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Abstract — This paper presents the Rewriting Generalized 
Differential Petri Nets (RGDN) a class of Petri nets, that accept 
the negative-continuous place capacity, negative real values for 
discrete and continuous place marking and negative marked-
dependent arc cardinalities. For the purpose of visual 
simulation and analysis of RGDN a Visual Rewriting
Differential Petri Nets (VRDN) software environment has been 
elaborated and developed. It offers an intuitive graphical user 
interface for designing various elements of nets as well as their 
efficient simulation, thus making it usable for research and 
academic activities.

Index Terms — hybrid systems, modeling, Petri nets, 
rewriting, software tool, visual simulation

I. INTRODUCTION

Discrete-continuous modelling is concerned with the 
description, analysis and performance evaluation the 
dynamic behaviour of hybrid systems [3, 4, 6, 16, 17].
Among the most popular formalisms that are used, there are 
Timed Hybrid Petri nets (HPN) [1] models in which some
places may hold a discrete number of tokens while others 
contain a continuous quantity represented by real numbers.

A number of different extensions of HPN have been 
proposed [2, 6, 10, 17]. In [7, 9] we have introduced the 
Generalized Differential Petri Nets (GDPN), which are 
suitable to represent the behaviour of hybrid systems in a 
common model. The features of GDPN accept negative real 
values for continuous place marking, place capacity and 
negative token-dependent arc cardinalities that permit to 
generalize the concept of HPN.

To our knowledge, existing modeling methods do not 
support dynamic reconfiguration modelling and simulation 
of hybrid systems. 

In [7] there is an introduction to rewriting GDPN (RGDN) 
that can dynamically modify their own structures, and 
namely some of their components, using rewriting rules, 
thus supporting structural dynamic changes within modelled 
systems [12, 16].

Although their structures are simple, analysis of HPN is a 
very complicated thing. There are several research groups 
all around the world working on analysis of Petri nets, and 
certainly there is a whole bunch of modelling software 
packages [3, 13, 14]. Most of the tools provide a graphical 
user interface for the convenient drawing and editing of the 
model. They usually include analysis components for one or 
several classes of models. But still there is not such an 
application that would satisfy everyone’s specific needs, 
both commercial and educational, so we decided to start 
developing our own software for modeling GDPN, and

called it the Visual Rewriting Differential Petri Nets 
(VRDN).

The paper is organized as follows. In Section 2 and in 
Section 3 we describe the model definition of GDPN and 
RGDN, respectively. Subsequently in Section 4 we 
considered the VRDN tool overview. Visual simulation 
facility of timed RGDN in VRDN is presented in Section 5. 
Conclusions are drawn in Section 6.

II. GENERALIZED DIFFERENTIAL PETRI NETS

The definition of GDPN with is derived from [1, 2, 10] 
and presented in [7]. 

A GDPN is a 14-tuple H = < P, T, Pre, Post, Test, Inh ,
Kp , Kb, G, Pri, M0,  , W, V >, where:
  P is the finite set of places partitioned into a set of 

discrete places PD, and a set of continuous places PC ,
P=PD PC , PD  PC = . The PD may contain a natural 
number of tokens, while the marking of a PC is a real 
number (fluid level).
  T is a finite set of transitions, T P = , that is 

partitioned into a set TD of discrete transitions and a set TC of 
continuous transitions, that T =TD TC , TD  TC =  . 

  Pre, Test and )(: PBagTPInh  respectively are a 

forward flow, test and inhibition functions. )(PBag  is a 

discrete or continuous multiset over P. The backward flow 
function in the multisets of P is a )(: PBagPTPost  , 

where define the set of arcs A and it describes the marking-
dependent cardinality of arcs connecting transitions with 
places and vice-versa. 
  min0

ipK max

ipK  which can contain an integer

number of tokens, respectively. By default 0min 
ipK  and 

max

ipK being infinite value; 

 The IRPK Cb :  is the function-capacity of continuous 

places and  for each 
Ci Pp  describes the fluid lower bound 

min
ix  and upper bounds max

ix  of fluid on each continuous

place, that min
ix  max

ix . This max
ix  by default 

it is  , and bound has no effect when it is set to infinity. 
Continuous place has an implicit lower bound at level is 0;

The IN  and IR are the sets of discrete natural and real 

numbers, respectively.

