
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     420

Abstract — This paper presents a bee colony optimization 
method for selecting the optimal solution in semantic Web 
service composition. The bee-inspired selection method uses an
enhanced planning graph model and a matrix of semantic links 
to incrementally search the optimal solution. We use a multi-
criteria function which evaluates whether a solution is optimal 
or not in terms of its QoS attributes and the quality of the 
semantic match between the services involved in the solution. 
The selection method was validated by making experiments on 
a set of semantic Web services from the trip planning domain.

Index Terms — bee colony optimization, enhanced planning 
graph, ontology, semantic Web service, service composition

I. INTRODUCTION

Web Services have grown in importance for the past years 
because they provide business functionality to other 
applications using Internet connections in a modular and
self-contained way. In the real world, a single Web-service 
is rarely used as the answer to a complex request and so, 
more services need to work together in order to accomplish 
the task. Manually discovering and composing Web services 
is a tedious work, if the growing number of available Web 
services and their diversity in terms of functionality or 
Quality of Service (QoS) is taken into account. Web 
Services can be described at a syntactic and at a semantic 
level. In the case of the syntactic description, the WSDL
(interface-based description of a Web service) and SOAP
(XML-based formalization of Web services inter-
communication) standards are used. In the semantic Web 
view, Web services are described using ontology concepts 
which annotate the service inputs, outputs, preconditions 
and effects. As a result, computers can understand not only 
the syntax of Web services, but also their content and 
meaning thus favoring an automatic process of service 
discovery and composition. In case the number of services 
involved in composition is large, a lot of composition 
solutions may be obtained and the search for the optimal 
solution can be seen as an optimization process.

This paper presents a new technique for automatic Web 
service composition inspired by the behavior of bees. The 
proposed technique uses an enhanced AI planning graph 
model combined with a bee-inspired optimization algorithm
to find the composition solution which satisfies the user 
request. The user request is described in terms of functional 
and non-functional requirements. The functional 
requirements are expressed using ontological concepts that 

annotate the provided inputs and requested outputs. The 
non-functional requirements represent weights associated to 
user preferences regarding the relevance of a solution’s 
semantic quality compared to its QoS attributes. The bee-
inspired optimization algorithm is used to select the optimal 
composition solution according to QoS attributes and
semantic quality.

The paper is organized as follows. Section II presents the 
proposed Web service composition method, while section 
III details the bee-inspired selection method for identifying 
the optimal composition solution. Experimental results are 
presented in section IV. Section V surveys the related work
of bio-inspired service composition methods. We end our 
paper with conclusions and future work proposals.

II. THE WEB SERVICE COMPOSITION METHOD

To obtain the optimal Web service composition solution 
we combine a bee-inspired selection method with an 
Enhanced Planning Graph (EPG) model and a Matrix of 
Semantic Links (MSL). In this section we briefly present the 
composition approach that we have proposed in [6] which 
aims at building the EPG and MSL models.

A. The Enhanced Planning Graph Model

We obtained the EPG model by mapping the classical AI 
planning graph problem [7] to semantic Web service 
composition (see Table 1) and by adding new structures.

TABLE I. CONCEPTS FROM MAPPING THE AI PLANNING GRAPH
PROBLEM TO SEMANTIC WEB SERVICE COMPOSITION

AI planning graph 
concepts

Web service composition concepts

Action Service operation described by an ontology 
concept

Precondition Input parameter of a service operation 
described by an ontology concept

Effect Output parameter of a service operation 
described by an ontology concept

Initial state User provided input parameters expressed as 
ontology concepts

Goal state User provided output parameters expressed as 
ontology concepts

The EPG construction is an iterative process. In each 
iteration, a new layer consisting of a tuple (Ai, Li) is added to 
the graph where Ai represents a set of service clusters and Li

is a set of clusters of service output parameters. Layer 0 
consists of a tuple (A0, L0) where A0 is an empty set of 
services (actions) and L0 contains the input parameters of the 

A Bee-inspired Approach for Selecting the 
Optimal Service Composition Solution

Cristina Bianca POP, Viorica Rozina CHIFU, Ioan SALOMIE, Mihaela DINSOREANU, 
Mihaly FODOR, Irina CONDOR

Department of Computer Science, Technical University of Cluj-Napoca
26-28 Baritiu Street, Cluj-Napoca, Romania

