
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 395

Abstract — This paper presents the Rewriting Generalized
Differential Petri Nets (RGDN) a class of Petri nets, that accept
the negative-continuous place capacity, negative real values for
discrete and continuous place marking and negative marked-
dependent arc cardinalities. For the purpose of visual
simulation and analysis of RGDN a Visual Rewriting
Differential Petri Nets (VRDN) software environment has been
elaborated and developed. It offers an intuitive graphical user
interface for designing various elements of nets as well as their
efficient simulation, thus making it usable for research and
academic activities.

Index Terms — hybrid systems, modeling, Petri nets,
rewriting, software tool, visual simulation

I. INTRODUCTION

Discrete-continuous modelling is concerned with the
description, analysis and performance evaluation the
dynamic behaviour of hybrid systems [3, 4, 6, 16, 17].
Among the most popular formalisms that are used, there are
Timed Hybrid Petri nets (HPN) [1] models in which some
places may hold a discrete number of tokens while others
contain a continuous quantity represented by real numbers.

A number of different extensions of HPN have been
proposed [2, 6, 10, 17]. In [7, 9] we have introduced the
Generalized Differential Petri Nets (GDPN), which are
suitable to represent the behaviour of hybrid systems in a
common model. The features of GDPN accept negative real
values for continuous place marking, place capacity and
negative token-dependent arc cardinalities that permit to
generalize the concept of HPN.

To our knowledge, existing modeling methods do not
support dynamic reconfiguration modelling and simulation
of hybrid systems.

In [7] there is an introduction to rewriting GDPN (RGDN)
that can dynamically modify their own structures, and
namely some of their components, using rewriting rules,
thus supporting structural dynamic changes within modelled
systems [12, 16].

Although their structures are simple, analysis of HPN is a
very complicated thing. There are several research groups
all around the world working on analysis of Petri nets, and
certainly there is a whole bunch of modelling software
packages [3, 13, 14]. Most of the tools provide a graphical
user interface for the convenient drawing and editing of the
model. They usually include analysis components for one or
several classes of models. But still there is not such an
application that would satisfy everyone’s specific needs,
both commercial and educational, so we decided to start
developing our own software for modeling GDPN, and

called it the Visual Rewriting Differential Petri Nets
(VRDN).

The paper is organized as follows. In Section 2 and in
Section 3 we describe the model definition of GDPN and
RGDN, respectively. Subsequently in Section 4 we
considered the VRDN tool overview. Visual simulation
facility of timed RGDN in VRDN is presented in Section 5.
Conclusions are drawn in Section 6.

II. GENERALIZED DIFFERENTIAL PETRI NETS

The definition of GDPN with is derived from [1, 2, 10]
and presented in [7].

A GDPN is a 14-tuple H = < P, T, Pre, Post, Test, Inh ,
Kp , Kb, G, Pri, M0,  , W, V >, where:
 P is the finite set of places partitioned into a set of

discrete places PD, and a set of continuous places PC ,
P=PD PC , PD  PC = . The PD may contain a natural
number of tokens, while the marking of a PC is a real
number (fluid level).
 T is a finite set of transitions, T P = , that is

partitioned into a set TD of discrete transitions and a set TC of
continuous transitions, that T =TD TC , TD  TC =  .

 Pre, Test and)(: PBagTPInh  respectively are a

forward flow, test and inhibition functions.)(PBag is a

discrete or continuous multiset over P. The backward flow
function in the multisets of P is a)(: PBagPTPost  ,

where define the set of arcs A and it describes the marking-
dependent cardinality of arcs connecting transitions with
places and vice-versa.
  min0

ipK max

ipK which can contain an integer

number of tokens, respectively. By default 0min 
ipK and

max

ipK being infinite value;

 The IRPK Cb : is the function-capacity of continuous

places and for each
Ci Pp  describes the fluid lower bound

min
ix and upper bounds max

ix of fluid on each continuous

place, that min
ix  max

ix . This max
ix by default

it is  , and bound has no effect when it is set to infinity.
Continuous place has an implicit lower bound at level is 0;

The IN and IR are the sets of discrete natural and real

numbers, respectively.

