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Abstract — This paper describes several approaches to 
approximate bidirectional reflectance distribution function 
(BRDF) by cosine-quadratic functions. Since BRDF is the most 
computationally complicated part of calculating the color 
intensity according to the Phong illumination model it needs to 
be simplified. Herein, several approximations are provided. 
The advantages of them are numerous: easy hardware 
implementation, less relative error, than most widespread 
approximations have, fast to compute.

Index Terms — Approximation methods, computer graphics,
Color graphics, Graphics, Rendering, BRDF

I. INTRODUCTION

The most complicated and resource-intensive computing 
at the rendering stage takes place in the shading of 3-D 
objects having voluminosity effect.

The color intensity and coordinates are detected for every 
pixel on the surface in the process of shading. Taking into 
consideration, that high resolution displays are used for 
representing realistic images, shading process takes a lot of 
time. Especially it reveals when illumination models 
representing specular constituent of the color are used. 
That’s why the question of the increasing shading 
production in computer graphic systems is very urgent one.

II. EXISTING APPROACHES AND PROBLEM
DEFINITION

The intensity of pixels’ color according to the Phong 
method is detected using following:

λ)coskcosψ(kIkI n
sdlaa I ,                       

where la II , - intensities of sparse and directed light sources

correspondingly, sda kkk ,, - sparse, diffusive and reflecting

light coefficients,  - angle between the direction of light

and normal vector,  - angle between the direction of 
reflected light and the observer, n - surface brightness 

coefficient, ncos -  BRDF, represents surface optical 
properties. 

In shading, the most resource-intensive procedure is the 

computing ncos , used in Phong and Blin illumination 

models [1]. K. Schlick [2] proposed approximation of the 

function ncos , that is used for computing intensity of the 

mirror constituent of the color in Phong and Blin 
illumination models, with function

  coscos/cos  nn . Analysis showed this 

approach to provide satisfactory accuracy only within the

highlight epicenter representation. Beyond this area 
discrepancy with results, received according to the Blin 
illumination model is observed. 

Function ncos is expanded into Taylor series in

method [3], proposed by R.F.Lion. Instead of the angle 
between reflected light and observer, the length of chord 
between mentioned vectors is used:

HND


 .

The expression NN


/1 , that is used for normalizing 

of normal vector N


, is also expanded into Taylor series. 
Only first 3 terms are used. This allows elimination from the 
computing process division and square root operations.   
Replacement of the angle with chord length doesn’t 
influence greatly upon the accuracy of the calculations, but
only for low values of the angles, and using limited quantity 
of Taylor series doesn’t allow normal vectors normalizing, 
therefore approximation ain’t accurate enough.

These and other approaches have in common two major 
disadvantages: computation and hardware implementation 
complexity. The challenge is to provide BRDF model 
without mentioned issues.

III. COSINE-QUADRATIC FUNCTION APPROACH

The idea is to approximate BRDF ncos   with function 

  2W ( n, ) cos 1 1       on conditions, that 

0 .
2

    This function has been chosen because of 

following: 
a) the generatrix function for both of them is a cosine 

function;  

b) when 0    2ncos cos 1 1 1,       that 

satisfies boundary conditions;

c) both functions are positive in the range 

0 2
  ;

d) function   2
cos 1 1    reaches zero level, 

what is pre-condition for blooming zone formation;
e) the   coefficient provides a possibility to change 

the highlight area.
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Figure 1. Graphics of  1 2
ncos , f ( ), f ( )   .

Figure 2. The graphics of the absolute error of the BRDF approximation 

by function 1f ( ) .

There’re several ways to determine coefficient   in 

the expression   2
cos 1 1    . The first of them is 

provided below. Let’s expand function ncos   into the 

Taylor series and take first two terms
n 2cos 1 n / 2.   

The first two terms of the function W( n, )  Taylor 

series expansion follow: 

  2 2cos 1 1 1 n x .        

Having equated right terms of both expressions the 

coefficient   is found, and 
1

2
  . Thus, 

 
2

n n
cos cos 1 1 .

2
     

 
Let’s analyze the obtained BRDF.
The graphics of function 

 
2

n n
cos , cos 1 1

2
    
 

and of the Schlick function 

for 100n   are provided on the fig.3. The figure shows 
that suggested BRDF sufficiently approximates the 
highlight epicenter and monotonically decreases after the 
cusp. This satisfies the strategy of the specular color 
constituent formation. The fig.4 presents the graphics of 
the maximal relative errors of the approximation the 

ncos   by the function W( n, )  for the highlight 

epicenter. The graphics show that in comparison to 
Schlick BRDF the accuracy of the highlight epicenter 
approximation has increased.