{Cristina.Pop, Viorica.Chifu, Ioan.Salomie, Mihaela.Dinsoreanu}@cs.utcluj.ro,                       
{Mihaly Fodor, Irina.Condor}@student.utcluj.ro



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     421

user request. For each layer i > 0, Ai consists of a set of 
clusters of services for which the input parameters are
literals from Li-1. A cluster of services groups services which 
provide the same functionality. The functionalities of the 
services belonging to the same cluster are annotated only 
with is-a related ontological concepts. The services which 
contribute in each step to the extension of the EPG are 
provided by a discovery process. The discovery process 
finds the appropriate Web services in a repository of 
services, based on the semantic matching between the 
services’ inputs and the set of literals of the previous graph
layer. The Li set is constructed as a union of the Li-1 set and 
the sets of outputs of the services in Ai. Parameters of Li

(inputs and outputs) are grouped in clusters of literals where 
each cluster contains only is-a related ontological concepts.
The construction of the EPG ends either when the user 
requested outputs are contained in the current set of literals 
or when the graph reaches a fixed point. Reaching a fixed 
point means that the sets of actions and literals are the same 
for the last two consecutive generated layers. In figure 1 we 
present the step-by-step construction of an EPG.

Figure 1. An example of step-by-step construction of the EPG.

In the figure, a service is represented with a rectangle and 
a literal with an oval. The services as well as the literals are 
grouped in clusters. The clusters are represented as 
rectangles with rounded corners. An example of a cluster of 
literals would be {E, EE, EEE} in L1 which is linked to the 
second cluster of A1 services from the first layer. The link 
indicates that the s2, s3 and s4 services in this cluster, have E, 
EE and, EEE as outputs. A composition solution for the 
EPG of figure 1 consists of the following subsets of 
services: {[s1 s2], [s6, s7]}. In each solution subset, only one 
service of its cluster can be considered.

B. The Matrix of Semantic Links

The Matrix of Semantic Links (MSL) is built in parallel 
with the construction of the EPG. The matrix stores the 
semantic links established between services on different 
layers in the EPG. One Web service could be linked to 
several other Web services. We say that there is a semantic 
link between two services s1 and s2 if there is a Degree of 
Match (DoM) [8] between the set of the output parameters 
of service s1 and the set of the input parameters of service s2.

When computing the DoM between an output concept of a 
service and an input concept of another service we consider 
three types of semantic matching: EXACT, PLUG IN, and 
SUBSUME [8].

In MSL, both the columns and the rows are labeled with 
services from the EPG. A column and a row having the 
same index will be labeled with the same service. MSL is 
formally defined as:

mjniijmslMSL ...1,...1][  (1)

where an element ijmsl of MSL is represented as follows:



 


otherwisesl

insoutssimSif
msl

ij

ljki

ij ,

0).,.(,
(2)

In (2), ijsl represents the semantic similarity link between 

the service on row i and the service on column j. A semantic 
similarity link is formally defined as a tuple

),( simSVslij  (3)

where 
 V is a set of pairs (si.outk , sj.inl ) where si.outk is an 

output parameter of service si,, sj.inl is an input 
parameter of service sj, and the degree of match
between si.outk and sj.inl is greater than 0.

 simS is the semantic similarity score computed between 
the subset of output parameters of service si and the 
subset of input parameters of service sj. 

We compute simS between the subset outk of output 
parameters of service si and the subset ink of input 
parameters of service sj with the following formula:

m

insoutsMeasureF
insoutssimS

m

t
kjki

kjki

tt

tt


 1

).,.(_
).,.(

(4)
F_Measure is an adapted version of the similarity 

measure from information retrieval [12] and is computed as:

).,.().,.(

).,.(*).,.(*2

).,.(_

tttt

tttt

tt

kjkigkjkig

kjkigkjkig

kjki

insoutsrecinsoutsprc

insoutsrecinsoutsprc

insoutsMeasureF





(5)

where 
 prcg is the precision between an output parameter of 

service si and an input parameter of service sj and is 
computed with the formula:

).,.(*).,.(

).,.(

tttt

tt

kjkiIIkjkiI

kjkig

insoutsprcinsoutsprc

insoutsprc 
(6)

 recg is the recall between an output parameter of service 
si and an input parameter of service sj and is computed 
with the formula:

).,.(*).,.(

).,.(

tttt

tt

kjkiIIkjkiI

kjkig

insoutsrecinsoutsrec

insoutsrec 
(7)

In formulas (6) and (7), prcI and recI represent the 
precision and recall between an output of a service and an
input of another service, while prcII and recII represent the 
global precision and recall between all the properties of a 
service output and of another service input. The precision 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     422

and recall have been evaluated according to the formulas 
presented in [12].

