
11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 87

Abstract — Information security becomes an important issue
of the communication networks. Different cryptographic
algorithms are used to ensure the confidentiality of the
transmitted information: public-key algorithms, such as RSA
(Rivest, Shamir, Adleman), IDEA (International Data
Encryption Algorithm) or El-Gamal, and secret-key
algorithms, such as DES (Data Encryption Standard), TDES
(Triple DES) and AES (Advanced Encryption Standard) [1].
Some of them works binary (DES, TDES), RSA uses decimal
numbers; others are defined on finite algebraic fields. The most
powerful is considered to be AES, which uses 128, 192 and 256-
bit encryption keys. The known attacks against AES are not
yet successful but it is a matter of time till breaking AES will be
possible. Computing technology evolves quickly and all known
encryption algorithms are intensively studied by the
cryptanalysts in order to develop efficiently attack methods.
So, it is necessary to make AES more robust and one way to do
this is to increase the encryption key length to 384, 512, 768
and 1024 bits. This involves larger data structures and also
larger algebraic fields. We propose and present the modified
AES algorithm, defined on GF (256), on data matrices of 8*6,
8*8, 8*12 and 8*16 bytes.

Index Terms — Data security, Data structures,
Cryptography

I. INTRODUCTION

Confidentiality is an important security service in any
communication system.

The private character of the information transmitted on a
communication channel is ensured using different
cryptographic techniques.

A powerful cryptography system should resist to all types
of attacks:

 Differential cryptanalysis, based on the
correlation properties of the coded sequence
(discovered in 1990).

 Linear cryptanalysis, searching for some
correlation between the coded signal and the
original.

 Key cryptanalysis, looking for the encryption
key from a large set of possible key-sequences.

Public key cryptography and secret-key cryptography
compete for the most robust algorithms, but it seems that the
algorithms based on secret encryption keys are the most
powerful.

Brute-force attack is trying to find the encryption key
analyzing a set of possible values. Its success depends on the
key space dimension and it is inefficient for very long key
sequences. Nowadays, 256-bit keys are long enough to
avoid this type of attack.

The number of iterations made by an encryption
algorithm is also important to ensure its robustness.

DES (Data Encryption Standard) is a binary symmetric

block-code, with a 64-bit secret encryption key and it has 16
identical rounds (ANSI X3.92).

TDES (Triple Data Encryption Standard) applies three
times the DES encoding and decoding algorithms, with a
larger key, of 128 bits and it is more robust than its
predecessor.

AES (Advanced Encryption Standard) operates on octets,
with secret encryption keys of 128, 192 up to 256 bits, and it
makes 10, 12 or 14 iterations, depending on the length of the
encryption keys. But successful attacks were developed only
for a reduced number of iterations. Therefore it is widely
used on computer networks, to protect stored information
and transmitted data. It is adopted for different
governmental and military applications but it is successfully
used in other domains.

RSA (Rivest, Shamir, Adleman) operates on the decimal
value of the message and its robustness is based on the
impossibility to factorize very large numbers (of at least 300
digits). It can use public encryption keys up to 2048 bits to
prevent the brute force attack.

Many encryption algorithms can be defined on Galois
Fields (GF). The binary alphabet is, in fact, a GF with only
two elements.

A GF is an algebraic finite field with a number of
elements equal to a power of 2. It is denoted by GF (2m) [2].

The Galois Field is very convenient for encoding
algorithms, because computation is simple and there are
dedicated circuits and fast algorithms for GF algebra. There
is no difference in complexity comparing to binary algebra.

An element a from the Galois field GF (2m), can be
expressed:

 in the decimal system,
 as a binary sequence of m bits:

 1210  maaaaa (1)

 as the polynomial associated to the binary
sequence:







1

0

)(
m

i

i
i xaxa (2)

 exponentially, using a primitive element b of the
field (if the element itself is not null):

.0,  aba e (3)

For example, GF (256) works with bytes, having integer
values from 0 to 255:

GF (256) = {0, 1, 2 … 255} (4)
Each element can be written as an 8-bit sequence, as a

polynomial, having the coefficients given by the
corresponding binary sequence and also, with an exponent
of 3 (if it is not null), which is a primitive element of this
field.