The function W( n, )  possesses a zero value when 

cos( ) ( n 2 ) / n   . And it goes without saying, this is a 

minimal value of the function, ‘cause the square of a real 

term is never less than 0.

Figure 3. The BRDF Graphics.

Figure 4. The graphics of the maximal relative errors for the highlight 
epicenter when BRDF is approximated by:

1– functionW( n, ) ; 2 – Schlick’s BRDF.

Let’s prove that function W( n, )  monotonically 

decreases in the range 0, ar cos(( n 2 ) / n ) . The 

derivative of the W( n, )  follows

n
( (cos 1) 1) n sin

2
      .

In the range from 0  to   term n sin  is positive, 

therefore it doesn’t influence upon the sign of the 

expression. The inequality 
n

( (cos 1) 1) 0
2

     is 

correct for all
n 2

0 ar cos
n

 
  . This fits the variation 

interval from 1 to the minimal value. 
The sufficient condition of function monotone 

decreasing is for its derivation to be negative within the 
range, what just has been proved.

Let’s compare the obtained function with the Shclicks 
function [2], which has gained wide appliance in the 
software for 3D Graphics.

The graphics on the fig.4 show that in comparison to 
Schlick BRDF the accuracy of the highlight epicenter 
approximation has increased.
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The relative error value at the cusp doesn’t exceed 7,2 

%  for the ncos   function, and almost equals 10% for 

the Shclick function. 
To calculate the Schlicks BRDF it’s necessary to 

perform multiplication, dividing and decrementing 
operations. The suggested function usage eliminates the 
laborious dividing operation from the computation 
process. It’s necessary to compute only 2 multiplication 
operations, shift, increment and decrement. The last 3 
operations are easily implemented on the assembly level. 
At the software implementation the time of determining 
the BRDF W( n, )  is less in 2,3 times.

This draws a conclusion that computation complexity 
of the function W( x,n )  is considerably lesser than 

Schlicks BRDF.
The hardware implementation of the function 

W( n, )  is simple, whereas usage of the dividing 

operation by the Schlicks BRDF complicates its hardware 
implementation.

Let’s go through the peculiarities of the blooming zone 
formation.

Let’s assume the threshold value is 2 q , where q  is 

selected according to the required specular color 

constituent accuracy. Then ncos   has to be calculated 

within the following range – q n12 cos 1   . Hence, 
q

n0 arccos 2
  
 

 
    

 
.

The following inequality is correct for the Schlick’s 
BRDF

n
q

n n

cos
0 2

n n cos cos


 

 
  

.

The worthwhile computation range for the Schlick’s 

BRDF follows
q

n
0 arccos

2 n 1
 

 
.

Let’s determine the variation range for the suggested 
BRDF. From the inequality

   
2

qn
0 cos 1 1 2

2
      

 
 comes following

q

2

2 2
0 1

n
n 2

   


.

Since 
q

n
q q

2

2 2 n
1 2

n 2 n 1
n 2

  
    

 


, Schlicks curve 

lies above ncos  , and curve  
2

n
cos 1 1

2
   

 
- below 

(see fig.3).
The grave disadvantage of the Schlick’s BRDF is that 

BRDF fades to zero level very slowly. (see fig.3), that 
leads to unnatural illumination of the graphic object and 
requires superfluous computations the argument variation 
range is increased.

Let’s find the ratio  , which shows in how many 

times the arguments of functions ncos    and suggested 

BRDF differ, when they reach the 2 q  level. Let’s 

compare it with the Schlick’s case too.
It’s clear, that   determines the correlation of the 

highlight for various BRDFs.

For the functions ncos   and W( x,n )   
q

n

q

2

arccos 2

2 2
1

n
n 2

  
 

 
  
  

 


. For the function ncos   and 

Schlicks one  

q

n

q

arccos 2

n
a arccos

2 n 1

  
 

 
  
  

 

.

The graphics on the fig.5 show that in case of appliance 
the suggested BRDF blooming is calculated within 
considerably lesser range in comparison to the Schlicks 
case.

Figure 5. The variation graphics of   for :

a) ncos   and W( n, ) ; b) ncos  and Schlick’s BRDF.

The important point in usage of the suggested BDF is a 
nullification of its values after it once has reached the 
zero level. This can be easily hardware implemented. The 
cos  value is easy obtained through the inner product of 

the normalized vectors. For each n  in memory block we 
have to store boundary value of the cosine, starting from 
which, the further computation of the BRDF is to be 
ceased.

The radius of the curvature is an important parameter 
for the blooming formation [4, 5]. It determines the 
outline sharpness of the highlight. The second derivative 
of W  follows

2 2
x

1 1
W n sin n cos ( n (cos 1) 1)

2 2
            .