In the case of the EPG in figure 1, a semantic similarity 
link between services s2 and s7 is established because there 
is a degree of match greater than 0 between the output of 
service s2 and an input of service s7.

III. THE BEE-INSPIRED SELECTION METHOD

For finding the optimal composition we adapted and 
enhanced the Bee Colony Optimization Metaheuristic 
defined in [9]. As any metaheuristic, the one proposed in [9]
defines a general-purpose algorithmic framework that can be 
adapted to solve different optimization problems [10]. Our 
bee-inspired selection method uses the EPG and MSL
generated by the composition method (see section II) as well 
as a multi-criteria function (fitness function) to find the 
optimal composition solution. The fitness function considers 
the QoS user preferences and semantic quality in the 
evaluation of a composition solution.

A. The Foraging Behavior of Bees

Bees represent complex collective systems in which 
individuals follow simple rules to build hives and search for 
food. In the case of nectar gathering, scout bees are sent to 
find the most satisfying food sources. They randomly fly on 
varying distances in search of food. Upon returning to the 
hive, they have three possibilities: to abandon their food 
source because it was not good enough, to continue to 
collect nectar from the current discovered source or to 
communicate to the other bees what they have found so far 
and thus recruiting followers [9]. This type of 
communication is achieved through a waggle dance. Each 
returning bee performs this dance several times in front of 
the other bees in the hive. The dance encodes information 
about the distance, the direction and the quality of the food 
source. The bees in the hive can decide to follow one of the 
waggle dancing bees. Through this mechanism, the flower 
patches closer to the nest and with more quality nectar are 
visited by more bees enabling an efficient pollen harvesting. 

B. Mapping the Foraging Behavior of Bees to the Web 
Service Composition Problem

We mapped the concepts from the foraging behavior of 
bees to the concepts of the Web service composition 
problem as illustrated in table II.

TABLE II. CONCEPTS FROM MAPPING THE FORAGING BEHAVIOR
OF BEES TO THE WEB SERVICE COMPOSITION PROBLEM
Concepts from the 

foraging behavior of bees
Web service composition concepts

Bee Artifical bee
Hive The layer (A0, L0) from the EPG

Food source A Web service composition solution
Quality of the food source The QF function (see formula 9)

Waggle dance Information about the services and 
quality of a composition solution

Scout bee Artificial bee that continues expanding 
its Web service composition solution

Follower bee Artificial bee which abandons its service 
composition solution and adopts the 

solution of a scout bee

In the Web service composition problem, we consider that 
the biological bee becomes an artificial bee [9] which 
explores the EPG in search of the optimal composition 

solution (the best quality food source). We define an 
artificial bee as follows:

),( loyaltybSolbee  (8)

where
 bSol is a set of n elements bSolElemi where a bSolElemi

is defined as a set of services {si
kl | si

kl is the l-th service 
from cluster k on layer i of the EPG} and n is the total 
number of layers of the EPG; 

 loyalty is the quality of the bSol (similar to the quality 
of a discovered food source) in terms of QoS attributes 
and semantic quality.

To evaluate the loyalty we define and use the QF function 
below:

SemQoS

SemQoS

ww

bSolSemwbSolQoSw
bSolQF





)(*)(*

)(

(9)
where
 QoS(bSol) is the QoS score of the Web service 

composition solution, bSol.
 Sem(bSol) is the semantic quality score of the Web 

service composition solution bSol.
 wQoS and wSem are the weights which illustrate the 

user preference related to the relevance of QoS and 
semantic quality during the evaluation of a composition 
solution.

The QoS score of a composition solution bSol is 
computed using formula 10:







 n

i
i

n

i
ii

w

bSolqosw
bSolQoS

1

1

)(*
)( (10)

where 
 qosi(bSol) represents the value of a QoS attribute 

computed for the composition solution bSol.
 wi is the weight associated to the relevance of the qosi

attribute.
 n is the total number of QoS attributes considered.