For example, the number 23 is expressed as the octet [0 0

Modified Advanced Encryption Standard

Luminiţa SCRIPCARIU and Mircea-Daniel FRUNZĂ
Technical University “Gheorghe Asachi” of Iasi, Romania

11 Carol I Blvd, RO – 700506 Iasi
luminita.scripcariu@gmail.com,mircea.frunza@gmail.com

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 88

0 1 0 1 1 1] and it has the associated polynomial x4+x2+x+1.
It could be written in exponential form, as 3239 in GF (256).

Addition and multiplication are inner operations of the
algebraic finite field.

On GF (256), addition of two numbers, a and b, is made
modulo-2, bit-by-bit, using the binary expression of the
elements:

70, toiforbasbas iii  (5)

Subtraction is similar to addition. It implies the opposite
element of the subtractive, but using modulo-2 operations,
the opposite element is the element itself, because b + b = 0:

bababac )((6)

On GF (256), multiplication of two elements is made
multiplying their polynomials and finally, a primitive
polynomial p(x), is used to reduce modulo-p(x) the result.

The multiplication of two elements is made as it follows:
 )(mod)()()(xpxbxaxc  (7)

where 













1

0

1

0

1

0

)(,)(,)(
m

i

i
i

m

i

i
i

m

i

i
i xcxcxbxbxaxa are the

polynomials of the elements a, b and c of the GF.
For example, on GF (256), we may use the primitive

polynomial:

1)(2348  xxxxxp (8)

It is called the polynomial number 285, according to the
decimal value which corresponds to its set of binary
coefficients: [1 0 0 0 1 1 1 0 1].

Other primitive polynomials may also be used, but it must
be specified each time some arithmetic operations on GF are
made.

Division is defined based on the inverse element which
exists for all not-null elements of the field. In fact, division
of an element a by b is computed as the multiplication of a
with the inverse element b-1:

.10,/ 11   bbandbwithbabac (9)

All algebraic operations are used by the encoding and
decoding algorithms defined on Galois Fields, including
exponentiation, logarithm computation, matrix operations
and so on.

II. CLASSIC AES ALGORITHM

The classic AES algorithm is a block code, defined on
128, 192 or 256-bit words, according to the length of the
encryption key and denoted as AES-128, AES-192, and
AES-256.

AES operates on the Galois Field with 256 elements,
denoted GF (256).

Each data word is written as a sequence of 16, 24 or 32
bytes, which become the elements of the data-matrix,
defined on the 8-bit Galois Field GF (256). So, AES is
applied on a 4*4, 4*6 or 4*8 data matrix.

The serial input data stream is partitioned into blocks of 8
bits, which represent elements of the finite algebraic Galois
Field GF (256). These elements are grouped into state-
matrices, with 4 rows and Nc columns (Nc = 4, 6 or 8),
depending on the chosen length of the encryption key (128,
192 or 256 bits) (Figure 1).

First, each ith block of 8 bits [bi bi+1 bi+2 bi+3 bi+4 bi+5 bi+6

bi+7] is non-linearly processed bit-by-bit, as modulo-2 sums

of transmitted bits and some constant values ci read from the
constant byte 0110.0011 = 0x.63:

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(' (10)

This step is a substitution process and therefore it is called
the SubBytes stage.

Fig. 1 State-matrix for AES-192

Next step permutes the elements on each row of the state-
matrix, with a different shift value: 0 for the first row, 1 for
the second one, 2 for the third and 3 for the last.

For AES-128, the permutation is made as it follows:





















30333231

21202322

12111013

03020100

16 '

ssss

ssss

ssss

ssss

S (11)

This permutation corresponds to the cryptographic
technique of transposition, in the simple manner of right-
hand shifting.

Then, AES processes each column of the matrix, using an
invertible polynomial a(x), for column multiplication:

3
3

2
210)(xaxaxaaxa  (12)

Rjindael propose a particular reducible polynomial a(x)
for column multiplication [3, 1, 1, 2], but other polynomials
of third degree may also be used.

Each column of the state matrix is associated to a
polynomial s(x) which is multiplied by the encoding
polynomial a(x).

The elements of the state matrix are octets, so all the
arithmetic operations are made on GF (256).

The polynomial multiplication is made modulo-p(x),
where p(x) is the polynomial number 17:

1)(4  xxp (13)

The coefficients of the resulting polynomial are written
back into the state matrix.

