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Abstract – This paper addresses some aspects on modeling a 
problem in continuous probability theory. We start describing 
a common problem in current computer science, the deadlock. 
This is followed by a mathematical abstraction of the problem. 
Three solution models are presented for it, two of them 
designed for multidimensional cases. These models are then 
tested in experiments and compared against the exact solutions.

Index Terms – Continuous Probability Theory, Geometry, 
Monte-Carlo Simulation, Parallelization, Threading

I. INTRODUCTION

Sharing is never easy. Most humans learn to share as a 
child, when the act of giving away a part of one’s
belongings results in getting back something, be it 
physically or emotionally. Problems with this approach arise 
when an object cannot be divided up and is desired by more 
than one party. In this case, a compromise can be found by 
defining disjunctive time spans where only a single party 
holds the object. When the time is over, it is handed on to 
another party. This approach directly leads to concurrency if 
the time spans are not set in advance [7, 9].

Concurrency in computer science means that several 
computations are executing simultaneously, potentially 
interacting with each other, and eventually sharing the same 
resources (memory, CPU). This often leads to a serialization 
of access, what implies a ranking of the participating events. 
In many cases it is unimportant in which order the events are 
executed or if they are processed simultaneously [2, 9]. 
Concurrency and parallel processing are becoming more and 
more important nowadays, for example with the uprising of 
multi-core processor systems and new parallel algorithms 
where some calculations can be performed independently. In 
the context of program processes concurrency is achieved 
through splitting a process into several so called threads. 
These threads all share a common code base but run 
independently from each other and they must be 
synchronized if a common data structure has to be accessed. 
If a thread wants to access a resource it has to lock it first to 
indicate that this resource is being accessed and cannot be 
used by another thread. If then another thread wants to 
access the same resource it has to wait until the lock is being 
released by Thread A.

Multithreading is becoming more important as there is the 
demand of parallel processing.

Let us consider the scenario of two threads running in 

parallel (Figure 1, state RUNNING) and further thread A
waiting for thread B to release the lock of some object 
(Figure 1, state WAIT). This waiting starts in a time span
[t11, t12] with equal probability distribution and takes some 
time w1. Let now thread B also start waiting in a time span
[t21, t22] for an object thread A has to release. This takes the 
time w2. It sometimes occurs that both threads are in the 
WAIT state at the same time. In this situation, none of them 
can proceed without the other, what is then called a 
deadlock. The application cannot operate any further and 
must at least shut down the two threads. The problem we 
will discuss in this paper is to find the probability of this 
event.

Figure 1. Process containing two threads A and B with the risk of a 
deadlock.

To solve this problem, we first describe it in a more 
abstract, mathematical way. We start with Xi being a 
continuous random variable with uniform distribution, 
representing the thread i. Let all Xi have the following form:
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In [1] ti1 and ti2 being the first/last possible points in time 
where thread i might start waiting and
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Let then wi be the time thread i needs to wait for another 
one to release the lock of an object. For simplicity, all wi are 
equal and constant for all i (=w). To define the problem, we 
need a combination C of the random variables. Let n be the 
number of random variables and i {1, …, n}. Then C can 
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be defined as
C = {c  X1, xi  Xi | i: xi – w c xi + w}      (3)

When C the probability p of a deadlock is nonzero and 
can be written as
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For two random variables X1 and X2, there is a geometric 

interpretation of this probability. Let t11 and t12 be the 
boundary points of the range of X1 and let t21 and t22 the 
boundary points of the range of X2. Then C is the area of a 
rectangle A in a two-dimensional space formed by X1 and X2

bordered by two lines y1 = x + w and y2 = x - w with x  X1

and y1, y2 X2. 

Figure 2. C for two random variables.

The probability of a deadlock is

.
A

C
p  (5)

We will use this formula for our solutions in the next part.

II. SOLUTION MODELS

To calculate the area of C in the two-dimensional case, 
we will now introduce three solution models – the Monte 
Carlo Simulation, a numerical method and the exact 
solution. The first two models were chosen because they can 
be extrapolated very easily. This will be an advantage when 
more than two random variables are chosen to generate C.

