
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

427

Abstract – This paper addresses some aspects on modeling a
problem in continuous probability theory. We start describing
a common problem in current computer science, the deadlock.
This is followed by a mathematical abstraction of the problem.
Three solution models are presented for it, two of them
designed for multidimensional cases. These models are then
tested in experiments and compared against the exact solutions.

Index Terms – Continuous Probability Theory, Geometry,
Monte-Carlo Simulation, Parallelization, Threading

I. INTRODUCTION

Sharing is never easy. Most humans learn to share as a
child, when the act of giving away a part of one’s
belongings results in getting back something, be it
physically or emotionally. Problems with this approach arise
when an object cannot be divided up and is desired by more
than one party. In this case, a compromise can be found by
defining disjunctive time spans where only a single party
holds the object. When the time is over, it is handed on to
another party. This approach directly leads to concurrency if
the time spans are not set in advance [7, 9].

Concurrency in computer science means that several
computations are executing simultaneously, potentially
interacting with each other, and eventually sharing the same
resources (memory, CPU). This often leads to a serialization
of access, what implies a ranking of the participating events.
In many cases it is unimportant in which order the events are
executed or if they are processed simultaneously [2, 9].
Concurrency and parallel processing are becoming more and
more important nowadays, for example with the uprising of
multi-core processor systems and new parallel algorithms
where some calculations can be performed independently. In
the context of program processes concurrency is achieved
through splitting a process into several so called threads.
These threads all share a common code base but run
independently from each other and they must be
synchronized if a common data structure has to be accessed.
If a thread wants to access a resource it has to lock it first to
indicate that this resource is being accessed and cannot be
used by another thread. If then another thread wants to
access the same resource it has to wait until the lock is being
released by Thread A.

Multithreading is becoming more important as there is the
demand of parallel processing.

Let us consider the scenario of two threads running in

parallel (Figure 1, state RUNNING) and further thread A
waiting for thread B to release the lock of some object
(Figure 1, state WAIT). This waiting starts in a time span
[t11, t12] with equal probability distribution and takes some
time w1. Let now thread B also start waiting in a time span
[t21, t22] for an object thread A has to release. This takes the
time w2. It sometimes occurs that both threads are in the
WAIT state at the same time. In this situation, none of them
can proceed without the other, what is then called a
deadlock. The application cannot operate any further and
must at least shut down the two threads. The problem we
will discuss in this paper is to find the probability of this
event.

Figure 1. Process containing two threads A and B with the risk of a
deadlock.

To solve this problem, we first describe it in a more
abstract, mathematical way. We start with Xi being a
continuous random variable with uniform distribution,
representing the thread i. Let all Xi have the following form:

].,[: 21 iii ttX (1)

In [1] ti1 and ti2 being the first/last possible points in time
where thread i might start waiting and

 kttk
tt

kXP ii
ii

i],;[
1

)(21
12

 (2)

Let then wi be the time thread i needs to wait for another
one to release the lock of an object. For simplicity, all wi are
equal and constant for all i (=w). To define the problem, we
need a combination C of the random variables. Let n be the
number of random variables and i {1, …, n}. Then C can

Doina LOGOFĂTU, Felix DIETRICH, Evgeni PAVLIDIS, Dennis WILFERT
Department of Computer Science and Mathematics

University of Applied Sciences
Lothstrasse 64, 80335, Munich

{doina.logofatu, felix.dietrich, evgeni.pavlidis, dennis.wilfert}@hm.edu

Modelling the Probability of Deadlocks in a
Multithreading Process

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

428

be defined as
C = {c X1, xi Xi | i: xi – w c xi + w} (3)

When C the probability p of a deadlock is nonzero and
can be written as

.

i

ix

C
p

(4)
For two random variables X1 and X2, there is a geometric

interpretation of this probability. Let t11 and t12 be the
boundary points of the range of X1 and let t21 and t22 the
boundary points of the range of X2. Then C is the area of a
rectangle A in a two-dimensional space formed by X1 and X2

bordered by two lines y1 = x + w and y2 = x - w with x X1

and y1, y2 X2.

Figure 2. C for two random variables.

The probability of a deadlock is

.
A

C
p (5)

We will use this formula for our solutions in the next part.

