11" International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

Image Enhancement Methods Approach using
Verilog Hardware Description Language

Tuliana CHIUCHISAN, Marius CERLINCA, Alin-Dan POTORAC, Adrian GRAUR
"Stefan cel Mare" University of Suceava
str.Universitatii nr.13, RO-720229 Suceava

iulia@eed.usv.ro,mariusc@eed.usv.ro,alinp@eed.usv.ro,adriang@usv.ro

Abstract — Given the importance of digital image processing
based on hardware implementations in order to achieve higher
performance, this paper discusses basic image enhancement
techniques with their implementation and results using a
hardware description language, Verilog. The use of HDLs to
provide signal processing results is a quite new technique
replacing the classical simulations and offering a direct
connection to hardware VLSI implementations. This paper is
providing an innovative method for simulation followed by
immediate implementation possibility. The present HDL
approach is applied to image processing and accordingly an
overview of underlying principle and concepts, along with
common algorithms usually used for image enhancement are
described.

The paper focuses on image enhancement in the spatial
domain, with particular reference to point processing methods
like: contrast manipulation, brightness manipulation, inverting
images, threshold operation.

Index Terms — Digital image processing, Image
enhancement, FPGA, Hardware design languages, Verilog.

I. INTRODUCTION

The Hardware Description Languages (HDLs) larger
availability allows the designers to not only logically
describe circuit functionality but to simulate and evaluate
the processing performances using appropriate development
and test environments. While the simulation is generating
the logical results a natural step consist in extending the use
of the hardware simulators into the field of signal
processing.

The main advantage of using HDLs to simulate digital
processing of any logical inputs is related with the
possibility of an immediate FPGA based hardware
implementation. Since the HDL syntax is always related to a
hardware structure, the timing information of the potential
hardware implementation is also available allowing specific
speed optimizations. Out of that, the use of HDLs means
hardware portability and on-the-fly re-programmability. The
main challenge is to transpose the validated algorithms into
a non-programming language as hardware description
languages are. Also, the input and output data files need to
be reshaped to match the binary content permitted into the
hardware simulators. Interesting results are obtained in
video processing as is presented in the paper.

The digital image processing is impacted today in some
way with a very large area of technical endeavor [1].

Digital image processing is used in very large and
expanding areas covering applications in multimedia
services, arts, medicine, space exploration, surveillance,
authentication, automated industry inspection and many
more areas [1].

The areas of application of digital image processing are
quite heterogeneous. To capture the breadth of this field in
order to develop a basic understanding of image processing
applications means to categorize images according to their
source, like electromagnetic energy spectrum (e.g., X-ray),
acoustic, ultrasonic, and electronic, or synthetic images
generated by computer [1]. These kind of applications
involve different processes, including image quality
enhancement and object detection.

It is important to note that this kind of processing ask for
appropriate resources, as memory availability or specific
attached peripheral devices out of processing power needs.
All these are not available on all ordinary general purpose
computers and many times the related procedures are not
very time efficient due to other additional constraints. Using
application specific hardware as ASICs or FPGAs a much
greater efficiency can be obtained compared with a software
implementation. The VLSI (Very Large Scale Integrated)
technology offers today complex alternative hardware
implementation solutions [2].

The use of configurable hardware and system level
programming languages allow direct implementation of
image processing algorithms with improved performances
and with a short time-to-market interval.

There are many technologies available for hardware
implementation. Application Specific Integrated Circuits
(ASIC) and Field Programmable Gate Arrays (FPGA’s) are
both reconfigurable devices able to support techniques such
parallelism and pipelining.

The use of reconfigurable hardware to implement
algorithms for image processing minimizes the time-to-
market cost while rapid prototyping with simplified
debugging and verification stages is also possible. [3].

Therefore, the reconfigurable devices seem to be the
ideal choice for implementation of image processing
algorithms.

Field Programmable Gate Arrays have traditionally been
configured by hardware designers using specific so called
Hardware Design Languages (HDLs). There are already few
such languages available offering different levels of
abstraction but the most important ones are Verilog HDL
(Verilog) and Very High Speed Integrated Circuits (VHSIC)
HDL (VHDL) [2].

II. IMAGE ENHANCEMENT METHODS

One of the most spectacular and interesting image
processing approaches is the image enhancement. The
interest for this domain stems from two principal application
directions:

144

11" International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

1. Improve the human interpretation and enhance the
pictorial visual information;

2. Modify the data structure of image representation
in order to optimize it for data storage, transmission
or other representation for autonomous machine
perception [1].