The semantic quality score of a composition solution bSol
is computed as follows:

1

).,.(
)( 1






n

insoutssimS
bSolSem

n

i

p
qr

j
kl

(11)

where 

 j
kls  is the service l in cluster k from layer j;

 p
qrs  is the service r in cluster q from layer p;

 j
kls , p

qrs  are part of the solution bSol, j < p;

 n is the total number of services involved in the 
solution bSol;

 simS computes the degree of match between 
j

kls and p
qrs (see formula 4).

In Web service composition, scout bees are mapped to 
artificial bees that have identified a good solution and that 
will continue expanding it. On the other hand, follower bees 
are mapped to artificial non-loyal bees which have identified 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     423

a poor solution and will adopt the solutions of waggle bees 
which they will expand.

C. The BEE-INSPIRED SELECTION ALGORITHM

The bee-inspired selection algorithm (ALGORITHM _1) 
determines a set SOL of high quality composition solutions 
evaluated according to the function QF (see formula 9), the 
first solution being the optimal one, by considering the 
following: (i) the EPG and MSL structures resulted from 
Web service composition, (ii) the weights wQoS and wSem

which state the relevance of a solution’s QoS quality 
compared to its semantic quality, and (iii) a number nBees
of artificial bees used in the search for the optimal solution.
--------------------------------------------------
ALGORITHM _1: BEE-INSPIRED-WEB-SERVICE-SELECTION
--------------------------------------------------
Input: EPG – the enhanced planning graph;
       MSL – the matrix of semantic links;
       wQoS – the weights for the QoS attributes; 
       wSem – the weight for the semantic quality;
       nBees – the number of bees;           
Output: SOL
Comments: SOL = {sol1,...soln | soli = {sjkl | sjkl is 
the l-th service from cluster k on layer j of the 
EPG} and n is the number of layers of the EPG};
BEES - the set of bees defined as {bee1, ..., 
beenBees},for the definition of beei see formula 8;
solrec = the recommended solution in each iteration
of the algorithm which is defined similar to soli;
begin
solrec = GET-INITIAL-SOLUTION(EPG)
SOL = {solrec}
while ( !SOLUTION-GOOD-ENOUGH(solrec) ) do
begin
  RESET (BEES, nBees)
  for i = 0 to GET-NR-OF-LAYERS(EPG) do
    begin
     BEES = FORWARD-PASS(EPG, i, BEES, solrec)
     BEES = BACWARD-PASS (BEES)
    end
  solrec = GET-BEST-SOLUTION(BEES, solrec)

   SOL = SOL ⋃ solrec
  end
 return SOL
end
--------------------------------------------------

Before performing the actual search, an initial solution is 
identified using a greedy approach (GET-INITIAL-
SOLUTION). The selection algorithm consists of a number 
of iterations which are performed until a stopping condition 
is fulfilled (SOLUTION-GOOD-ENOUGH). We consider
as stopping condition the case when the quality of the best 
solution obtained so far is above a pre-established threshold.

In each iteration, the artificial bees are repositioned in the 
origin of the EPG (RESET) from where they start building
solutions in an incremental way. From an artificial bee’s 
point of view, an iteration is composed of a number of 
stages equal to the number of layers (GET-NR-OF-
LAYERS) in the EPG. Within each stage, the artificial bee 
performs a forward (FORWARD-PASS) and a backward 
pass (BACKWARD-PASS) aiming at identifying new 
candidate composition solutions. At the end of an iteration 
each artificial bee obtains a solution. The set of solutions 
obtained within an iteration is evaluated according to the QF
function (see formula 9). Then, the best solution identified 
(GET-BEST-SOLUTION) becomes the recommended one
which will guide artificial bees in taking decisions when 

exploring the EPG in the next iteration. During the search 
process, the artificial bees communicate directly by 
exchanging information about the quality of the partial 
solutions they have built so far.

Within the forward pass (ALGORITHM _2), each bee 
selects a new service (SELECT-NEXT-SERVICE) from 
each cluster of the currently explored EPG layer and adds 
the selected services to the candidate solution.
--------------------------------------------------
ALGORITHM _2: FORWARD-PASS
--------------------------------------------------
Input: EPG – the enhanced planning graph;
       lIndex – an EPG layer index;
       BEES – the set of bees;
       solrec – the recommended solution;
Output: BEES – updated set of bees
Comments: BEES - the set of bees defined as {bee1, 
..., beenBees} (see formula 8);
GET-NR-CLUSTERS – returns the numbers of clusters 
from a specified layer in the EPG;
begin
for i = 0 to GET-NR-CLUSTERS(EPG, lIndex) do
  begin

for j = 0 to BEES.size do
    begin       
     BEES[j] = SELECT-NEXT-SERVICE(BEES[j], solrec,
                                   EPG,lIndex,i)
    end
  end
return BEES
end