  )(: PBagTG {True, False} is the guard function 

defined for each transition. For tT a guard function g(t, M) 
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will be evaluated in each marking M, and if it evaluates to 
true, the transition may be enabled, otherwise t is disabled 
(the default value is true); 
  Pri: TD IN defines the priority functions for the firing 

of each transition. The enabling of a transition with higher 
priority disables all the lower priority transitions;                     
 The current marking (state) value of a net depends on 

the kind of place, and it is described by a pair of vector-
columns M = (m, x), where m: PD IN  and x: PC IR are 

the marking functions of respective type of places. 
m ),0,( Diiii Ppmpm   with ii pm   describe 

the number )( ii pm m of tokens in discrete place 
ip , and 

it is represented by black dots.
x= ),,( min

Ckkkkk Pbxxbx   with kkbx  describe the fluid 

level )( kk bx x  in continuous place kb  and it is a real 

number, also allowed to take negative real value.  The initial 
marking of net is M0 = (m0, x0). Vector-columns m0 and x0 

give the initial marking of discrete places and of continuous 
places, respectively; 

 The set of discrete transitions TD is partitioned into 

,D i iT T T T T      so that: T   is a set of timed 

discrete transitions and Ti   is a set of immediate discrete
transitions. The Pri(Ti)>Pri(T ). 

Let T(M)  denote the set of enabled transitions in current 
marking  M = (m, x).

Figure 1 summarizes the graphical representation of all 
the GDPN primitives.

Figure 1. All the primitive of the GDPN .

A timed discrete transition t T is drawn as a black 

rectangle and has a firing delay  IRPBagT )(:  is 

associated to it, and this is can be marking dependent. Thus, 
a timed transitions )M(Tt   is enabled in current tangible 

marking M,  it fires after delay ),( Mt . Note once again, 

we do allow the firing delay to be dependent on fluid levels;
  IRPBagTW i )(:  is the weight  function  of 

immediate discrete transitions tjTi, and this type of
transition is drawn with a black thin bar and has a zero 
constant firing time. If several enabled immediate
transitions ( )j it T M  are scheduled to fire at the same time 

in vanishing marking M, the transitions tk with the 
respective weights wk fire with probability:





)(

),(/),(),(
MiTjt

jkk MtwMtwMtq ;

  IRPBagTV C )(: is the marking dependent fluid 

rate function of timed continuous transitions
cT . These rates 

appear as labels next to the continuous timed transitions. If 

ci Tt   is enabled in tangible marking M it fires with rate 

Vi(M), that continuously change the fluid level of continuous 
place PC.   

Figure 2 summarizes the all possible ways of placing arcs 
in a GDPN net for discrete transition and continuous 
transition with the discrete places and continuous places, 
respectively.

Figure 2. All the possible ways of placing arcs in a GDPN.

In the GDPN, the potential rate )(Mi of change of fluid 

level in place  i Cp P  in marking current M is given by:

                  i(M) =
, ,

( )

[ ( ) ( )]
k

k i i k
t T M

V M V M


  

, 

where for any given k Ct T  , 
, ( )i kV M   is an input fluid rate 

of fluid place
i Cp P  and 

, ( )i kV M  is an output fluid rate of 

this place. We allow the firing rates and the enabling 
functions of the timed discrete transitions, the firing speeds 
and enabling functions of the timed continuous transitions, 
and arc cardinalities to be dependent on the current state of 
the GDPN, as defined by the marking ( )M  . 

The enabling and firing transitions of GDPN is described 
in [9, 10].

In the following, we describe the dynamic rewriting 
RGDN systems introduced in [7]. 