The main goal of any enhancement method is too obtain

a more suitable result compared with the original as is from
the point of view of a specific application.

Any image enhancement procedures can be categorized
into two approaches methods: spatial domain methods and
frequency domain methods. The spatial domain refers to the
pixels structure of the image plane itself and this kind of
enhancement is based on direct manipulation of those pixels
of an image. Frequency domain processing techniques are
using mathematical transforms to induce different
enhancements. The Fourier transform of an image is well
known for these purposes. [1].

Some of the simplest, yet useful, image processing
operations in the spatial domain involves the adjustment of
brightness, contrast or color in an image. A reason for
manipulating these attributes is the need to compensate for
difficulties in image acquisition and with image processing
we can increase the overall brightness of the object of
interest and magnify the tiny residual variations in contrast
across it. This image processing operations can reveal
enough detail to allow proper interpretation.

As described in some studies [4] point operations
perform a modification of the pixel values without changing
the size, geometry, or local structure of the image. The pixel
value is given by a =I (u, v) which depends exclusively on
the previous value @ = I (u, v) at the same position. This
pixel value is independent from any other pixel value,
including any of its neighboring pixels.

To map the original pixel values to the new values a
function f (@) is used [4],

a <fla I'wv)<fUwv))
for each image point with (u#, v) coordinates. When the
function f () is independent of the image coordinates, the
operation has the name global or homogeneous. Some
largely used homogeneous point operations include [4],
among others:

e modifying image brightness or contrast,

e applying arbitrary intensity transformations
(“curves”),
quantizing (or “posterizing”) images,
global thresholding,
gamma correction,
color transformations.

1. IMPLEMENTATION OF IMAGE PROCESSING
METHODS USING VERILOG HDL

Point processing operation is performed to enhance
animage and details not clearly visible in the
original image may become visible upon application of
the point operator. The purpose of the paper is to describe
some basic image enhancement methods using a hardware
description language, Verilog.

The Verilog language has the ability to read or write files
from a storage environment. This feature make it possible to
particularly design the test benches to read the test data from
storage device, generate the stimulus signals to the Verilog

test module and write back the results to the storage device.
Unfortunately, Verilog only read (and write) ASCII
character files being not capable to read images in standard
formats such as bitmap or jpeg directly from disk [5].

The hardware description language Verilog HDL was
developed to carry out readings and writings of files with
ASCII characters and it does not allow to process bitmap or
jpeg files. For that reason, it is necessary to represent binary
information with ASCII characters in the hex format. Hex
characters are quickly and easily converted to binary format
by Verilog HDL.

In order to resolve this problem it was defined a new
image format to be used with the test bench described. The
hex-file contain only information about RGB vector for each
pixel of the input image and does not contain information
about image dimensions or similar. The data from hex-file
was applied as stimulus to the point operations blocks
described in Verilog language.

The result was obtained in another external file and we
create an application described in Visual Studio to show the
modified output image and to compare with the original
input image.

Next, we describe the theory and implementation, using
Verilog language, of most commonly used point operations
used for image enhancement: A) Contrast manipulation, B)
Brightness manipulation, C) Inverting images, D) Threshold
operation.

Contrast_Operation Brightness_Operation

Bin(T0) L — BRHIH(T0) B0} | | Bout7:0)
e — nzo |
Rin0) [| sourn Rn(7.0) | | couro)
s — wlue(Z0) |
valueToAdd(70) |
elk
7:0) Roul{7:0} - __| Rouro)
data_in_ready |
elk
T reset
data_in_ready | =
= | | ready sgn | | ready
" h 4
Contrast_Operation Brightness_Operation
Invert_Image Thresholding
BIn(7:0) r h Bout(7:0) BnQ L | Bout(70)
Gnmo) | el
Gout(7:0) in &
e | —co Rn:0) | __| catro)
threshold(7:0) |
clk Rout(7:0)
clk Rout(7:0)
data_in_ready |
| ready data_in_ready |
resel_| reset ready
A A
Invert_Image Thresholding

Fig. 1 Point operations Verilog blocks

A. Contrast Manipulation

Expanding the contrast range by assigning the darkest
pixel value to black, the brightest value to white, and each of
the others to linearly interpolated shades of gray makes good
use of the display and enhances the visibility of features in
the image [6].