The selection of a new service (see ALGORITHM _3) is 
influenced by the recommended service defined by the best 
solution (solrec) encountered until that moment, and the
location of the currently processed cluster in the EPG. 
--------------------------------------------------
ALGORITHM _3: SELECT-NEXT-SERVICE
--------------------------------------------------
Input: bee – the bee for which we select the next
             service, represented as in formula 8;
       solrec – the recommended solution;
       EPG – the enhanced planning graph;
       lIndex – layer index; 
       cIndex – cluster index;            
Output: bee – the bee with the updated solution
Comments: nServ – the set of candidate next 

services defined as a set {(s, quality) | s ∊
EPG};
prob – set of probabilities associated to each 
element of nServ;
begin
 nServ = GET-SERVICES(EPG, lIndex, cIndex)
sum = 0
for i = 0 to nServ.size do
begin

    prob[i]=nServ[i].quality=PQ(nServ[i],bee.bSol)                 
  end
COMPUTE-PROB(prob)
 SORT-BY-PROBABILITY(nServ, prob)
destiny = RANDOM()
 for i = 0 to nServ.size do
  begin
  sum = sum + nServ[i].quality
   if (destiny < sum) then
    begin
     ADD-SERVICE(bee, nServ[i])  
    end
  end
return bee
end

As a result, an artificial bee chooses to add a service to its
partial solution with a probability P (calculated by 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     424

COMPUTE-PROB) formally defined as:





n

k
partk

parti
parti

solcServPQ

solcServPQ
solcServP

1

),(

),(
*),(  (12)

where
 cServi is a candidate Web service which can be added to 

the partial solution solpart.




 


otherwise

solcServif reci

,2

,1
                                 (13)

 n is the number of elements in cServ.
 PQ is a function that evaluates the quality of a service 

in terms of semantic quality and QoS attributes related 
to the services in solpart according to the formula below:

)'(),( partparti solQFsolcServPQ  (14)

where solpart’ = solpart ⋃ cServi.

The candidate services are further sorted according to 
their probability to be chosen (SORT-BY-PROBABILITY).
The service that will be added to the partial solution of the 
considered bee is selected according to the service
probability and a destiny value. The destiny value is 
introduced to avoid the algorithm stagnancy in a local 
optimum and to add diversity (ADD-SERVICE).

Within the backward pass (ALGORITHM _4), all 
artificial bees return in the origin of the EPG where they
have to make two decisions: abandon the current partial 
solution or expand the partial solution without recruiting 
new artificial bees. 

--------------------------------------------------
ALGORITHM _4: BACWARD-PASS
--------------------------------------------------
Input: EPG; BEES;
Output: BEES – the updated set of bees;
Comments: wBees, uBees – the set of waggle/unloyal
bees defined as in formula 8;
COMPUTE-MAX-LOYALTY – computes the maximum loyalty
(maxLoyalty) among bees 
lSum – the sum of loyalties of all bees in BEES;
begin
wBees = uBees = Ø
maxLoyalty = COMPUTE-MAX-LOYALTY(BEES)        
for j = 0 to BEES.size do
begin
BEES[j].loyalty = BEES[j].loyalty / maxLoyalty

  if (BEES[j].loyalty > Δ1) then
    begin

     wBees = wBees ⋃ BEES[j]

    end
  if (BEES[j].loyalty < Δ2) then
    begin

     uBees = uBees ⋃ BEES[j]

    end   
end
lSum = 0

for j = 0 to wBees.size do
begin
lSum = lSum + wBees[j].loyalty
end
for j = 0 to wBees.size do
begin
wBees[j].loyalty = wBees[j].loyalty / lSum

  while (wBees[j].loyalty * uBees.size > 0) do
    begin
    uBee = GET-FIRST(uBees; uBees = uBees – uBee
     uBee.bSol = wBees[j].bSol
    end
end
return BEES   
end

The first decision is influenced by the loyalty of an 
artificial bee towards the solution (the loyalty representing 
the quality of the partial solution evaluated with the QF
function). By interpreting the loyalty according to some pre-
established thresholds (Δ1 and Δ2), the bee will either 
expand its solution (the bee becomes waggle) or abandon it
(the bee becomes a follower). The second decision which 
determines whether the partial solution will be further 
expanded without recruiting new hive mates is also based on 
the loyalty interpretation. We modeled the recruiting activity 
as a simple even distribution of non-loyal bees between the 
waggle ones.