III. DYNAMIC REWRITING GDPN SYSTEMS

Let YX  be a binary relation. The domain of   is the 

Dom(  ) = Y and the codomain of   is the Cod( ) 

= X . Also, let A=< Pre, Post, Test, Inh > be a set of arcs 

belonging to net H = < P, T, Pre, Post, Test, Inh, Kp , Kb,
G, Pri >.

A dynamic rewriting GDPN system (RGDN) is a 
 MGGRHRH rtr ,,,,  , where: 
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    N = < H ,  , W, V >  and }...,,{ 1 krrR    is a finite 

set of discrete rewriting rules (DR) about the run-time 
structural modification of a net, so that  RTP . In 

the graphical representation, the DR rule is drawn as two 
embedded empty rectangles; 
 },{: RTE D is a function which indicates for 

every rewriting rule the type of event that can occur and 
RTE D  denote the set of events of the net; 

  )(: PBagRGtr {true, false} is the transition rule 

guard function associated with Rr  ,
and  )(: PBagRGr

{true, false} is the rewriting rule 

guard function defined for each rule of Rr  , respectively. 
For Rr , the function 

trtr GMg )(  and 
rr GMg )(  will 

be evaluated in each marking and if they are evaluated to 
true, then the rewriting rule r may be enabled, otherwise it is 
disabled. In current marking M the default value of 

trtr GMg )(  is true and for rr GMg )(  is false,

Let  rtr GGRHR ,,,   and  MRRN ,  .  A 

dynamic rewriting structure modifying rule Rr   of RN
is a map

WL RNRNr : , where the codomain of the 

rewriting operator is a fixed subnet LRN  of current net 

RN, where the domain of the  is a new WRN  subnet. The  

rewriting operator  represents the binary operation which 

produces a structure change in the net RN by replacing 
(rewriting) the fixed current subnet 

LRN  (
LRN are 

dissolved) with the new subnet WRN , now belonging to the 

new modified resulting net WL RNRNNRNR  )\(

where the meaning of \ (and ) is operation of removing  
(adding) LRN from ( WRN to) the net RN. In this new net 

NR  , obtained by firing of enabled rewriting rule Rr , 

the places and events with the same attributes which belong 
to NR  are fused. 

A state configuration of a net RN is a pair ( sR , ), where 

R  is the current structure of net together with a current 
state )( )(β, MMs  . The ( 00 , sR ) is the initial 

configuration of a RN. 
Figure 3 summarizes the graphical representation of all 

the RGDN primitives.

Figure 3. All the discrete rewriting primitive of the RGDN.

The enabling of events depends on the marking of all 

places. We say that a transition 
Dj Tt   of the event je  is 

enabled in current marking M if the enabling condition 

),( Meec jd  and is verified. This is described in  [6]. 

The discrete rewriting rule Rrj  , that changes the 

structure of RN, is enabled in current marking M if the 
),( Meec jd
 and the ),( Mrg jtr

are verified.

Let )(MTD  and )(MR ,  )()( MRMTD , be the sets 

of enabled discrete transitions and enabled rewriting rule in 
current marking M, respectively. We denote the set of 
enabled events in a current marking M by the 

)()()( MRMTME D  . 

The event )(MEe j  fires if no other event )(MEek 
with higher priority is enabled. Hence, for the each event 

je if ))),(()()(( FalseMrgrt jtrjjjj   then the 

firing of transition )(MTt Dj   or rewriting rule 

)(MRr j   changes only the current marking: 

),(),( sRsR je    RR  ( and in R  the 

MeM j [ ). Also, for event je if

))),(()(( TrueMrgr jrjj  then the event je occurs 

to firing of rewriting rule jr  and it changes the 

configuration and marking of the current net in the 
following way: 

),(),( sRsR jr  , MrM j [ .