 )(: PBagTG {True, False} is the guard function

defined for each transition. For tT a guard function g(t, M)

VRDN: A Software Environment for Visual
Simulation of Rewriting Generalized Timed

Differential Petri Nets Models

Emilian GUŢULEAC, Iurie ŢURCANU, Ion BALMUŞ, Victor CHEIBAŞ, Alexei CORDUNENU
Computer Science Department, Technical University of Moldova

Bul. Stefan cel Mare nr. 168, MD-2012 Chisinau, Republic of Moldova
egutuleac@mail.utm.md, Iurie.Turcanu@endava.com, balmus@mail.utm.md

mailto:egutuleac@mail.utm.md
mailto:Iurie.Turcanu@endava.com
mailto:balmus@mail.utm.md

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 396

will be evaluated in each marking M, and if it evaluates to
true, the transition may be enabled, otherwise t is disabled
(the default value is true);
 Pri: TD IN defines the priority functions for the firing

of each transition. The enabling of a transition with higher
priority disables all the lower priority transitions;
 The current marking (state) value of a net depends on

the kind of place, and it is described by a pair of vector-
columns M = (m, x), where m: PD IN and x: PC IR are

the marking functions of respective type of places.
m),0,(Diiii Ppmpm  with ii pm describe

the number)(ii pm m of tokens in discrete place
ip , and

it is represented by black dots.
x=),,(min

Ckkkkk Pbxxbx  with kkbx describe the fluid

level)(kk bx x in continuous place kb and it is a real

number, also allowed to take negative real value. The initial
marking of net is M0 = (m0, x0). Vector-columns m0 and x0

give the initial marking of discrete places and of continuous
places, respectively;

 The set of discrete transitions TD is partitioned into

,D i iT T T T T     so that: T is a set of timed

discrete transitions and Ti is a set of immediate discrete
transitions. The Pri(Ti)>Pri(T).

Let T(M) denote the set of enabled transitions in current
marking M = (m, x).

Figure 1 summarizes the graphical representation of all
the GDPN primitives.

Figure 1. All the primitive of the GDPN .

A timed discrete transition t T is drawn as a black

rectangle and has a firing delay  IRPBagT)(:  is

associated to it, and this is can be marking dependent. Thus,
a timed transitions)M(Tt  is enabled in current tangible

marking M, it fires after delay),(Mt . Note once again,

we do allow the firing delay to be dependent on fluid levels;
  IRPBagTW i)(: is the weight function of

immediate discrete transitions tjTi, and this type of
transition is drawn with a black thin bar and has a zero
constant firing time. If several enabled immediate
transitions ()j it T M are scheduled to fire at the same time

in vanishing marking M, the transitions tk with the
respective weights wk fire with probability:





)(

),(/),(),(
MiTjt

jkk MtwMtwMtq ;

  IRPBagTV C)(: is the marking dependent fluid

rate function of timed continuous transitions
cT . These rates

appear as labels next to the continuous timed transitions. If

ci Tt  is enabled in tangible marking M it fires with rate

Vi(M), that continuously change the fluid level of continuous
place PC.

Figure 2 summarizes the all possible ways of placing arcs
in a GDPN net for discrete transition and continuous
transition with the discrete places and continuous places,
respectively.

Figure 2. All the possible ways of placing arcs in a GDPN.

In the GDPN, the potential rate)(Mi of change of fluid

level in place i Cp P in marking current M is given by:

  i(M) =
, ,

()

[() ()]
k

k i i k
t T M

V M V M




,

where for any given k Ct T ,
, ()i kV M is an input fluid rate

of fluid place
i Cp P and

, ()i kV M is an output fluid rate of

this place. We allow the firing rates and the enabling
functions of the timed discrete transitions, the firing speeds
and enabling functions of the timed continuous transitions,
and arc cardinalities to be dependent on the current state of
the GDPN, as defined by the marking ()M  .