For AES-128, instead of multiplying the polynomial of
each column with p(x), we can compute the multiplication
between the invertible matrix A, associated to the
polynomial a(x), and each column vector of the state-matrix
S:





















0321

1032

2103

3210

aaaa

aaaa

aaaa

aaaa

A (14)

1,0,  cii NisAc (15)

s00

s10

s20

s30

a

s01

s11

s21

s31

a

s02

s12

s22

s32

a

s03

s13

s23

s33

a

s04

s14

s24

s34

a

s05

s15

s25

s35

a

S24 =

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 89

and























3,

2,

1,

0,

i

i

i

i

i

s

s

s

s

s represents the ith column of the state

matrix.
In the particular case of AES-128, this step corresponds to

the matricial multiplication between A and S:
SAC  (16)

All arithmetic operations are made on GF (256).
We prefer using the matricial way instead of the

polynomial mode, in order to easily implement the
algorithm.

The fourth step of the algorithm applies the encryption
key to the data matrix.

The encryption key is written as a key-matrix K, having
the same dimensions as the state-matrix (S), and then the
sum of the matrices is computed on GF (256), according to
the following relation:

CKE  (17)
Decryption involves the same steps, in reverted order, and

uses the inverse matrix A-1:

CADKEC  1;

or 1,0,1  
cii NicAd (18)

After all these operations are made, the inverse
permutation of the elements on each row is applied and
finally the original bits of each byte are deduced.

III. MODIFIED AES ALGORITHM

To increase the robustness of the AES algorithm, we have
to use longer encryption keys and larger data matrix [3]. To
keep the processing time at low values, we have to maintain
unchanged the complexity of the AES algorithm.

The modified AES algorithm (MAES) will work on data
matrices with exactly 8 rows and a variable number of
columns (Nc): 6, 8, 12 and 16 (Figure 2). Same steps are
made. The encryption key will have an equivalent length of
about 384, 512, 768 and 1024 bits, and the modified
algorithm is denoted according to it: MAES-384, MAES-
512, MAES-768 and MAES-1024.



































7767574737271707

7666564636261606

7565554535251505

7464544434241404

7363534333231303

7262524232221202

7161514131211101

7060504030201000

64

ssssssss

ssssssss

ssssssss

ssssssss

ssssssss

ssssssss

ssssssss

ssssssss

S

Fig. 2 State-matrix for MAES-512

Input data will be processed as data blocks of 48, 64, 96
or 128 bytes, associated with the input polynomial:









7

0

1

0

)(
i

N

j

ij
ij

c

xsxs (19)

The first and the second steps of AES are similarly done
by MAES, excepting the shift value which is increased, row-
by-row, from 0 to 7.

For the third step of MAES, we propose the following
invertible polynomial:

8765432)(234567  xxxxxxxxa (20)

The encryption polynomial has a higher order in
comparison to the classic AES algorithm, considering the
increased number of rows, from 4 to 8:





7

0

)(
i

i
i xaxa (21)

For column multiplication step, it may be used the
encryption matrix A, given below:



































812347610

78123445

661026713

57496226

445713275

344571327

234457132

123445713

A (22)

It is an 8*8 matrix, deduced based on the invertible
polynomial a(x), given by the equation (20).

Its determinant, computed on GF (256) using some
Matlab functions [4], is equal to 242, so it is an invertible
matrix.

It is more efficient to use a secret encryption polynomial,
with a set of coefficients deduced based on a password of
the user or on the encryption key. If the resulting polynomial
is not-invertible, a unit will be added to it and the problem is
solved. Even if this procedure is more secure, it needs more
time to compute the inverse matrix for the decoder.

The multiplication of the two polynomials on GF (256) is
made modulo-p(x), where p(x) can be x8+1 or another 8-
degree primitive polynomial, obtained based on the
primitive element of GF (256) equal to 3 and its minimal
polynomial:

1)()(2348
3  xxxxxMxp (23)

We recommend using the minimal polynomial for
multiplication.

The encoded polynomial is computed on GF (256), as:

  



7

0

)(mod)()()(
i

i
i xcxpxsxaxc (24)

Its coefficients are derived and equation (15) is written
using the invertible encryption matrix A of 8*8 elements and
two column-vectors of 8 coefficients each, one is a column
of the state-matrix S and the other is the output encoded
column-vector:

sAc  (25)
Relation (17) is finally applied for MAES, as we use it in

AES.