The state graph of a  MRRN ,  net is the labeled 

directed graph whose nodes are the states and whose arcs 
which are labeled with events or rewriting rules of RN :

a) firing of an enabled event )(MEe j   determines an 

arc from the state ),( sR  to the state ( sR , ) which is 

labeled with event je  when this event can fire in the net 

configuration R  at marking M and leads to a new state: 

  ),(),(: sRsRs je


(  RR  and MeM j [  in R );

       b) change configuration: arcs from state ),( sR  to 

state ( sR , ) labeled with the rewriting rule Rrj  , so 

that :jr ( LL MR , ) ( WW MR , ) which represent the 

change configuration of current RN net: 

),(),( sRsR jr    with  MrM j [ .

In the following, we describe the VRDN environment for
visual simulation of GDPN models.

IV. VRDN SOFTWARE ENVIRONEMENT 

The VRDN is a software environment for construction, 
editing, visual simulation and performance analysis of 
RGDNs models.

It is a desktop application developed on .Net platform in 
C# using Microsoft Visual Studio.

The architecture of the VRDN tool is based on MVC 
pattern (Fig. 4) [12].

The general idea of this approach is to have a model 
which represents the single point of truth. The state of this 
model is reflected by a series of views registered in the 
model and updated when an event is raised within the 
model. The model is controlled by a series of controllers, 
and as a result it changes its state. Finally the user is 
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provided with a set of views, in which he or she could see 
the evolution of the model and a set of controller which 
allows him or her to interact with the model.

Figure 4. The architecture of the VRDN tool.

This tool consists of a Graphical User Interface (GUI), an 
animation modeling and a visualization component (see Fig. 
5). The VRDN allows us to create, save and load RGDN nets 
in compliance to the last XML-based standard for Petri nets, 
namely PNML (Petri Net Markup Language) [15]. 

Figure 5. Graphical User Interface of VRDN.

The main features of the interface of the VRDN
environment are presented below.

Firstly, since the GUI is designed with multi-document 
capability, it allows for several nets to be edited 
simultaneously. This allows the user to study the behavior of 
the net by observing the token animation.

Secondly, the interface is composed in a very intuitive 
way and includes a menu bar, specialized tool bars, context
menus and keyboard shortcuts (Fig. 6). Also, the VRDN tool 
has printing and exporting capabilities, thus the results of 
the net definitions could be exported in most of the common 
graphical formats.

Constructing RGDN models consists of drawing actual net 
elements (places, transitions, arcs) according to the rules on 
a working area, named drawing board. The board contains a 
grid which facilitates a better elements alignment. For a 

better readability arcs could contain several segments with 
moveable handler.

Figure 6. General actions and VRDN elements toolbars.

Also, for a better alignment and readability all objects 
placed on the drawing area are moveable by simply pointing 
to them and dragging them to the new desired position.
Often it is handy to operate with multiple net elements at 
once. For this purposes VRDN offers multiple selection and 
grouping features. When working with groups, the 
transformation applied to the group is subsequently applied 
to all members of the group.

A great addition to the GUI of the VRDN tool is the 
Properties Inspector. It is used to adjust properties of the 
selected elements of the net. It contains several areas, 
including an area which explains the meaning of the 
property being edited. Editing of complex properties, such 
as Guard Function, implies opening of specialized editors 
such as Formula Editor (Fig. 7).

Figure 7. Properties Inspector.

For design of auto-modifying nets, VRDN has Formula 
Editor – an instrument to set values of properties which are 
marking dependant (Fig. 8).

Figure 8. Formula Editor.

Formula Editor allows building complex arithmetic and 
logical expressions based on various properties of objects in 
the net. These objects as well as their types and properties 
are listed in the left part of the editor. Central and right part 
of the editor’s window allows building of arithmetic and 
logic expressions from a set of operators, functions and 
constants.
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Final expression is displayed at the top of the windows, 
which also allows instant evaluation of the expression. In 
case the evaluation fails due to an error, the application 
displays relevant error information.
VRDN has convenient navigation mechanisms, including 
zooming and panning for efficient working with large nets.

V. VISUAL SIMULATION OF TIMED RGDN

The simulation is the primary goal of the modeling RGDN
nets with VRDN. At the high level it is done in three steps. It 
starts with constructing the model on the screen using the 
whole set of features provided by the VRDN graphical user
interface. Then the model is validated to be syntactically and 
semantically correct. At the third step the proper simulation 
is performed and statistical data is collected during the 
simulation cycle. This data is later analyzed and interpreted, 
thus allowing predicting the behavior of the actual modeled 
system. 