The enabling and firing transitions of GDPN is described
in [9, 10].

In the following, we describe the dynamic rewriting
RGDN systems introduced in [7].

III. DYNAMIC REWRITING GDPN SYSTEMS

Let YX  be a binary relation. The domain of  is the

Dom() = Y and the codomain of  is the Cod()

= X . Also, let A=< Pre, Post, Test, Inh > be a set of arcs

belonging to net H = < P, T, Pre, Post, Test, Inh, Kp , Kb,
G, Pri >.

A dynamic rewriting GDPN system (RGDN) is a
 MGGRHRH rtr ,,,,  , where:

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 397

 N = < H ,  , W, V > and }...,,{ 1 krrR  is a finite

set of discrete rewriting rules (DR) about the run-time
structural modification of a net, so that  RTP . In

the graphical representation, the DR rule is drawn as two
embedded empty rectangles;
 },{: RTE D is a function which indicates for

every rewriting rule the type of event that can occur and
RTE D  denote the set of events of the net;

 )(: PBagRGtr {true, false} is the transition rule

guard function associated with Rr  ,
and )(: PBagRGr

{true, false} is the rewriting rule

guard function defined for each rule of Rr  , respectively.
For Rr , the function

trtr GMg )(and
rr GMg )(will

be evaluated in each marking and if they are evaluated to
true, then the rewriting rule r may be enabled, otherwise it is
disabled. In current marking M the default value of

trtr GMg )(is true and for rr GMg )(is false,

Let  rtr GGRHR ,,,  and  MRRN , . A

dynamic rewriting structure modifying rule Rr  of RN
is a map

WL RNRNr : , where the codomain of the 

rewriting operator is a fixed subnet LRN of current net

RN, where the domain of the  is a new WRN subnet. The

rewriting operator  represents the binary operation which

produces a structure change in the net RN by replacing
(rewriting) the fixed current subnet

LRN (
LRN are

dissolved) with the new subnet WRN , now belonging to the

new modified resulting net WL RNRNNRNR )\(

where the meaning of \ (and) is operation of removing
(adding) LRN from (WRN to) the net RN. In this new net

NR  , obtained by firing of enabled rewriting rule Rr ,

the places and events with the same attributes which belong
to NR  are fused.

A state configuration of a net RN is a pair (sR ,), where

R is the current structure of net together with a current
state)()(β, MMs  . The (00 , sR) is the initial

configuration of a RN.
Figure 3 summarizes the graphical representation of all

the RGDN primitives.

Figure 3. All the discrete rewriting primitive of the RGDN.

The enabling of events depends on the marking of all

places. We say that a transition
Dj Tt  of the event je is

enabled in current marking M if the enabling condition

),(Meec jd and is verified. This is described in [6].

The discrete rewriting rule Rrj  , that changes the

structure of RN, is enabled in current marking M if the
),(Meec jd
 and the),(Mrg jtr

are verified.

Let)(MTD and)(MR , )()(MRMTD , be the sets

of enabled discrete transitions and enabled rewriting rule in
current marking M, respectively. We denote the set of
enabled events in a current marking M by the

)()()(MRMTME D  .

The event)(MEe j  fires if no other event)(MEek 
with higher priority is enabled. Hence, for the each event

je if))),(()()((FalseMrgrt jtrjjjj   then the

firing of transition)(MTt Dj  or rewriting rule

)(MRr j  changes only the current marking:

),(),(sRsR je    RR  (and in R the

MeM j [). Also, for event je if

))),(()((TrueMrgr jrjj  then the event je occurs

to firing of rewriting rule jr and it changes the

configuration and marking of the current net in the
following way:

),(),(sRsR jr  , MrM j [.

