell processes can
be spawned in large numbers on any number of nodes in
the distributed system. The exchange of information
between cells is done by m essage passing. When a cell
process does not receive a message in a long time, it would
require to be put in the hibernation state, to consume less
system resources. When a message is received, the cell is
awakened and processes the message on the basis of its
previous knowledge.

Since Erlang provides a whole platform for failure
recovery, a parallel can be made to AIS’s robustness [3].
For example, if a cell process in a supervision tree
encounters an unexpected death due to failure it would be
re-spawned.

H. Creating test data

Evaluating IDS requires gathering test and training data,
which is challenging since labeled data is hard to find. A way
to overcome this issue is to use existing software and
hardware resources. Let’s assume that we have sniffed some
packets from the local network and that we have a
commercial hardware or a software firewall, capable of
sending syslog messages when a packet is dropped due to
the violation of a security policy. With the application
presented in Listing 1 we can address the problem of
labeling training data, a task previously accomplished by

experts [19]. Due to the scarcity of label data and to the fact
that manual labeling is neither cost, nor time effective, this
strategy is rather useful.

III. CONCLUSIONS

In this paper we have shown that the Erlang programming
language can be used for developing IDS that exhibit
robustness and scalability. Erlang’s features such as hot
code loading allow updating the IDS without affecting the
current operation of the system. The supervision tree allows
failed components to be restarted. Concurrent distributed
processing is another feature useful when using AIS as a
basis for IDS. While the processing power of an Erlang
node is smaller than that of C based firewall, the Erlang
system takes better advantage of multi-core architectures
and provides easier application development due to its
functional nature.

REFERENCES
[1] J. Greensmith, J. Feyereisl, and U. Aickelin, "The DCA: Some

comparison – a comparative study between two biologically inspired
algorithms," Evolutionary Intelligence, vol. 1, pp. 85–112, 2008.

[2] S. X. Wu and W. Banzhaf, "The use of computational intelligence in
intrusion detection systems: A review," Applied Soft Computing, vol.
10, pp. 1–35, 2010.

[3] J. Twycross and U. Aickelin, "Information fusion in the immune
system," Information Fusion, vol. 11, pp.35–44, 2010.

[4] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A
survey," ACM Comput. Surv. vol. 41, no.3, pp. 1–58, 2009.

[5] J. Armstrong, "Making reliable distributed systems in the presence
of software errors," Ph.D. dissertation, The Royal Institute of
Technology, Stockholm, Sweden, 2003.

[6] R. Virding, C. Winkstrom, and M. Williams, "Concurrent
Programming in Erlang," J. Armstrong, Ed. Prentice-Hall, 1996.

[7] R. Carlsson, "Parameterized modules in Erlang," in ERLANG 03:
Proceedings of the 2003 ACM SIGPLAN workshop on Erlang. New
York,NY, USA: ACM, 2003, pp. 29–35.

[8] J. Armstrong, "Programming Erlang: Software for a Concurrent
World." The Pragmatic Bookshelf, 2007.

[9] J. Nystrom, P. Trinder, and D. King, "Evaluating high-level
distributed language constructs", in ICFP ’07: Proceedings of the 12th
ACM SIGPLAN international conference on Functional
programming, New York, NY, USA: ACM, 2007, pp. 203–212.

[10] "Erlang Run-Time System Application", 5th ed., Ericsson, Nov. 2009.
[11] V. Nicosia. (2007, Oct.) "Towards hard real–time erlang." ACM

SIGPLAN Erlang Workshop ICFP 2007.
[12] M. L. Bailey, B. Gopal, M. A. Pagels, and L. L. Peterson,

"PATHFINDER: A pattern-based packet classifier," Proceedings of
the First Symposium on Operating Systems Design and
Implementation, USENIX, 1994.

[13] E. Nakashima, "Cyber attack data-sharing is lacking, congress told,"
The Washington Post, September 2009.

[14] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner,
"State of the practice of intrusion detection technologies," Carnegie
Mellon, Software Engineering Institute, Tech. Rep., 2000.

[15] S. Preda, F. Cuppens, N. Cuppens-Boulahia, J. G.Alfaro, L.
Toutain, and Y. Elrakaiby, "Semantic context aware security policy
deployment," in ASIACCS ’09: Proceedings of the 4th International
Symposium on Information, Computer, and Communications
Security. New York, NY, USA: ACM, 2009, pp. 251–261.

[16] A. Abrahama, R. Jainb, J. Thomasc, and S. Y. Hana, "D-SCIDS:
Distributed soft computing intrusion detection system", Journal of
Network and Computer Applications, 2007.

[17] DARPA, " Rfc793 - transmission control protocol", sep 1981.
[18] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W.

Lockwood, "Deep packet inspection using parallel bloom filters,"
IEEE Micro, vol. 24, no. 1, pp. 52–61,2004.

[19] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, "An
overview of issues in testing intrusion detection systems," National
Institute of Standards and Technology, Massachusetts Institute of
Technology Lincoln Laboratory, Tech. Rep.