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 90

Same steps are used by MAES in comparison to AES, but
the dimensions of all the arrays are increased.

The decryption algorithm makes the inverse operation:

cAs  1 (26)
A Matlab algorithm for matrix inversion, on GF (256), is

applied to compute the decoding matrix A-1:



































1085234876419718032

512375020620449183143

6876153418016216951

174351911713795129

86121109672228202182

104173183206542719547

7862601234621644107

151198419514517794

1A (27)

The modified algorithm makes for each input data block
an increased number of arithmetical operations in
comparison to AES, but the number of operations-per-
symbol (ops) remains the same since larger data structures
are processed by MAES.

IV. CONCLUSION

The modified AES algorithm, called MAES, is more
complex and more robust than the AES algorithm and the
encoding time is mostly the same, because no more data are
processed and the arithmetic operations are all made in the
same Galois field. Only the dimension of the data block is
changed but fewer blocks are processed for the same volume
of the transmitted data.

The existence of the inverse matrix on GF (256) should
be tested each time if different encoding polynomials are
used, but special cases could be solved in a simple manner,
to obtain a non-zero determinant of the encoding matrix.

The proposed MAES algorithm could be implemented in
different programming languages, such as Java [5], in order
to be used on different communication devices, like
computers, mobile phones or i-pads, with different operating
systems and requirements.

Data confidentiality is essential on wireless
communication systems, and more robust encryption
algorithms are needed. The proposed MAES algorithm
meets all these goals, its complexity is comparable to the
classic AES algorithm but it is more robust in comparison to
it, using longer encryption keys and higher matrix
dimensions.

Some improvements of MAES, for larger Galois fields,
will be considered for future works.

REFERENCES
[1] B. Schneier, “Applied cryptography”, second edition, NY: John Wiley

& Sons, Inc., 1996
[2] J.G. Proakis, D.G. Manolakis, "Introduction to Digital Signal

Processing", MacMillan Publishing Company, 1988
[3] L. Scripcariu, S. Ciornei, “Improving the Encryption Algorithms

Using Multidimensional Data Structures”, Proceedings of the Third
European Conference on the Use of Modern Information and
Communication Technologies, ECUMICT 2008, Gent (Belgium), pp.
375 – 384, Mar. 2008.

[4] B.D. Hahn, D.T. Valentine, “Essential MATLAB for Engineers and
Scientists, 4e”, Academic Press, 2010

[5] L. Scripcariu, A. Alistar, M.D. Frunza, “JAVA Implemented
Encryption Algorithm”, Proceedings of the 8th Int. Conference
"Development and Application Systems", Suceava, DAS 2006, pp.
424-429, May 2006.

PAGE

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

Modified Advanced Encryption Standard

Luminiţa SCRIPCARIU and Mircea-Daniel FRUNZĂ

Technical University “Gheorghe Asachi” of Iasi, Romania

11 Carol I Blvd, RO – 700506 Iasi

luminita.scripcariu@gmail.com,mircea.frunza@gmail.com

Abstract — Information security becomes an important issue of the communication networks. Different cryptographic algorithms are used to ensure the confidentiality of the transmitted information: public-key algorithms, such as RSA (Rivest, Shamir, Adleman), IDEA (International Data Encryption Algorithm) or El-Gamal, and secret-key algorithms, such as DES (Data Encryption Standard), TDES (Triple DES) and AES (Advanced Encryption Standard) [1]. Some of them works binary (DES, TDES), RSA uses decimal numbers; others are defined on finite algebraic fields. The most powerful is considered to be AES, which uses 128, 192 and 256-bit encryption keys. The known attacks against AES are not yet successful but it is a matter of time till breaking AES will be possible. Computing technology evolves quickly and all known encryption algorithms are intensively studied by the cryptanalysts in order to develop efficiently attack methods. So, it is necessary to make AES more robust and one way to do this is to increase the encryption key length to 384, 512, 768 and 1024 bits. This involves larger data structures and also larger algebraic fields. We propose and present the modified AES algorithm, defined on GF (256), on data matrices of 8*6, 8*8, 8*12 and 8*16 bytes.

Index Terms — Data security, Data structures, Cryptography

I. INTRODUCTION

Confidentiality is an important security service in any communication system.