II. SOLUTION MODELS

To calculate the area of C in the two-dimensional case,
we will now introduce three solution models – the Monte
Carlo Simulation, a numerical method and the exact
solution. The first two models were chosen because they can
be extrapolated very easily. This will be an advantage when
more than two random variables are chosen to generate C.

A. First solution model – Monte Carlo Simulation

Monte Carlo methods rely on repeated random sampling
to compute their results. The idea came from Enrico Fermi
in the 1930s, when he used Monte Carlo in the calculation
of neutron diffusion [13]. Monte Carlo methods are mostly
used if finding an exact solution to a problem is very
complex or impossible. A classic example of using the
method is the approximation of π [18, 19, 20, 21]. There are
many variants of Monte Carlo methods, but all of them
follow a particular pattern:

1. For the originally mathematical model a stochastic
model must be found which describes the problem.

2. A sequence of random numbers must be generated.
These values should simulate possible real situations.

3. There must be found estimations from the random
values for the original problem.

Monte Carlo methods are used in many different areas
like mathematics, physics or in the financial sector [1, 4, 5,
6, 8, 12, 13]. In mathematics, they are often used for
evaluating definite integrals with complicated boundary
conditions. Especially for multidimensional integrals the
Monte Carlo integration can be particularly efficient [14].
For example, two of the most used Monte Carlo methods for
integration were compared by Hörmann and Leydold in
2005 [15]. In the financial sector, Monte Carlo methods are
used, among others, to reduce the uncertainty involved in
estimating future outcomes [16]. A wide area of application
for Monte Carlo methods can also be found in physics [5, 6].
Zabenkov and Kochubey have used the Monte Carlo
simulation to study the dependence of the spatial resolution
of a luminescent object inside the skin [17]. Below, we are
using Monte Carlo simulation to calculate the area of C.

In our solution model, we generate random points in the
rectangle formed by the two random variables X1 and X2 as
defined before.

(a) (b)

Figure 3. Two samples for MC method.

The red points in (a) and (b) lie in C and can be used to
approximate the probability:

.
all pointsnumber of

red pointsnumber of
p (6)

B. Second solution model – Numerical Integration

If we do not choose random points but divide the
rectangle in equally spaced subparts, we can approximate C
numerically. The points lie on the edges between the parts.
Again, the number of red points is used to approximate the
probability the way we did it in (6).

(a) (b)

Figure 4. Two Samples for the numerical method.

C. Third solution model – Exact Integration

As the problem is in two-dimensional space, we can use

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

429

normal integration to solve it exactly.

(a) (b)

Figure 5. Two Samples for the exact method.

The red area shown in figure 6 represents C. To get its
value, some variables have to be defined first.

)),,max(min(112112 twttblower (7)

)),,max(min(112212 twttbupper (8)

)),,min(max(122111 twtttlower (9)

)),,min(max(122211 twtttupper (10)

Then C can be computed by integrating the lines.

upper

lower

upper

lower

b

b

t

t

dxwxdxwxC)()((11)

The area A is (t12–t11) (t22–t21).

III. EXPERIMENTS

We will now compare the different solution models. In
the experiments, only one parameter is changed at a time,
the others remain constant. Interesting parameters are t11, t12,
t21, t22, w, the number of MCS points and the step size of the
numerical integration. t11, t12, t21 and t22 will remain constant
in all experiments as they do not significantly change the
performance of the methods. The parameter w is called
“bandwidth” in all experiments, as it defines the half-
distance between the two lines in the two-dimensional
space.

For all experiments, random variables X1 and X2 are used,
having the following continuous distribution:

 kkkXP],10;0[1.0)(1 (12)

 kkkXP],10;0[1.0)(2 (13)

A. First experiment: Changing the bandwidth

This experiment uses all solution methods and compares
them by applying different bandwidths problems. The graph
below shows three solutions by the probability delta to the
exact value. The solutions are two Monte Carlo Simulations
with 5e5 points and the numerical integration method with
step size 0.02. All methods are applied to problems with
bandwidths varying from 0 to 10.

Figure 6. Probability deltas for different bandwidths.

One can see that different Monte Carlo Simulations
(MCS) produce very different output. Though, the overall
difference to the exact value increases for bandwidths near
the middle of the interval.