The curvature radius is
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 
3

23 2
2 2

x

2 2x

n
1 ( ( (cos 1) 1) n sin )1 (W ) 2

r .
1 1W

n sin n cos ( n (cos 1) 1)
2 2

 

  

          


        

Considering   has value 
n 2

ar cos
n


 it’s easy to obtain 

r 1 / 2 n 2   . The last expression shows that 
r decreases, when n  increases, what is typical for the 
classic BRDF.

There’s another approach to determine  .

The curve   2
cos 1 1     reaches the zero value 

at the point  1acos ( ) /    . For the suggested BRDF 

we have   2ncos cos 1 1      .

Let’s multiply both sides of the expression to sin
and integrate both sides. The integration range is from the 
zero value of the argument to the point, where functions 
possess zero level.

From the equation   2
cos 1 1 0      comes, that 

 ar cos ( 1) /    . The define integral is

 

1
ar cos

2

0

1
cos 1 1 sin d

3




   


 
 
 

        .

Let’s do the same for ncos 
/ 2 n 1

n / 2
0

0

cos 1
cos sin d

n 1 n 1


  



   
  .

Having compared right sides of the both equations we 
obtain (n 1)/ 3   .

Thus, a new BRDF is  
2

2

( n 1)
W ) cos 1 1

3
     

 
. 

The typical for this function is even distribution of the 
absolute error within the whole computation interval. The 
fig. 6 contains the example of BRDF, when n=10 , and 
graphic of the dependence of the maximal relative error 
on the specular coefficient. The fig.7 shows the example 
of the 3D object created by using the 2W  function.

To determine the max relative error let’s find the 
derivative of the expression 

 
2

n n( n 1)
cos 1 1 cos / cos

3
  

       
   

  and equal it 

to zero. The maximal error takes place at the point 
1

2arctg (1 2 n) / n
 

   
 

.

Maximal absolute error doesn’t exceed the value 0,1.
Another approach of determining   is to equal values 

of functions   2ncos , cos 1 1      at the certain 

point t . Since ncos( t ) Q , then   
ln( Q )

nt e .

The following equation is obtained 
2

ln( Q )

nQ cos e 1 1
  

        
.

The solution is: 1 2ln( Q ) ln( Q )

n n

Q 1 Q 1
, .

e 1 e 1

 
  

 
 

Figure 6. Graphics of:

a) BRDF 1W ( n, )  for 10n ;

b) the dependence of max relative error on n

Figure 7. The example of formation the 3D object with usage of the 
suggested BRDF.

The solution 2  is inacceptable, because the function 

will have a common point when monotonically increase. 
Thus, the new BRDF model is

 
2

3 ln( Q )

n

Q 1
W cos 1 1 .

e 1


     
 

 

Changing Q one can change the shape of the curve and 
the accuracy of the highlight formation. The 

investigations revealed that when Q  has value 0,5 the 
accuracy is the best. In this case
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 
2

3

7 n
W cos 1 1 .

16
     

 
For the certain n  the max relative error at the highlight 

epicenter formation occurs at the point 

 arctg ( 2 7 n 15 ) / (7 n 16 )       .

Down to the level 0,45 the max absolute error for all 
n  20 doesn’t exceed 0,015. For another values of n  this 
value is less than 0,02. For the Schlick’s function even 
down to the cusp level max absolute error reaches 0,06, 
what is in 4 times greater.
The curve reaches the zero level at the 
point  arc cos 1 16 /7 n .     The curvature radius is 

1
r

7
n 2

4


 

 and it is greater than for the curve 1W .

The value 
7 n

16


 can easily be obtained on the assembly 

level. It’s enough to subtract n  from 8 n  and shift the 
obtained value to 4 bits. To determine 3W  it’s enough to 

perform 2 multiplication operations, 1 decrement and 
increment, subtraction and 7 shifts. When use the 
Pentium M processor, the computation time is decreased 
in 1,69 times in comparison with the Schlick’s BRDF.

IV. CONCLUSIONS

In this article some BRDFs, having simple hardware 
and software implementation are provided. 

Function 2(n / 2 (cos 1) 1)   needs only

multiplication, subtracting and decrementing operations. 
The suggested function usage eliminates the laborious 
dividing operation from the computation process. It’s 
necessary to compute only 2 multiplication operations, 
shift, increment and decrement. The last 3 operations are 
easily implemented on the assembly level. 

At the software implementation the time of 
determining this BRDF is less in 2,3 times in comparison 
with Schlick BRDF.

Function  
2

3

7 n
W cos 1 1

16
     

 
 needs enough 

to perform 2 multiplication operations, 1 decrement and 
increment, subtraction and 7 shifts.

When use the Pentium M processor, the computation 
time is decreased in 1,69 times in comparison with the 
Schlick’s BRDF.
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