IV. EXPERIMENTAL RESULTS

We have experimented and evaluated our bee-inspired 
selection method on a scenario from the trip planning 
domain. We developed and used in our experiments a set of 
110 semantic Web services. The set of services was 
annotated according to the SAWSDL [11] specification. To 
semantically describe the user requests and the service 
capabilities we developed a domain ontology which stores 
200 concepts organized on 8 hierarchic levels. As a result, 
the user request is specified by a set of ontological concepts 
annotating the provided inputs and requested outputs and by 
weights indicating the relevance of quality of service 
compared to semantic quality. Services are semantically 
described with concepts annotating their functionality, input 
and output parameters.  In this section we partially trace the 
composition and selection algorithms for the user request 
given in table III and evaluate the experimental results. The 
user request specifies the need for a composed service able 
to make travel arrangements (search and book 
accommodation, flight and car). In our experiments we have 
considered four QoS attributes: availability (Av), reliability 
(Rel), cost (Ct) and response time (Rt).

TABLE III. USER REQUEST
in1, in2, … out1, out2, 

…
QoS weights SemQ 

weight
SourceCity; DestinationCity;
StartDate; EndDate; Hotel;

MediterraneanFood;
NumberOfPersons;
NumberOfRooms

Vacation
Price

Total QoS: 
0.25;

Av: 0.15;
Rel: 0.25;
Ct: 0.45;
Rt: 0.15

0.75

Based on the user request and on the available set of 
services, the composition algorithm iteratively builds the 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     425

EPG along with the MSL. The resulting EPG contains four 
layers of service clusters. Tables IV and V illustrate two 
service clusters, one from the second layer which groups 
services that search accommodation and the other one from 
the third layer which groups services that book 
accommodation.

TABLE IV. THE SET OF WEB SERVICES FROM CLUSTER 1 ON
LAYER 1 OF THE EPG

WS 
code

WS 
Operation

in1, in2, … out1, out2, … QoS

s111 Search
Hotel

DestinationCity; 
Hotel

HotelName Av: 3.0; 
Rel: 2.5; 
Ct: 0.45; 
Rt: 1.25

s112 Search
ExoticHotel

EuropeanExotic
DestinationCity; 
Accommodation

Mediterranean
HotelName

Av: 3.5; 
Rel: 1; 
Ct: 2; 

Rt: 2.75
s113 Search

European
Exotic
Hotel

European
DestinationCity; 

Hotel

Luxury
Mediterranean

Hotel
Name

Av: 4.0; 
Rel:1.75; 
Ct: 4.5; 

Rt: 2

TABLE V. THE SET OF WEB SERVICES FROM CLUSTER 1 ON
LAYER 3 OF THE EPG

WS 
cod
e

WS 
Operation

in1, in2, … out1, out2, 
…

QoS

s211 Book
Hotel

HotelName; 
StartDate; EndDate; 
NumberOfHotelRo

oms; NumberOf
Persons; Breakfast

HotelPrice Av:0.5; 
Rel: 1; 

Ct: 1.25; 
Rt: 3.5

s212 Book
European

ExoticHotel

Luxury
Mediterranean
HotelName; 

StartDate; EndDate; 
NumberOf

Persons

HotelPrice Av: 
2.05; 

Rel: 3; 
Ct: 2; 

Rt: 2.95

s213 Book
Exotic
Hotel

Mediterranean
HotelName; 

StartDate; EndDate; 
NumberOfHotelRo

oms; NumberOf
Persons; 

Mediterranean
Food

HotelPrice Av: 
3.05; 

Rel: 4; 
Ct: 4.95; 

Rt: 1

Table VI presents a subset of the semantic similarity links 
stored in the MSL established between the services from 
tables IV and V.