The private character of the information transmitted on a communication channel is ensured using different cryptographic techniques.

A powerful cryptography system should resist to all types of attacks:

· Differential cryptanalysis, based on the correlation properties of the coded sequence (discovered in 1990).

· Linear cryptanalysis, searching for some correlation between the coded signal and the original.

· Key cryptanalysis, looking for the encryption key from a large set of possible key-sequences.

Public key cryptography and secret-key cryptography compete for the most robust algorithms, but it seems that the algorithms based on secret encryption keys are the most powerful.

Brute-force attack is trying to find the encryption key analyzing a set of possible values. Its success depends on the key space dimension and it is inefficient for very long key sequences. Nowadays, 256-bit keys are long enough to avoid this type of attack.

The number of iterations made by an encryption algorithm is also important to ensure its robustness.

DES (Data Encryption Standard) is a binary symmetric block-code, with a 64-bit secret encryption key and it has 16 identical rounds (ANSI X3.92).

TDES (Triple Data Encryption Standard) applies three times the DES encoding and decoding algorithms, with a larger key, of 128 bits and it is more robust than its predecessor.

AES (Advanced Encryption Standard) operates on octets, with secret encryption keys of 128, 192 up to 256 bits, and it makes 10, 12 or 14 iterations, depending on the length of the encryption keys. But successful attacks were developed only for a reduced number of iterations. Therefore it is widely used on computer networks, to protect stored information and transmitted data. It is adopted for different governmental and military applications but it is successfully used in other domains.

RSA (Rivest, Shamir, Adleman) operates on the decimal value of the message and its robustness is based on the impossibility to factorize very large numbers (of at least 300 digits). It can use public encryption keys up to 2048 bits to prevent the brute force attack.

Many encryption algorithms can be defined on Galois Fields (GF). The binary alphabet is, in fact, a GF with only two elements.

A GF is an algebraic finite field with a number of elements equal to a power of 2. It is denoted by GF (2m) [2].

The Galois Field is very convenient for encoding algorithms, because computation is simple and there are dedicated circuits and fast algorithms for GF algebra. There is no difference in complexity comparing to binary algebra.

An element a from the Galois field GF (2m), can be expressed:

· in the decimal system,

· as a binary sequence of m bits:

[image: image1.wmf][

]

1

2

1

0

....

-

=

m

a

a

a

a

a

 (1)

· as the polynomial associated to the binary sequence:

[image: image2.wmf]å

-

=

=

1

0

)

(

m

i

i

i

x

a

x

a

 (2)

· exponentially, using a primitive element b of the field (if the element itself is not null):

[image: image3.wmf].

0

,

¹

=

a

b

a

e

 (3)

For example, GF (256) works with bytes, having integer values from 0 to 255:

GF (256) = {0, 1, 2 … 255}

 (4)

Each element can be written as an 8-bit sequence, as a polynomial, having the coefficients given by the corresponding binary sequence and also, with an exponent of 3 (if it is not null), which is a primitive element of this field.

For example, the number 23 is expressed as the octet [0 0 0 1 0 1 1 1] and it has the associated polynomial x4+x2+x+1. It could be written in exponential form, as 3239 in GF (256).

Addition and multiplication are inner operations of the algebraic finite field.

On GF (256), addition of two numbers, a and b, is made modulo-2, bit-by-bit, using the binary expression of the elements:

[image: image4.wmf]7

0

,

to

i

for

b

a

s

b

a

s

i

i

i

=

Å

=

Û

+

=

 (5)

Subtraction is similar to addition. It implies the opposite element of the subtractive, but using modulo-2 operations, the opposite element is the element itself, because b + b = 0:

[image: image5.wmf]b

a

b

a

b

a

c

+

=

-

+

=

-

=

)

(

 (6)

On GF (256), multiplication of two elements is made multiplying their polynomials and finally, a primitive polynomial p(x), is used to reduce modulo-p(x) the result.

The multiplication of two elements is made as it follows:

[image: image6.wmf]{

}

)

(

mod

)

(

)

(

)

(

x

p

x

b

x

a

x

c

×

=

 (7)

where

[image: image7.wmf]å

å

å

-

=

-

=

-

=

=

=

=

1

0

1

0

1

0

)

(

,

)

(

,

)

(

m

i

i

i

m

i

i

i

m

i

i

i

x

c

x

c

x

b

x

b

x

a

x

a

are the polynomials of the elements a, b and c of the GF.