The state graph of a  MRRN , net is the labeled

directed graph whose nodes are the states and whose arcs
which are labeled with events or rewriting rules of RN :

a) firing of an enabled event)(MEe j  determines an

arc from the state),(sR to the state (sR ,) which is

labeled with event je when this event can fire in the net

configuration R at marking M and leads to a new state:

 ),(),(: sRsRs je


( RR and MeM j [in R);

 b) change configuration: arcs from state),(sR to

state (sR ,) labeled with the rewriting rule Rrj  , so

that :jr (LL MR ,) (WW MR ,) which represent the

change configuration of current RN net:

),(),(sRsR jr   with MrM j [.

In the following, we describe the VRDN environment for
visual simulation of GDPN models.

IV. VRDN SOFTWARE ENVIRONEMENT

The VRDN is a software environment for construction,
editing, visual simulation and performance analysis of
RGDNs models.

It is a desktop application developed on .Net platform in
C# using Microsoft Visual Studio.

The architecture of the VRDN tool is based on MVC
pattern (Fig. 4) [12].

The general idea of this approach is to have a model
which represents the single point of truth. The state of this
model is reflected by a series of views registered in the
model and updated when an event is raised within the
model. The model is controlled by a series of controllers,
and as a result it changes its state. Finally the user is

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 398

provided with a set of views, in which he or she could see
the evolution of the model and a set of controller which
allows him or her to interact with the model.

Figure 4. The architecture of the VRDN tool.

This tool consists of a Graphical User Interface (GUI), an
animation modeling and a visualization component (see Fig.
5). The VRDN allows us to create, save and load RGDN nets
in compliance to the last XML-based standard for Petri nets,
namely PNML (Petri Net Markup Language) [15].

Figure 5. Graphical User Interface of VRDN.

The main features of the interface of the VRDN
environment are presented below.

Firstly, since the GUI is designed with multi-document
capability, it allows for several nets to be edited
simultaneously. This allows the user to study the behavior of
the net by observing the token animation.

Secondly, the interface is composed in a very intuitive
way and includes a menu bar, specialized tool bars, context
menus and keyboard shortcuts (Fig. 6). Also, the VRDN tool
has printing and exporting capabilities, thus the results of
the net definitions could be exported in most of the common
graphical formats.

Constructing RGDN models consists of drawing actual net
elements (places, transitions, arcs) according to the rules on
a working area, named drawing board. The board contains a
grid which facilitates a better elements alignment. For a

better readability arcs could contain several segments with
moveable handler.

Figure 6. General actions and VRDN elements toolbars.

Also, for a better alignment and readability all objects
placed on the drawing area are moveable by simply pointing
to them and dragging them to the new desired position.
Often it is handy to operate with multiple net elements at
once. For this purposes VRDN offers multiple selection and
grouping features. When working with groups, the
transformation applied to the group is subsequently applied
to all members of the group.

A great addition to the GUI of the VRDN tool is the
Properties Inspector. It is used to adjust properties of the
selected elements of the net. It contains several areas,
including an area which explains the meaning of the
property being edited. Editing of complex properties, such
as Guard Function, implies opening of specialized editors
such as Formula Editor (Fig. 7).

Figure 7. Properties Inspector.

For design of auto-modifying nets, VRDN has Formula
Editor – an instrument to set values of properties which are
marking dependant (Fig. 8).

Figure 8. Formula Editor.

Formula Editor allows building complex arithmetic and
logical expressions based on various properties of objects in
the net. These objects as well as their types and properties
are listed in the left part of the editor. Central and right part
of the editor’s window allows building of arithmetic and
logic expressions from a set of operators, functions and
constants.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 399

Final expression is displayed at the top of the windows,
which also allows instant evaluation of the expression. In
case the evaluation fails due to an error, the application
displays relevant error information.
VRDN has convenient navigation mechanisms, including
zooming and panning for efficient working with large nets.

V. VISUAL SIMULATION OF TIMED RGDN

The simulation is the primary goal of the modeling RGDN
nets with VRDN. At the high level it is done in three steps. It
starts with constructing the model on the screen using the
whole set of features provided by the VRDN graphical user
interface. Then the model is validated to be syntactically and
semantically correct. At the third step the proper simulation
is performed and statistical data is collected during the
simulation cycle. This data is later analyzed and interpreted,
thus allowing predicting the behavior of the actual modeled
system.