The Verilog code for contrast block to obtain an
enhancement image is shown in tables 1, 2.

145

11" International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

Table 1 Verilog code for Contrast addition

Table 4 Verilog code for Brightness subtraction

if (value > threshold) begin
tempR = Rin + valueToAdd;
if (tempR > 256)
Rout = 255;
else
Rout = Rin + valueToAdd;
tempG = Gin + valueToAdd;
if (tempG > 256)
Gout = 255;
else
Gout = Gin + valueToAdd;
tempB = Bin + valueToAdd;
if (tempB > 256)
Bout = 255;
else
Bout = Bin + valueToAdd;
end

if (sign == 0) begin
tempR = Rin - value;
if (tempR[8] == 1)
Rout = 0;
else
Rout = Rin - value;
tempG = Gin - value;
if (tempG[8] == 1)
Gout = 0;
else
Gout = Gin - value;
tempB = Bin - value;
if (tempB b[8] == 1)
Bout = 0;
else
Bout = Bin - value;
end

Table 2 Verilog code for Contrast subtraction

if (value < threshold) begin
tempR = Rin - valueToSubstract;
if (tempR[8] == 1)
Rout = 0;

else
Rout = Rin - valueToSubtract;

tempG = Gin - valueToSubtract;
if (tempG[8] == 1)
Gout = 0;
else
Gout = Gin - valueToSubtract;
tempB = Bin - valueToSubstract;
if (tempB[8] == 1)
Bout = 0;

else
Bout = Bin - valueToSubtract;
end

B. Brightness Manipulation

A dark region in an image may become brighter after the
point operation and the common used point operation are
increasing and decreasing of brightness. If an operator takes
each pixel value and adds a constant number to it, then
this point operation increases the brightness of the image
and similar subtraction operator reduces the brightness.

The goal of the presented Verilog code is to add and
subtract a constant value to the image pixel values (7ables 3,
4).

Table 3 Verilog code for Brightness addition

if (sign == 1) begin
tempR = Rin + value;
if (tempR > 256)
Rout = 255;

else

Rout = Rin + value;
tempG = Gin + value;
if (tempG > 256)

Gout = 255;
else

Gout = Gin + value;
tempB = Bin + value;

if (tempB > 256)
Bout = 255;
else
Bout = Bin + value;
end

C. Inverting Images

Reversing all of the contrast range produces the
equivalent of a photographic negative, which sometimes
improves the visibility of details. For example, the X-ray
images are commonly examined using negatives. Reversing
only a portion of the brightness range produces a visually
strange effect that can be used to show detail in both
shadowed and saturated areas [6].

Inverting an intensity image is a simple point operation
that reverses the ordering of pixel values (by multiplying
with — 1) and adds a constant value to map the result to the
admissible range again [7].

& Forml

[P

Fig. 2 Showing effect of invert operation

For example, considering the described function for a
pixel value being a = I (u, v), in the range of [0, a,.x], the
point operation result is

finvert (@) =—a+ Amax — Amax — QA

In order to convert a color image into a grayscale one,
the three color components of each pixel must be equalized
and a common procedure is to make the average of the three
color components.

R+G+ B
Req=Geq=Beg=—3—

The inversion for an 8-bit grayscale image with a,, =

255 is shown as an example of inverting operation.

Table 5 Verilog code for Invert Operation

value2 = (Rin + Gin + Bin)/2;
value4 = (Rin + Gin + Bin)/4;
value = (value2 + valued)/2;

Rout = 255 - value;

Gout = 255 - value;

Bout = 255 - value;

146

11" International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

D. Threshold operation

Thresholding operations are particularly interesting for
segmentation in the process of isolating an object of interest
from its background.

Thresholding an image means transforming all pixels in
two values only. This is a special type of quantization
comparing the pixel values with a given threshold value ay,
that is usually constant. That allows the separate the pixel
values in two classes. The described threshold function
Jinreshold (@) has to map all pixels to one of two fixed intensity
values a, or a;

finresnota (a) = [

with 0 < ay, < amax [4].
A black and white image (binary) image can be obtained
from a grayscale image through a thresholding operation.