Simulation feature of the VRDN tool consist of a 
simulation form (Fig. 9), which contains all necessary 
controls to debug nets in both automatic and step-by-step 
modes.

Figure 9. Simulation control form.

Simulation begins when the Start button is clicked. During 
the simulation process, all the results are reflected in the 
drawing board.

An interesting case is the simulation of VRDN with 
rewriting transitions. All rewriting rules point to two nets: 1) 
the old one which will be replaced, and 2) the new one, 
which will replace all elements with the same identity. 
VRDN looks into the working folder of the net, finds 
relevant nets at run-time and loads them according to the 
rules.

Below is an example of an effect of such a rule. Suppose 
we have to develop the rewriting net presented in Fig. 10.

Figure 10. Initial rewriting net RPDR1.

The rewriting net should have a rewriting rule with a 
corresponding guard function. Along with guard function 
we have to set at least one of sub-nets. For the case when the 
rule defines only the old sub-net, then the resulting net will 

degrade. When only new sub-net is specified, then the 
resulting net will evolve. In the case when both sub-nets are 
specified, the new sub-net replaces the old sub-net. Both 
these sub-nets are defined in the net working folder and are 
loaded dynamically at run-time.

The newly loaded rewriting net could also contain one or 
many rewriting rules. In this case the process will continue 
until the new rewriting rule is fired and so on and so forth.

Thus, after firing the rewriting rule 
21:1 RPDRRPDRr  for this particular case at the next 

simulation step we may have the result presented in the 
Fig.11.

Figure 11. Rewriting net RPDR2, as a result of applying rewriting rule.

During simulation it is possible to collect the intermediate 
information, which can later be used for further analysis.

The simulation history (Fig.12) contains the results of the 
simulation process at each individual step and namely 
contains total simulation time, current marking, enabled and 
fired immediate and timed transitions as well as elapsed 
time for firing of timed transitions.

Figure 12. Simulation history.

VRDN offers good diagramming features used for visual 
analysis of the simulation process at run-time. It makes it 
possible to dynamically reflect in a chart or a series of chard 
the evolution of a specified parameter or an expression. This 
includes both 2 dimensional and 3 dimensional charts.

An example of such a char, obtaining at run-time during 
simulation is presented in Fig.13.
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Figure 13. A sample of a simulation chart.

VI. CONCLUSION

In this paper we have discussed the possibility of timed 
GDPN models to study the performance characteristics of 
hybrid systems. When dealing with real cases, it often 
happens that the HPN models tend to become very complex. 
In these cases GDPN models can be used as formal 
specification of system and automatically translated into 
detailed simulation programs in order to estimate
performance result.

The construction and the analysis of complex timed 
GDPN models can only be done with the help of powerful 
automatic tools such as the user-friendly software VRDN
tool whose performance modeling facilities and software 
architecture have been described in this paper.

The integration within the same interface of the graphical 
facilities for the model construction, of the structural 
analysis algorithms for model validation, and of the control 
panels for performing the visual and interactive  simulation, 
emphasizes the importance of including in a simulation 
experiment both validation and evaluation aspects of timed 
GDPN models . 

The animation of the model, performed only when desired 
by the user, appears to be a powerful tool that complements 
the structural results for the debugging and tuning of the 
models used for the performance analysis.
A special interest in using VRDN could be its powerful 
simulation mechanisms for rewriting nets. This mechanism 
allows for dynamic specification and loading of replaced 
and replacing sub-nets. 
Already VRDN is used in educational process; it gives 
students a grasp of timed hybrid Petri net principles, 
introducing them into world for performance evaluation of 
computer systems and communication networks.

As next steps in this research, our team is going to 
thoroughly analyze other classes and extensions of PN, such 
as colored timed hybrid PN and membrane colored PN.
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