Simulation feature of the VRDN tool consist of a
simulation form (Fig. 9), which contains all necessary
controls to debug nets in both automatic and step-by-step
modes.

Figure 9. Simulation control form.

Simulation begins when the Start button is clicked. During
the simulation process, all the results are reflected in the
drawing board.

An interesting case is the simulation of VRDN with
rewriting transitions. All rewriting rules point to two nets: 1)
the old one which will be replaced, and 2) the new one,
which will replace all elements with the same identity.
VRDN looks into the working folder of the net, finds
relevant nets at run-time and loads them according to the
rules.

Below is an example of an effect of such a rule. Suppose
we have to develop the rewriting net presented in Fig. 10.

Figure 10. Initial rewriting net RPDR1.

The rewriting net should have a rewriting rule with a
corresponding guard function. Along with guard function
we have to set at least one of sub-nets. For the case when the
rule defines only the old sub-net, then the resulting net will

degrade. When only new sub-net is specified, then the
resulting net will evolve. In the case when both sub-nets are
specified, the new sub-net replaces the old sub-net. Both
these sub-nets are defined in the net working folder and are
loaded dynamically at run-time.

The newly loaded rewriting net could also contain one or
many rewriting rules. In this case the process will continue
until the new rewriting rule is fired and so on and so forth.

Thus, after firing the rewriting rule
21:1 RPDRRPDRr  for this particular case at the next

simulation step we may have the result presented in the
Fig.11.

Figure 11. Rewriting net RPDR2, as a result of applying rewriting rule.

During simulation it is possible to collect the intermediate
information, which can later be used for further analysis.

The simulation history (Fig.12) contains the results of the
simulation process at each individual step and namely
contains total simulation time, current marking, enabled and
fired immediate and timed transitions as well as elapsed
time for firing of timed transitions.

Figure 12. Simulation history.

VRDN offers good diagramming features used for visual
analysis of the simulation process at run-time. It makes it
possible to dynamically reflect in a chart or a series of chard
the evolution of a specified parameter or an expression. This
includes both 2 dimensional and 3 dimensional charts.

An example of such a char, obtaining at run-time during
simulation is presented in Fig.13.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

 400

Figure 13. A sample of a simulation chart.

VI. CONCLUSION

In this paper we have discussed the possibility of timed
GDPN models to study the performance characteristics of
hybrid systems. When dealing with real cases, it often
happens that the HPN models tend to become very complex.
In these cases GDPN models can be used as formal
specification of system and automatically translated into
detailed simulation programs in order to estimate
performance result.

The construction and the analysis of complex timed
GDPN models can only be done with the help of powerful
automatic tools such as the user-friendly software VRDN
tool whose performance modeling facilities and software
architecture have been described in this paper.

The integration within the same interface of the graphical
facilities for the model construction, of the structural
analysis algorithms for model validation, and of the control
panels for performing the visual and interactive simulation,
emphasizes the importance of including in a simulation
experiment both validation and evaluation aspects of timed
GDPN models .

The animation of the model, performed only when desired
by the user, appears to be a powerful tool that complements
the structural results for the debugging and tuning of the
models used for the performance analysis.
A special interest in using VRDN could be its powerful
simulation mechanisms for rewriting nets. This mechanism
allows for dynamic specification and loading of replaced
and replacing sub-nets.
Already VRDN is used in educational process; it gives
students a grasp of timed hybrid Petri net principles,
introducing them into world for performance evaluation of
computer systems and communication networks.

As next steps in this research, our team is going to
thoroughly analyze other classes and extensions of PN, such
as colored timed hybrid PN and membrane colored PN.