TABLE I. COMPUTED VALUES FOR W=2, 4, …, 10
w Numerical MCS1 MCS2 Exact
2 0.362168 0.323478 0.354648 0.36
4 0.633987 0.641032 0.64984 0.64
6 0.831219 0.855048 0.833494 0.84
8 0.953864 0.957670 0.952594 0.96
10 1.000000 1.000000 1.000000 1.00

B. Second experiment: changing the step size of the
numerical method

In this experiment we change the step size for the
numerical integration method, leaving w constant at value 5.
The approximation is getting better with increasing step
size. Some values break out because the step size there fits
well to the given problem. The exact value in this simulation
is 0.75.

Figure 7. Numerical method, step size from 1e1 to 2e-2.

C. Third experiment: changing the number of MCS points

Now, the number of points used to approximate the
probability is altered. w remains constant at value 5. Figure
9 shows exact values of a MCS, Figure 8 shows the
difference between the exact value (0.75) and the result of
the experiments.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

430

(a)

(b)
Figure 8. MCS deltas with 0 to 2e7 points, step size 1e4 (a) delta (b) |delta|.

TABLE II. COMPUTED VALUES FOR THE EXPERIMENT FROM FIGURE 8
points Value Delta �Delta�

0 1.000000000 0.250000000 0.250000000
1e5 0.753811111 0.003811111 0.003811111
2e5 0.747168421 -0.002831579 0.002831579
3e5 0.751206897 0.001206897 0.001206897
4e5 0.749664103 -0.000335897 0.000335897
5e5 0.749600000 -0.000400000 0.000400000
6e5 0.751137288 0.001137288 0.001137288
7e5 0.749449275 -0.000550725 0.000550725
8e5 0.749494937 -0.000505063 0.000505063
9e5 0.750067416 0.000067416 0.000067416
1e6 0.749761616 -0.000238384 0.000238384

1.1e6 0.749096330 -0.000903670 0.000903670
1.2e6 0.749974790 -0.000025210 0.000025210
1.3e6 0.749975194 -0.000024806 0.000024806

points Value Delta �Delta�
1.4e6 0.749824460 -0.000175540 0.000175540
1.5e6 0.749869799 -0.000130201 0.000130201
1.6e6 0.749827673 -0.000172327 0.000172327
1.7e6 0.750348521 0.000348521 0.000348521
1.8e6 0.750415642 0.000415642 0.000415642
1.9e6 0.750494709 0.000494709 0.000494709

2e7 0.750215075 0.000215075 0.000215075

Figure 9. MCS results with 1e4 to 6e5 points.

The Figures 10 and 11 illustrate a detailed comparison
between the two approximation methods. They illustrate the
numerical method has, as expected, a smooth and faster
convergence.

Figure 10. Comparison of the error delta fluctuation for the two
approximation methods (Monte Carlo Simulation – blue, Numerical
Integration – red) ranging from 0 to 5e3.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

431

(a)

(b)
Figure 11. Comparison of the absolute error delta for the two approximation methods (Monte Carlo Simulation – blue, Numerical Integration – red); (a)
number of points increasing from 0 to 9e6; (b) number of points increasing from 2e5 to 9e6.

IV. CONCLUSION

The two approximation models described in this paper
do not have the same accuracy as the exact method, though
they produce output very close to the desired one. This is
getting important when exact solutions are not possible or
much too expensive in needed computational power.
Furthermore, if there are outside conditions, that have to be
taken into account, the Monte Carlo method seems more
flexible, as these can be simply added by modifying the
simulation. As for the integration methods, in that case a
new mathematical model has to be defined and
implemented addressing these new conditions. A different
probability distribution, for example, could not be easily
modeled by numerical integration. In this paper, we gave a
basic example, able to address the three solution methods.
The described scenario can be extended in a variety of
ways. For example, we can look at more than two parallel
threads or consider different wait times (wi) for the locking

(Figure 1). In this case we would have to deal with
multidimensional integrals for calculating the exact
probability. The initial problem model can also be
transferred in other areas such as database transactions or
synchronization. In a multithreaded environment knowing
the probability of a deadlock can significantly reduce the
overhead in detecting critical situations.