For example, on GF (256), we may use the primitive polynomial:

[image: image8.wmf]1

)

(

2

3

4

8

+

+

+

+

=

x

x

x

x

x

p

 (8)

It is called the polynomial number 285, according to the decimal value which corresponds to its set of binary coefficients: [1 0 0 0 1 1 1 0 1].

Other primitive polynomials may also be used, but it must be specified each time some arithmetic operations on GF are made.

Division is defined based on the inverse element which exists for all not-null elements of the field. In fact, division of an element a by b is computed as the multiplication of a with the inverse element b-1:

[image: image9.wmf].

1

0

,

/

1

1

=

×

¹

×

=

=

-

-

b

b

and

b

with

b

a

b

a

c

 (9)

All algebraic operations are used by the encoding and decoding algorithms defined on Galois Fields, including exponentiation, logarithm computation, matrix operations and so on.

II. CLASSIC AES ALGORITHM

The classic AES algorithm is a block code, defined on 128, 192 or 256-bit words, according to the length of the encryption key and denoted as AES-128, AES-192, and AES-256.

AES operates on the Galois Field with 256 elements, denoted GF (256).

Each data word is written as a sequence of 16, 24 or 32 bytes, which become the elements of the data-matrix, defined on the 8-bit Galois Field GF (256). So, AES is applied on a 4*4, 4*6 or 4*8 data matrix.

The serial input data stream is partitioned into blocks of 8 bits, which represent elements of the finite algebraic Galois Field GF (256). These elements are grouped into state-matrices, with 4 rows and Nc columns (Nc = 4, 6 or 8), depending on the chosen length of the encryption key (128, 192 or 256 bits) (Figure 1).

First, each ith block of 8 bits [bi bi+1 bi+2 bi+3 bi+4 bi+5 bi+6 bi+7] is non-linearly processed bit-by-bit, as modulo-2 sums of transmitted bits and some constant values ci read from the constant byte 0110.0011 = 0x.63:

[image: image10.wmf]i

i

i

i

i

i

i

c

b

b

b

b

b

b

Å

Å

Å

Å

Å

=

+

+

+

+

8

mod

)

7

(

8

mod

)

6

(

8

mod

)

5

(

8

mod

)

4

(

'

 (10)

This step is a substitution process and therefore it is called the SubBytes stage.

[image: image11]

Fig. 1 State-matrix for AES-192

Next step permutes the elements on each row of the state-matrix, with a different shift value: 0 for the first row, 1 for the second one, 2 for the third and 3 for the last.

For AES-128, the permutation is made as it follows:

[image: image12.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

30

33

32

31

21

20

23

22

12

11

10

13

03

02

01

00

16

'

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

S

 (11)

This permutation corresponds to the cryptographic technique of transposition, in the simple manner of right-hand shifting.

Then, AES processes each column of the matrix, using an invertible polynomial a(x), for column multiplication:

[image: image13.wmf]3

3

2

2

1

0

)

(

x

a

x

a

x

a

a

x

a

+

+

+

=

 (12)

Rjindael propose a particular reducible polynomial a(x) for column multiplication [3, 1, 1, 2], but other polynomials of third degree may also be used.

Each column of the state matrix is associated to a polynomial s(x) which is multiplied by the encoding polynomial a(x).

The elements of the state matrix are octets, so all the arithmetic operations are made on GF (256).

 The polynomial multiplication is made modulo-p(x), where p(x) is the polynomial number 17:

[image: image14.wmf]1

)

(

4

+

=

x

x

p

 (13)

The coefficients of the resulting polynomial are written back into the state matrix.

For AES-128, instead of multiplying the polynomial of each column with p(x), we can compute the multiplication between the invertible matrix A, associated to the polynomial a(x), and each column vector of the state-matrix S:

[image: image15.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

0

3

2

1

1

0

3

2

2

1

0

3

3

2

1

0

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

A

 (14)

[image: image16.wmf]1

,

0

,

-

=

×

=

c

i

i

N

i

s

A

c

 (15)

and

[image: image17.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

3

,

2

,

1

,

0

,

i

i

i

i

i

s

s

s

s

s

 represents the ith column of the state matrix.