REFERENCES
[1] A. Alla, H. David, "Continuous and hybrid Petri nets," Journal of

Systems Circuits and Computers, 8(1), pp. 159-188, 1998.
[2] Demongodin, N.T. Koussoulas, "Differential Petri Nets: Representing

continuous systems in a discrete-event world," IEEE Transaction on
Automatic Control, Vol. 43, No. 4, 1998.

[3] M. Calzarossa, R. Marie, "Tools for Performance Evaluation,"
Performance Evaluation, no. 33, pp.1-3, 1998.

[4] C. Ciufudean, A. B. Larionescu, "Estimation of the Performances of
The Discrete Events Systems," Advances in Electrical and Computer
Engineering, no. 2, pp. 30-34, 2003.

[5] K. Compton, S. Hauck, "Reconfigurable Computing: a Survey of
Systems and Software," ACM Computing Surveys (CSUR), vol. 34,
no. 2, pp. 171-210, 1998.

[6] R. German, M. Gribaudo, G. Horvath, M. Telek, "Stationary analysis
of FSPNs with mutually dependent discrete and continuous parts,"
Proceedings of 10th Int. Workshop on Petri Nets and Performance
Models (PNPM’03), Urbana-Champaign, USA, September 2003,
IEEE Comp. Soc. Press., p. 30-39, 2003.

[7] E. Guţuleac, M. Mocanu, I. Ţurcanu, "Dynamic Rewriting of
Differential Petri Nets for Modeling of Hybrid Systems," In Proc. of
the 2-nd International Conference on Intelligent Computer
Communication and Processing, 1-2 September, Cluj-Napoca,
România, pp. 105-112, 2006.

[8] E. Guţuleac, "Descriptive Timed Membrane Petri Nets for Modeling
of Parallel Computing," International Journal of Computers,
Communications & Control, Agora University, Oradea, România, no.
3, Vol. I, pp. 33-39, 2006.

[9] E. Guţuleac, "Descriptive compositional HSPN modeling of computer
systems," Annals of the University of Craiova, vol. 3 (30), no.2,
pp.82-87, 2006.

[10] E. Guţuleac, "Descriptive compositional HSPN based discrete -
continuous modeling of distributed systems," Scientific Annals of the
State University of Moldova, CEP USM, Chisinau, pp. 182-187,
2005.

[11] K. Hoffmann, H. Ehrig, T. Mossakowski, "High-Level Nets with Nets
and Rules as Tokens," Proceedings of ICATPN’05, volume 3536 of
LNCS, Springer, p. 268–288, 2007.

[12] M. Llorens, J. Oliver, "Structural and Dynamic Changes in
Concurrent Systems: Reconfigurable Nets," IEEE Transactions on
Computers, vol. 53, no. 9, pp. 1147-1158, 2004.

[13] C. Lefter, M.H. Matcovschi, O. Pastravanu, "Computer-Aided
Analysis and Design of Discrete-Event Systems with Petri Net
Toolbox for MATLAB," În: Yagawa, Atanasiu G. and C. Brătianu
(Eds.), Perform. Based Engineering for 21st Century, Ed. Cermi, p.
222-227, 2004.

[14] http://ru.wikipedia.org/wiki/.NET_Framework.
[15] Petri nets world - Petri nets tools database. http://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/quick.html.
[16] T. Streichert, D. Koch, C. Haubelt, J. Teich, "Modeling and Design of

Fault-Tolerant and Self-Adaptive Reconfigurable Networked
Embedded Systems," EURASIP Journal on Embedded Systems,
Volume 3, Hindawi Publishing Corporation, p. 1-15, 2006.

[17] B. Tuffin, D.S. Chen, K.S. Trivedi, "Comparison of Hybrid Systems
and Fluid Stochastic Petri Nets," Discrete Event Dynamic Systems,
11(1&2), p. 77–96, 2001.

http://www.aece.ro/?mode=article&id=95
http://www.aece.ro/?mode=article&id=95
http://www.aece.ro/
http://www.aece.ro/
http://ru.wikipedia.org/wiki/.NET_Framework
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