In our implementation we use the thresholding with a
fixed (arbitrary chosen) threshold value of an indexed 8-bits
grayscale image. The thresholding operation will be
performed by scanning the values of each pixel from the
input image and replacing the corresponding pixel in the
destination image using a, = 0 and a; = 255. The value of
the threshold can be established inline Verilog testing code.

a, fora < agm
a; fora=ay

Table 6 Threshold Operation — Verilog code

ag Forml

Fisier

Fig. 4 Verilog result for Contrast Operation using threshold =
90, valueToAdd = 10 and valueToSubtract = 15 (right image)

g Forml

Fisier

if (value > threshold) begin
Rout = 255;
Gout = 255;
Bout = 255;

end

if (value < threshold) begin
Rout = 0;
Gout = 0;
Bout = 0;

end

Fig. 5 Verilog result for Brightness Operation using sign = 1

IV. EXPERIMENTAL RESULTS

The experimental results obtained when we apply the
point operations described using Verilog HDL to a possible
input image are shown in this section. We used an 8-bit
RGB color image (lena.bmp) as an input image, shown in
each left panel.

Fig. 3 Verilog result for Contrast Operation using threshold =
127, valueToAdd = 10 and valueToSubtract = 15 (right image)

and value = 60 (right image)
sl ﬂ
&
A

Fig. 6 Verilog result for Brightness Operation using sign = 0
and value = 60 (right image)

a5l Form1

Fisier

Fig. 7 Verilog result for Invert Operation (right image)

147

11" International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

o Forml

Fisier

5 Form1

Fisier

Fig. 9 Black & White result using threshold = 110 (right image)

V. CONCLUSION

Using HDLs for signal processing is a quite new
approach extending the field of digital design to signal
processing simulation. Since HDLs were designed to read
binary files in ASCII format as inputs the basic idea of this
research was to convert the input information in HDL
readable data, pass those data through the virtually circuit
described with Verilog, extract the binary results of the
hardware simulation and convert them back into signal. All
these actions are using the HDL development environment
and its hardware simulation facilities. There are some
important advantages of this technique. The most important
one is due to the fact that processing is always related with a
hardware structure with immediate implementation
availability and is not generated based on a mathematical
only model. More, the use of digital design tools in signal
processing simulations is offering a shorter way to the final
implementation of processing circuit since a configuration
file is immediately available for use.

Image enhancements methods offer a wide variety of
approaches for modifying image to achieve visually improve
images. The image enhancement operations were here
described using Verilog hardware description language and
the Verilog models were simulated using ISIM Simulator
from Xilinx ISE Design Suite. Verilog can’t handle the

148

standard image formats so the images were converted to a
binary-file, using an application created in Visual Studio.
The binary-file was applied as vector to the Verilog block
models. The output file was similarly converted and viewed
using the same application created in Visual Studio, to show
the original image and the results of the enhancement
methods. The image enhancement methods considered
include contrast manipulation, brightness manipulation,
inverting images and threshold operation.

The technique described in this paper is part of a larger
research oriented on the use of hardware description
languages in signal processing simulations area. Other
hardware processing simulations are to be studied as future
work in order to evaluate and prove the advantage of this
kind of approach. Extend the complex digital CAD tools
into the signal processing field are offering not only a
different developing solution but also a new larger
implementation method which has to be considered together
with the future digital technologies.

REFERENCES

R. C. Gonzalez, R. E. Woods — “Digital Image Processing”, Prentice
Hall, ISBN 0-13-094659-8, pp. 1-142, 2002.

Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne Babu and V.
Muthukumar - “Implementation and Evaluation of Image Processing
Algorithms on Reconfigurable Architecture using C-based Hardware
Descriptive Languages”, International Journal of Theoretical and
Applied Computer Sciences, Volume 1, Number 1, pp. 9-34, 2006
(http://www.gbspublisher.com/ijtacs/1002.pdf).

Venkateshwar Rao Daggu and Muthukumar Venkatesan — “Design
and Implementation of an Efficient Reconfigurable Architecture for

Image Processing Algorithms using Handel-C”,
http://www.uweb.ucsb.edu/~shahnam/CannyAlgorithmImplementatio
n.pdf

Wilhelm Burger, Mark J. Burge - “Principles of Digital Image
Processing — Fundamental Techniques”, Undergraduate Topics in
Computer Science, DOI 10.1007/978-1-84800-191-6 4, Springer-
Verlag London Limited, 2009.