A. First solution model – Monte Carlo Simulation

Monte Carlo methods rely on repeated random sampling 
to compute their results. The idea came from Enrico Fermi 
in the 1930s, when he used Monte Carlo in the calculation 
of neutron diffusion [13]. Monte Carlo methods are mostly 
used if finding an exact solution to a problem is very 
complex or impossible. A classic example of using the 
method is the approximation of π [18, 19, 20, 21]. There are 
many variants of Monte Carlo methods, but all of them 
follow a particular pattern:

1. For the originally mathematical model a stochastic 
model must be found which describes the problem.

2. A sequence of random numbers must be generated. 
These values should simulate possible real situations.

3. There must be found estimations from the random 
values for the original problem.

Monte Carlo methods are used in many different areas 
like mathematics, physics or in the financial sector [1, 4, 5, 
6, 8, 12, 13]. In mathematics, they are often used for 
evaluating definite integrals with complicated boundary 
conditions. Especially for multidimensional integrals the 
Monte Carlo integration can be particularly efficient [14]. 
For example, two of the most used Monte Carlo methods for 
integration were compared by Hörmann and Leydold in 
2005 [15]. In the financial sector, Monte Carlo methods are 
used, among others, to reduce the uncertainty involved in 
estimating future outcomes [16]. A wide area of application 
for Monte Carlo methods can also be found in physics [5, 6]. 
Zabenkov and Kochubey have used the Monte Carlo 
simulation to study the dependence of the spatial resolution 
of a luminescent object inside the skin [17]. Below, we are 
using Monte Carlo simulation to calculate the area of C.

In our solution model, we generate random points in the 
rectangle formed by the two random variables X1 and X2 as 
defined before.

(a) (b)

Figure 3. Two samples for MC method.

The red points in (a) and (b) lie in C and can be used to 
approximate the probability:

.
all pointsnumber of 

red pointsnumber of 
p   (6)

B. Second solution model – Numerical Integration

If we do not choose random points but divide the 
rectangle in equally spaced subparts, we can approximate C
numerically. The points lie on the edges between the parts. 
Again, the number of red points is used to approximate the 
probability the way we did it in (6).

(a) (b)

Figure 4. Two Samples for the numerical method.

C. Third  solution model – Exact Integration

As the problem is in two-dimensional space, we can use 
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normal integration to solve it exactly.

(a) (b)

Figure 5. Two Samples for the exact method.

The red area shown in figure 6 represents C. To get its 
value, some variables have to be defined first.

)),,max(min( 112112 twttblower     (7)

)),,max(min( 112212 twttbupper     (8)

)),,min(max( 122111 twtttlower     (9)

)),,min(max( 122211 twtttupper        (10)

Then C can be computed by integrating the lines.
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The area A is (t12–t11) (t22–t21).

III. EXPERIMENTS

We will now compare the different solution models. In 
the experiments, only one parameter is changed at a time, 
the others remain constant. Interesting parameters are t11, t12, 
t21, t22, w, the number of MCS points and the step size of the 
numerical integration. t11, t12, t21 and t22 will remain constant 
in all experiments as they do not significantly change the 
performance of the methods. The parameter w is called 
“bandwidth” in all experiments, as it defines the half-
distance between the two lines in the two-dimensional 
space.

For all experiments, random variables X1 and X2 are used, 
having the following continuous distribution:

 kkkXP ],10;0[1.0)( 1  (12)

 kkkXP ],10;0[1.0)( 2  (13)

A. First experiment: Changing the bandwidth

This experiment uses all solution methods and compares 
them by applying different bandwidths problems. The graph 
below shows three solutions by the probability delta to the 
exact value. The solutions are two Monte Carlo Simulations 
with 5e5 points and the numerical integration method with 
step size 0.02. All methods are applied to problems with 
bandwidths varying from 0 to 10.

Figure 6. Probability deltas for different bandwidths.

One can see that different Monte Carlo Simulations 
(MCS) produce very different output. Though, the overall 
difference to the exact value increases for bandwidths near 
the middle of the interval. 

TABLE I. COMPUTED VALUES FOR W=2, 4, …, 10
w Numerical MCS1 MCS2 Exact
2 0.362168 0.323478 0.354648 0.36
4 0.633987 0.641032 0.64984 0.64
6 0.831219 0.855048 0.833494 0.84
8 0.953864 0.957670 0.952594 0.96
10 1.000000 1.000000 1.000000 1.00

B. Second experiment: changing the step size of the 
numerical method

In this experiment we change the step size for the 
numerical integration method, leaving w constant at value 5. 
The approximation is getting better with increasing step 
size. Some values break out because the step size there fits 
well to the given problem. The exact value in this simulation 
is 0.75.