In the particular case of AES-128, this step corresponds to the matricial multiplication between A and S:

[image: image18.wmf]S

A

C

Ä

=

(16)

All arithmetic operations are made on GF (256).

We prefer using the matricial way instead of the polynomial mode, in order to easily implement the algorithm.

The fourth step of the algorithm applies the encryption key to the data matrix.

The encryption key is written as a key-matrix K, having the same dimensions as the state-matrix (S), and then the sum of the matrices is computed on GF (256), according to the following relation:

[image: image19.wmf]C

K

E

Å

=

(17)

Decryption involves the same steps, in reverted order, and uses the inverse matrix A-1:

[image: image20.wmf]C

A

D

K

E

C

Ä

=

Å

=

-

1

;

or

[image: image21.wmf]1

,

0

,

1

-

=

×

=

-

c

i

i

N

i

c

A

d

 (18)

After all these operations are made, the inverse permutation of the elements on each row is applied and finally the original bits of each byte are deduced.

III. MODIFIED AES ALGORITHM

To increase the robustness of the AES algorithm, we have to use longer encryption keys and larger data matrix [3]. To keep the processing time at low values, we have to maintain unchanged the complexity of the AES algorithm.

The modified AES algorithm (MAES) will work on data matrices with exactly 8 rows and a variable number of columns (Nc): 6, 8, 12 and 16 (Figure 2). Same steps are made. The encryption key will have an equivalent length of about 384, 512, 768 and 1024 bits, and the modified algorithm is denoted according to it: MAES-384, MAES-512, MAES-768 and MAES-1024.

[image: image22.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

77

67

57

47

37

27

17

07

76

66

56

46

36

26

16

06

75

65

55

45

35

25

15

05

74

64

54

44

34

24

14

04

73

63

53

43

33

23

13

03

72

62

52

42

32

22

12

02

71

61

51

41

31

21

11

01

70

60

50

40

30

20

10

00

64

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

S

Fig. 2 State-matrix for MAES-512

Input data will be processed as data blocks of 48, 64, 96 or 128 bytes, associated with the input polynomial:

[image: image23.wmf]å

å

=

-

=

=

7

0

1

0

)

(

i

N

j

ij

ij

c

x

s

x

s

 (19)

The first and the second steps of AES are similarly done by MAES, excepting the shift value which is increased, row-by-row, from 0 to 7.

For the third step of MAES, we propose the following invertible polynomial:

[image: image24.wmf]8

7

6

5

4

3

2

)

(

2

3

4

5

6

7

+

+

+

+

+

+

+

=

x

x

x

x

x

x

x

x

a

 (20)

The encryption polynomial has a higher order in comparison to the classic AES algorithm, considering the increased number of rows, from 4 to 8:

[image: image25.wmf]å

=

=

7

0

)

(

i

i

i

x

a

x

a

 (21)

For column multiplication step, it may be used the encryption matrix A, given below:

[image: image26.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

8

1

2

3

4

7

6

10

7

8

1

2

3

4

4

5

6

6

10

2

6

7

1

3

5

7

4

9

6

2

2

6

4

4

5

7

13

2

7

5

3

4

4

5

7

13

2

7

2

3

4

4

5

7

13

2

1

2

3

4

4

5

7

13

A

(22)

It is an 8*8 matrix, deduced based on the invertible polynomial a(x), given by the equation (20).

Its determinant, computed on GF (256) using some Matlab functions [4], is equal to 242, so it is an invertible matrix.

It is more efficient to use a secret encryption polynomial, with a set of coefficients deduced based on a password of the user or on the encryption key. If the resulting polynomial is not-invertible, a unit will be added to it and the problem is solved. Even if this procedure is more secure, it needs more time to compute the inverse matrix for the decoder.

The multiplication of the two polynomials on GF (256) is made modulo-p(x), where p(x) can be x8+1 or another 8-degree primitive polynomial, obtained based on the primitive element of GF (256) equal to 3 and its minimal polynomial:

[image: image27.wmf]1

)

(

)

(

2

3

4

8

3

+

+

+

+

=

=

x

x

x

x

x

M

x

p

 (23)

We recommend using the minimal polynomial for multiplication.