A. Zuloaga, J.L. Martin, U. Bidarte, J.A. Ezquerra - “VHDL test
bench for digital image processing systems using a new image
format”, ECSI, 2007 (http://mx.reocities.com/CapeCanaveral/8482/).
John C. Russ - “Image Processing Handbook (sixth edition)”, CRC
Press, pp. 270-331, 2011

Wilhelm Burger, Mark J. Burge - “Digital Image Processing — An
Algorithmic Introduction Using Java”, e-ISBN 978-3-540-30941-3,
Springer, 2008.

Priyanka S. Chikkali, K. Prabhushetty - “FPGA based Image Edge
Detector and Segmentation”, International Journal of Advanced
Engineering Sciences and Technologies, vol. no. 9, issue no.2, pp187-
192, ISSN 2230-7818, 2011.

Raman Maini, H. Aggarwal - “A Comprehensive Review of Image
enhancement Techniques”, Journal of Computing, vol. 2, issue 3,
ISSN 2151-9617, pp. 269-300, 2010.

Nick Efford - “Digital Image Processing — A Practical Introduction
Using Java”, pp. 103-132, 2000.

William K. Pratt - “Digital Image Procesing (fourth edition)”, A John
Wiley & Sons, Inc. Publication, pp. 247-307, 2007.

PAGE

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

Image Enhancement Methods Approach using Verilog Hardware Description Language

Iuliana CHIUCHISAN, Marius CERLINCA, Alin-Dan POTORAC, Adrian GRAUR

"Stefan cel Mare" University of Suceava

str.Universitatii nr.13, RO-720229 Suceava

iulia@eed.usv.ro,mariusc@eed.usv.ro,alinp@eed.usv.ro,adriang@usv.ro

Abstract — Given the importance of digital image processing based on hardware implementations in order to achieve higher performance, this paper discusses basic image enhancement techniques with their implementation and results using a hardware description language, Verilog. The use of HDLs to provide signal processing results is a quite new technique replacing the classical simulations and offering a direct connection to hardware VLSI implementations. This paper is providing an innovative method for simulation followed by immediate implementation possibility. The present HDL approach is applied to image processing and accordingly an overview of underlying principle and concepts, along with common algorithms usually used for image enhancement are described.

The paper focuses on image enhancement in the spatial domain, with particular reference to point processing methods like: contrast manipulation, brightness manipulation, inverting images, threshold operation.

Index Terms — Digital image processing, Image enhancement, FPGA, Hardware design languages, Verilog.

I. INTRODUCTION

The Hardware Description Languages (HDLs) larger availability allows the designers to not only logically describe circuit functionality but to simulate and evaluate the processing performances using appropriate development and test environments. While the simulation is generating the logical results a natural step consist in extending the use of the hardware simulators into the field of signal processing.

The main advantage of using HDLs to simulate digital processing of any logical inputs is related with the possibility of an immediate FPGA based hardware implementation. Since the HDL syntax is always related to a hardware structure, the timing information of the potential hardware implementation is also available allowing specific speed optimizations. Out of that, the use of HDLs means hardware portability and on-the-fly re-programmability. The main challenge is to transpose the validated algorithms into a non-programming language as hardware description languages are. Also, the input and output data files need to be reshaped to match the binary content permitted into the hardware simulators. Interesting results are obtained in video processing as is presented in the paper.

The digital image processing is impacted today in some way with a very large area of technical endeavor [1].

Digital image processing is used in very large and expanding areas covering applications in multimedia services, arts, medicine, space exploration, surveillance, authentication, automated industry inspection and many more areas [1].

The areas of application of digital image processing are quite heterogeneous. To capture the breadth of this field in order to develop a basic understanding of image processing applications means to categorize images according to their source, like electromagnetic energy spectrum (e.g., X-ray), acoustic, ultrasonic, and electronic, or synthetic images generated by computer [1]. These kind of applications involve different processes, including image quality enhancement and object detection.

It is important to note that this kind of processing ask for appropriate resources, as memory availability or specific attached peripheral devices out of processing power needs. All these are not available on all ordinary general purpose computers and many times the related procedures are not very time efficient due to other additional constraints. Using application specific hardware as ASICs or FPGAs a much greater efficiency can be obtained compared with a software implementation. The VLSI (Very Large Scale Integrated) technology offers today complex alternative hardware implementation solutions [2].