TABLE VI. EXAMPLES OF SEMANTIC SIMILARITY LINKS
si sj Semantic similarity link between the outputs of si and 

the inputs of sj

s111 s211 ({(HotelName, HotelName)}, 1)
s112 s211 ({(MediterraneanHotelName, HotelName)}, 0.79)
s113 s213 ({(LuxuryMediterraneanHotelName, 

MediterraneanHotelName)}, 0.902)

For the trip planning scenario we performed two 
experiments. In the first experiment we generated the entire 
set of solutions to identify the optimal composition solution

which has a score of 9.556. Then, we performed several 
experiments on our bee-inspired selection technique to 
check whether the optimal solution identified is indeed the 
best or is very close to the best. In our experiments we
varied the number of bees, from 10 to 150. We noticed that 
for a stopping condition threshold of 9.5, and for the 
following parameter values: Δ1 = 0.5,  Δ2 = 0.2, wQoS = 
0.25 wSem = 0.75, the selection algorithm identifies the 
optimal solution (for the most of the cases) or identifies a 
solution very close to the optimal one. Table VII presents
the number of iterations in which the optimal solution or a 
solution close to the optimal one was identified by different 
numbers of bees. 

TABLE VII. NUMBER OF BEES AND THE NUMBER OF
ITERATIONS TO REACH THE OPTIMAL SOLUTION OR A

SOLUTION CLOSE TO THE OPTIMAL ONE
Number of bees Number of 

iterations
Optimal solution score

5 52 9.556
10 75 9.556
50 11 9.556
70 6 9.549
80 18 9.556
90 10 9.556

100 11 9.556
110 12 9.556
140 7 9.556
150 5 9.549

By analyzing the experimental results we noticed that if 
the number of bees used in the search process is high, the 
optimal solution is obtained in less iterations but with a 
higher execution time.

V. RELATED WORK

In the past few years, biologic behaviors, such as foraging 
in the case of insects or birds, have inspired several 
optimization techniques. This section reviews biologically-
inspired techniques applied to the problem of selecting the 
optimal service composition solution.

In [1] and [2], genetic algorithms are used to find the 
optimal composition solution. The composition method is 
based on a given service abstract workflow, where each 
abstract service has a set of candidate concrete Web services 
with different associated QoS values. Genetic algorithms are 
used to bind concrete services to the abstract ones aiming at 
identifying the optimal workflow instance in terms of QoS 
attributes. The genome is encoded as an integer array in [1] 
and as a binary string in [2], where each position is 
associated to an abstract service in the workflow and 
indicates the concrete service which is selected to be used. 
Both approaches make use of genetic operators and fitness 
functions applied on the genome to find the optimal 
composition solutions. In the case of genetic operators, both 
approaches perform random mutations to generate new 
workflow instances. In the case of fitness functions, [1] 
proposes the use of a dynamic fitness function which 
penalizes the individuals that do not meet the constraints in 
each generation, thus favoring a quicker convergence 
toward an optimal solution. Compared to [1], the approach 
in [2] proposes three fitness functions, one associated to 
each considered QoS attribute, in order to increase the 
probability of finding the optimal solution. Still, genetic 
algorithms are not scalable due to the fixed way in which the 



10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

     426

genomes and chromosomes need to be encoded. Moreover, 
there is the risk that the genetic algorithm may get stuck in a 
local optimum.

Particle Swarm Optimization (PSO) [3], an optimization 
technique inspired by the behavior of foraging birds is a 
viable alternative to genetic algorithms since it converges 
more rapidly and is more scalable. In [4], PSO is used to 
obtain the optimal service composition solution. As in [1] 
and [2], the composition approach is based on a predefined 
workflow associated to concrete candidate services. The 
position of the particle is represented by the concrete 
services mapped on workflow tasks, while velocity indicates 
how the concrete services should be changed. By 
performing the operations of addition, subtraction and 
multiplication (adapted to the case of Web service 
composition) on positions and velocities, the proposed 
selection algorithm identifies optimal composition solutions 
based on QoS attributes. However, similar with genetic 
algorithms, by applying PSO when searching for the optimal 
composition solution, the problem of early stagnancy in a 
local optimum cannot be avoided. To address this issue, the 
authors have introduced a variation operator to enlarge the 
searching space.

In [5], genetic algorithms and PSO are combined for 
service composition aiming at balancing the local and the 
global search and thus avoiding early stagnation. The 
mapping of service composition to PSO is similar to the one 
in [4], but in this case the crossover operation is used to add 
diversity by introducing new services and favoring the 
exploration of new search spaces.