Figure 7. Numerical method, step size from 1e1 to 2e-2.

C. Third experiment: changing the number of MCS points

Now, the number of points used to approximate the 
probability is altered. w remains constant at value 5. Figure
9 shows exact values of a MCS, Figure 8 shows the 
difference between the exact value (0.75) and the result of 
the experiments.
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(a)

(b)
Figure 8. MCS deltas with 0 to 2e7 points, step size 1e4 (a) delta (b) |delta|.

TABLE II. COMPUTED VALUES FOR THE EXPERIMENT FROM FIGURE 8
# points Value Delta �Delta�

0 1.000000000 0.250000000 0.250000000
1e5 0.753811111 0.003811111 0.003811111
2e5 0.747168421 -0.002831579 0.002831579
3e5 0.751206897 0.001206897 0.001206897
4e5 0.749664103 -0.000335897 0.000335897
5e5 0.749600000 -0.000400000 0.000400000
6e5 0.751137288 0.001137288 0.001137288
7e5 0.749449275 -0.000550725 0.000550725
8e5 0.749494937 -0.000505063 0.000505063
9e5 0.750067416 0.000067416 0.000067416
1e6 0.749761616 -0.000238384 0.000238384

1.1e6 0.749096330 -0.000903670 0.000903670
1.2e6 0.749974790 -0.000025210 0.000025210
1.3e6 0.749975194 -0.000024806 0.000024806

# points Value Delta �Delta�
1.4e6 0.749824460 -0.000175540 0.000175540
1.5e6 0.749869799 -0.000130201 0.000130201
1.6e6 0.749827673 -0.000172327 0.000172327
1.7e6 0.750348521 0.000348521 0.000348521
1.8e6 0.750415642 0.000415642 0.000415642
1.9e6 0.750494709 0.000494709 0.000494709

2e7 0.750215075 0.000215075 0.000215075

Figure 9. MCS results with 1e4 to 6e5 points.

The Figures 10 and 11 illustrate a detailed comparison 
between the two approximation methods. They illustrate the 
numerical method has, as expected, a smooth and faster
convergence.

Figure 10. Comparison of the error delta fluctuation for the two 
approximation methods (Monte Carlo Simulation – blue, Numerical 
Integration – red) ranging from 0 to 5e3.
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(a)

(b)
Figure 11. Comparison of the absolute error delta for the two approximation methods (Monte Carlo Simulation – blue, Numerical Integration – red); (a) 
number of points increasing from 0 to 9e6; (b) number of points increasing from 2e5 to 9e6.

IV. CONCLUSION

The two approximation models described in this paper 
do not have the same accuracy as the exact method, though 
they produce output very close to the desired one. This is 
getting important when exact solutions are not possible or 
much too expensive in needed computational power. 
Furthermore, if there are outside conditions, that have to be 
taken into account, the Monte Carlo method seems more 
flexible, as these can be simply added by modifying the 
simulation. As for the integration methods, in that case a 
new mathematical model has to be defined and 
implemented addressing these new conditions. A different 
probability distribution, for example, could not be easily 
modeled by numerical integration. In this paper, we gave a 
basic example, able to address the three solution methods.
The described scenario can be extended in a variety of 
ways. For example, we can look at more than two parallel 
threads or consider different wait times (wi) for the locking

(Figure 1). In this case we would have to deal with 
multidimensional integrals for calculating the exact 
probability. The initial problem model can also be 
transferred in other areas such as database transactions or 
synchronization. In a multithreaded environment knowing 
the probability of a deadlock can significantly reduce the 
overhead in detecting critical situations.

V. USED TOOLS

All computation was performed on an Intel Core 2 Duo 
T7500 Processor. The code for the experiments was 
written in F# [3] and C++, using the .NET 4.0 Platform 
and Visual Studio 2010 Beta 2. The graphics were made in 
Mathematica 7.0 [11], GIMP 2.0 and Microsoft Excel 
2010.
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