The use of configurable hardware and system level programming languages allow direct implementation of image processing algorithms with improved performances and with a short time-to-market interval.

There are many technologies available for hardware implementation. Application Specific Integrated Circuits (ASIC) and Field Programmable Gate Arrays (FPGA’s) are both reconfigurable devices able to support techniques such parallelism and pipelining.

The use of reconfigurable hardware to implement algorithms for image processing minimizes the time-to-market cost while rapid prototyping with simplified debugging and verification stages is also possible. [3].

Therefore, the reconfigurable devices seem to be the ideal choice for implementation of image processing algorithms.

Field Programmable Gate Arrays have traditionally been configured by hardware designers using specific so called Hardware Design Languages (HDLs). There are already few such languages available offering different levels of abstraction but the most important ones are Verilog HDL (Verilog) and Very High Speed Integrated Circuits (VHSIC) HDL (VHDL) [2].

II. IMAGE ENHANCEMENT METHODS

One of the most spectacular and interesting image processing approaches is the image enhancement. The interest for this domain stems from two principal application directions:

1. Improve the human interpretation and enhance the pictorial visual information;

2. Modify the data structure of image representation in order to optimize it for data storage, transmission or other representation for autonomous machine perception [1].

The main goal of any enhancement method is too obtain a more suitable result compared with the original as is from the point of view of a specific application.

Any image enhancement procedures can be categorized into two approaches methods: spatial domain methods and frequency domain methods. The spatial domain refers to the pixels structure of the image plane itself and this kind of enhancement is based on direct manipulation of those pixels of an image. Frequency domain processing techniques are using mathematical transforms to induce different enhancements. The Fourier transform of an image is well known for these purposes. [1].

Some of the simplest, yet useful, image processing operations in the spatial domain involves the adjustment of brightness, contrast or color in an image. A reason for manipulating these attributes is the need to compensate for difficulties in image acquisition and with image processing we can increase the overall brightness of the object of interest and magnify the tiny residual variations in contrast across it. This image processing operations can reveal enough detail to allow proper interpretation.

As described in some studies [4] point operations perform a modification of the pixel values without changing the size, geometry, or local structure of the image. The pixel value is given by a =I (u, v) which depends exclusively on the previous value a = I (u, v) at the same position. This pixel value is independent from any other pixel value, including any of its neighboring pixels.

To map the original pixel values to the new values a function f (a) is used [4],

[image: image1.png]a < f(a)

 [image: image4.png]I'(w,v) « f(u,v))

for each image point with (u, v) coordinates. When the function f () is independent of the image coordinates, the operation has the name global or homogeneous. Some largely used homogeneous point operations include [4], among others:

· modifying image brightness or contrast,

· applying arbitrary intensity transformations (“curves”),

· quantizing (or “posterizing”) images,

· global thresholding,

· gamma correction,

· color transformations.

III. IMPLEMENTATION OF IMAGE PROCESSING METHODS USING VERILOG HDL

Point processing operation is performed to enhance an image and details not clearly visible in the original image may become visible upon application of the point operator. The purpose of the paper is to describe some basic image enhancement methods using a hardware description language, Verilog.

The Verilog language has the ability to read or write files from a storage environment. This feature make it possible to particularly design the test benches to read the test data from storage device, generate the stimulus signals to the Verilog test module and write back the results to the storage device. Unfortunately, Verilog only read (and write) ASCII character files being not capable to read images in standard formats such as bitmap or jpeg directly from disk [5].

The hardware description language Verilog HDL was developed to carry out readings and writings of files with ASCII characters and it does not allow to process bitmap or jpeg files. For that reason, it is necessary to represent binary information with ASCII characters in the hex format. Hex characters are quickly and easily converted to binary format by Verilog HDL.

In order to resolve this problem it was defined a new image format to be used with the test bench described. The hex-file contain only information about RGB vector for each pixel of the input image and does not contain information about image dimensions or similar. The data from hex-file was applied as stimulus to the point operations blocks described in Verilog language.

The result was obtained in another external file and we create an application described in Visual Studio to show the modified output image and to compare with the original input image.

Next, we describe the theory and implementation, using Verilog language, of most commonly used point operations used for image enhancement: A) Contrast manipulation, B) Brightness manipulation, C) Inverting images, D) Threshold operation.