V. USED TOOLS

All computation was performed on an Intel Core 2 Duo
T7500 Processor. The code for the experiments was
written in F# [3] and C++, using the .NET 4.0 Platform
and Visual Studio 2010 Beta 2. The graphics were made in
Mathematica 7.0 [11], GIMP 2.0 and Microsoft Excel
2010.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

432

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Dr. Manfred
Gruber for his help and support.

REFERENCES

[1] R. E. Caflisch, "Monte Carlo and quasi-Monte Carlo methods", Acta
Numerica 7, pp. 1-49, Cambridge University Press, 1998.

[2] B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, T. Peierls, "Java
Concurrency in Practice", Addison-Wesley Longman, Amsterdam,
2006.

[3] J. Harrop, "F # for Scientists", John Wiley & Sons, 2008.
[4] W. K. Hastings, "Monte Carlo Sampling Methods Using Markov

Chains and Their Applications", Biometrica, Vol. 57, No. 1, pp 97-
109, 1970.

[5] D. P. Landau, K. Binder, "A Guide to Monte Carlo Simulations in
Statistical Physics", New York Cambridge University Press, 2005.

[6] J. S. Liu, "Monte Carlo Strategies in Scientific Computing",
Springer, New York, 2008.

[7] J. Magee, J. Kramer, "State Models and Java Programs", John Wiley
& Sons, 2nd Edition, 2006.

[8] N. Metropolis, S. Ulam, "The Monte Carlo Method", Journal of the
American Statistical Association 44 (247), pp. 335-341, 1949.

[9] K. A. Robbins, S. Robbins, "UNIX Systems Programming:
Communication", Concurrency and Threads, Prentice Hall, 2003.

[10] C. P. Robert, G. Casella, "Monte Carlo Statistical Methods", 2nd

Edition, Springer, New York, 2005.
[11] H. Ruskeepaa, "Mathematica Navigator: Mathematics, Statistics and

Graphics", Academic Press, 3rd Edition, 2009.

[12] R. W. Shonkwiler, F. Mendivil, "Explorations in Monte Carlo
Methods", Springer, New York, 2009.

[13] CSM: Computer Science and Mathematics, "Impact of Monte Carlo
methods on scientific research", URL:
http://www.csm.ornl.gov/ssi-expo/MChist.html.

[14] MacKinnon, A.: "Computational Physics, Monte-Carlo Integration",
URL:
http://www.ipp.mpg.de/~rfs/comas/Helsinki/helsinki04/comp
phys/node87.html.

[15] Hörmann, W., Leydold, J.: "Monte Carlo Integration using
Importance Sampling and Gibbs Sampling", In: H. Dag and Y.
Deng (eds.), Proceedings of the International Conference on
Computational Science and Engineering, pp.92-97, Istanbul, 2005.

[16] Iordanova, T.: "Introduction to Monte Carlo Simulation", In:
INVESTOPEDIA, URL:
http://www.investopedia.com/articles/07/monte_carlo_intro.a
sp.

[17] Zabenkov, I.V., Kochubey, V.I.: "Monte Carlo simulation of the
recording of fluorescent objects in the skin", In: Optics and
Spectroscopy, vol. 107, nr. 6, pp. 898-902, Springer, 2009.

[18] Programming Praxis, "Calculating Pi", URL:
http://programmingpraxis.com/2009/10/09/calculating-pi/.
[19] Gonsalves, G.J.: "Monte Carlo Calculation of", URL:
http://www.physics.buffalo.edu/phy516/jan25.pdf.
[20] Logofătu, D.: "Bazele programării în C. Aplicaţii", pp. 229-246,

Polirom, Iaşi, 2006.
[21] Logofătu, D.: "Eine praktische Einführung in C", pp. 209-226,

entwickler-press, München, 2008.

http://www.csm.ornl.gov/ssi-expo/MChist.html
http://www.ipp.mpg.de/~rfs/comas/Helsinki/helsinki04/compphys/node87.html
http://www.ipp.mpg.de/~rfs/comas/Helsinki/helsinki04/compphys/node87.html
http://www.investopedia.com/articles/07/monte_carlo_intro.asp
http://www.investopedia.com/articles/07/monte_carlo_intro.asp
http://programmingpraxis.com/2009/10/09/calculating-pi/
http://www.physics.buffalo.edu/phy516/jan25.pdf