The encoded polynomial is computed on GF (256), as:

[image: image28.wmf]{

}

å

=

=

-

×

=

7

0

)

(

mod

)

(

)

(

)

(

i

i

i

x

c

x

p

x

s

x

a

x

c

 (24)

Its coefficients are derived and equation (15) is written using the invertible encryption matrix A of 8*8 elements and two column-vectors of 8 coefficients each, one is a column of the state-matrix S and the other is the output encoded column-vector:

[image: image29.wmf]s

A

c

×

=

 (25)

Relation (17) is finally applied for MAES, as we use it in AES.

Same steps are used by MAES in comparison to AES, but the dimensions of all the arrays are increased.

The decryption algorithm makes the inverse operation:

[image: image30.wmf]c

A

s

×

=

-

1

 (26)

A Matlab algorithm for matrix inversion, on GF (256), is applied to compute the decoding matrix A-1:

[image: image31.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

-

108

52

34

87

64

197

180

32

51

237

50

206

204

49

183

143

68

76

15

34

180

162

169

51

174

35

19

11

7

137

95

129

86

121

10

96

72

228

202

182

104

173

183

206

54

27

195

47

78

62

60

123

46

216

44

107

151

19

84

195

145

177

9

4

1

A

(27)

The modified algorithm makes for each input data block an increased number of arithmetical operations in comparison to AES, but the number of operations-per-symbol (ops) remains the same since larger data structures are processed by MAES.

IV. CONCLUSION

The modified AES algorithm, called MAES, is more complex and more robust than the AES algorithm and the encoding time is mostly the same, because no more data are processed and the arithmetic operations are all made in the same Galois field. Only the dimension of the data block is changed but fewer blocks are processed for the same volume of the transmitted data.

The existence of the inverse matrix on GF (256) should be tested each time if different encoding polynomials are used, but special cases could be solved in a simple manner, to obtain a non-zero determinant of the encoding matrix.

The proposed MAES algorithm could be implemented in different programming languages, such as Java [5], in order to be used on different communication devices, like computers, mobile phones or i-pads, with different operating systems and requirements.

Data confidentiality is essential on wireless communication systems, and more robust encryption algorithms are needed. The proposed MAES algorithm meets all these goals, its complexity is comparable to the classic AES algorithm but it is more robust in comparison to it, using longer encryption keys and higher matrix dimensions.

Some improvements of MAES, for larger Galois fields, will be considered for future works.

REFERENCES

[1] B. Schneier, “Applied cryptography”, second edition, NY: John Wiley & Sons, Inc., 1996

[2] J.G. Proakis, D.G. Manolakis, "Introduction to Digital Signal Processing", MacMillan Publishing Company, 1988

[3] L. Scripcariu, S. Ciornei, “Improving the Encryption Algorithms Using Multidimensional Data Structures”, Proceedings of the Third European Conference on the Use of Modern Information and Communication Technologies, ECUMICT 2008, Gent (Belgium), pp. 375 – 384, Mar. 2008.

[4] B.D. Hahn, D.T. Valentine, “Essential MATLAB for Engineers and Scientists, 4e”, Academic Press, 2010

[5] L. Scripcariu, A. Alistar, M.D. Frunza, “JAVA Implemented Encryption Algorithm”, Proceedings of the 8th Int. Conference "Development and Application Systems", Suceava, DAS 2006, pp. 424-429, May 2006.

S24 =

s05

s15

s25

s35

a0,0

s04

s14

s24

s34

a0,0

s03

s13

s23

s33

a0,0

s02

s12

s22

s32

a0,0

s01

s11

s21

s31

a0,0

s00

s10

s20

s30

a0,0

PAGE

90

_1395755022.unknown

_1397138690.unknown

_1397141649.unknown

_1397142124.unknown

_1397142160.unknown

_1397142986.unknown

_1397142009.unknown

_1397141557.unknown

_1397141610.unknown

_1397139205.unknown

_1395755727.unknown

_1397135891.unknown

_1395755578.unknown

_1395755279.unknown

_1395753845.unknown

_1395754190.unknown

_1395754307.unknown

_1395754951.unknown

_1395754216.unknown

_1395753981.unknown

_1395749236.unknown

_1395749442.unknown

_1395749592.unknown

_1395749606.unknown

_1395749461.unknown

_1395749430.unknown

_1395749046.unknown

_1395749132.unknown

_1395748946.unknown