Our approach to selecting the optimal composition 
solution is inspired by the foraging behavior of honey-bees. 
The differences between our approach and the ones 
presented above are the following:
 Our composition method does not start from a 

predefined workflow as in [1], [2], [4] and [5] but from 
the user request. As a result, a multi-layered planning
graph of services is obtained, each layer containing sets 
of services providing different functionalities.

 In our approach, the problem of local stagnancy in 
selecting the optimal composition solution encountered 
in [1], [2] and [4] is overcome by using a bee-inspired 
technique which favors the exploration of several 
candidates for the optimal solution.

 Our criteria for evaluating the quality of a candidate 
solution include not only QoS attributes as in [1], [2], 
[4] and [5] but also the property of semantic quality.

In our case, the replacement of a concrete candidate 
service is not done randomly as in [1], [2] and [4], but 
according to QoS attributes and semantic quality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new method for 
selecting the optimal composition solution which uses a 

technique inspired by the behavior of bees in nature. The
bee-inspired technique optimizes the selection process 
without considering the entire search space and avoids the 
local optimum stagnancy problem.  The selection algorithm 
uses two structures, namely an enhanced planning graph and 
a matrix of semantic links, resulted from Web service 
composition, to incrementally build better solutions until an 
acceptable one is found taking into consideration the QoS 
and semantic quality. The enhanced planning graph and the 
matrix of semantic links store the set of services that can be 
composed as well as information about their degree of 
match. We obtained promising results in testing our bee-
inspired selection method on a case study for making travel 
arrangements involving 110 semantic Web services.

As future work we intend to test the selection method on
larger and more complex sets of Web services and to speed-
up the process by parallelizing the bees search operations.

REFERENCES
[1] G. Canfora, M. Di Renta, R. Esposito, M. L. Villani, "An Approach 

for QoS aware Service Composition based on Genetic Algorithms",
Proceedings of GECCO’05, pp. 1069-1075, Washington, DC, USA, 
2005.

[2] J. Wang, Y. Hou, "Optimal Web Service Selection based on Multi-
Objective Genetic Algorithm", Proceedings of the ISCID 2008, pp. 
553-556, Wuhan, 2008.

[3] J. Kennedy, R.C. Eberhart, "Particle swarm optimization",
Proceedings of IEEE International Conference on Neural Networks, 
Piscataway, NJ. pp. 1942-1948, 1995.

[4] C. Ming, W. Zhen-wu, "An Approach for Web Services Composition 
Based on QoS and Discrete Particle Swarm Optimization", Eighth 
ACIS International Conference on Software Engineering, Artificial 
Intelligence, Networking, and Parallel/Distributed Computing, pp. 37-
41, Washington DC, USA, 2007.

[5] J.Liu, J. Li, K. Liu,W. Wei, "A Hybrid Genetic and Particle Swarm 
Algorithm for Service Composition", Proceedings of the Sixth 
International Conference on Advanced Language Processing and Web 
Information Technology,  pp.564-567, 2007.

[6] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, I. Vartic, M. Vlad, 
"Immune-inspired Web Service Composition Framework", 
Proceedings of the 11th International Symposium on Symbolic and 
Numeric Algorithms for Scientific Computing (SYNASC2009), 
September 26-29, Timisoara Romania,  ISBN 978-0-7695-3964-5, pp. 
376-383, 2009.

[7] S. Russell, S, P. Norvig, "Artificial Intelligence: A Modern 
Approach." Upper Saddle River, NJ: Prentice Hall/Pearson Education, 
ISBN: 0137903952, 2003.

[8] M. Paolucci,, et al., "Semantic Matching of Web Services 
Capabilities", LNCS, vol.2342, Springer Berlin / Heidelberg, pp. 333-
347, 2002.

[9] D.Teodorovic, M. Dell'Orco, "Bee Colony Optimization – A 
Cooperative Learning Approach to Complex Transportation 
Problems", Advanced OR and AI Methods in Transportation, pp. 
51—60, 2005.

[10] M. Dorigo, M. Birattari, T. Stützle, "Ant Colony Optimization--
Artificial Ants as a Computational Intelligence Technique", IEEE 
Computational Intelligence Magazine, 2006.

[11] SAWSDL, http://www.w3.org/2002/ws/sawsdl/spec/
[12] D. Skoutas, A. Simitsis, T. Sellis, "A Ranking Mechanism for 

Semantic Web Service Discovery", Proceedings of the IEEE Congress 
on Services, Salt Lake City, UT, pp.41-48, 2007.