		 [image: image5.png]Contrast_Operation

a2 eoiro)
Gnzg)
R0
|_Gouro)
-
woeteagene |
Y Beu0)
| ey

N 4
Contrast_Operation

		[image: image6.png]Brightness_Operation

|4 Al
8a(70) Bou(r0)
Gn(z)
ReQ | Saut70)
alue(r
oK
Rou(7:0)
st n_resty |
reset
ready
s

|
Brightness_Operation

		 [image: image7.png]Invert_Image

Bin(7:0) Bout(7:0)
Gin(7:0)
Gout(7:0)
Rin(7:0)
clk Rout(7:0)

data_in_ready

reset

ready

A 4
Invert_Image

		[image: image8.png]Thresholding

Bin(7:0 Bout(7:0)
Gin(7:0
Rin(7:0 Gout(7:0)
threshold(7:0
ck | Rout(7:0)
data_in_ready |
reset _ | ready
A 4

Thresholding

Fig. 1 Point operations Verilog blocks

A. Contrast Manipulation

Expanding the contrast range by assigning the darkest pixel value to black, the brightest value to white, and each of the others to linearly interpolated shades of gray makes good use of the display and enhances the visibility of features in the image [6].

The Verilog code for contrast block to obtain an enhancement image is shown in tables 1, 2.

Table 1 Verilog code for Contrast addition

		if (value > threshold) begin

tempR = Rin + valueToAdd;

if (tempR > 256)

Rout = 255;

else

Rout = Rin + valueToAdd;

tempG = Gin + valueToAdd;

if (tempG > 256)

Gout = 255;

else

Gout = Gin + valueToAdd;

tempB = Bin + valueToAdd;

if (tempB > 256)

Bout = 255;

else

Bout = Bin + valueToAdd;

end

Table 2 Verilog code for Contrast subtraction

		if (value < threshold) begin

tempR = Rin - valueToSubstract;

if(tempR[8] == 1)

Rout = 0;

else

Rout = Rin - valueToSubtract;

tempG = Gin - valueToSubtract;

if(tempG[8] == 1)

Gout = 0;

else

Gout = Gin - valueToSubtract;

tempB = Bin - valueToSubstract;

if(tempB[8] == 1)

Bout = 0;

else

Bout = Bin - valueToSubtract;

end

B. Brightness Manipulation

A dark region in an image may become brighter after the point operation and the common used point operation are increasing and decreasing of brightness. If an operator takes each pixel value and adds a constant number to it, then this point operation increases the brightness of the image and similar subtraction operator reduces the brightness.

The goal of the presented Verilog code is to add and subtract a constant value to the image pixel values (Tables 3, 4).

Table 3 Verilog code for Brightness addition

		if(sign == 1) begin

tempR = Rin + value;

if (tempR > 256)

Rout = 255;

else

Rout = Rin + value;

tempG = Gin + value;

if (tempG > 256)

Gout = 255;

else

Gout = Gin + value;

tempB = Bin + value;

if (tempB > 256)

Bout = 255;

else

Bout = Bin + value;

end

Table 4 Verilog code for Brightness subtraction

		if(sign == 0) begin

tempR = Rin - value;

if (tempR[8] == 1)

Rout = 0;

else

Rout = Rin - value;

tempG = Gin - value;

if (tempG[8] == 1)

Gout = 0;

else

Gout = Gin - value;

tempB = Bin - value;

if (tempB_b[8] == 1)

Bout = 0;

else

Bout = Bin - value;

end

C. Inverting Images

Reversing all of the contrast range produces the equivalent of a photographic negative, which sometimes improves the visibility of details. For example, the X-ray images are commonly examined using negatives. Reversing only a portion of the brightness range produces a visually strange effect that can be used to show detail in both shadowed and saturated areas [6].

Inverting an intensity image is a simple point operation that reverses the ordering of pixel values (by multiplying with − 1) and adds a constant value to map the result to the admissible range again [7].

[image: image9.png]

Fig. 2 Showing effect of invert operation

For example, considering the described function for a pixel value being a = I (u, v), in the range of [0, amax], the point operation result is

[image: image11.png]

In order to convert a color image into a grayscale one, the three color components of each pixel must be equalized and a common procedure is to make the average of the three color components.

[image: image13.png]

The inversion for an 8-bit grayscale image with amax = 255 is shown as an example of inverting operation.

Table 5 Verilog code for Invert Operation

		value2 = (Rin + Gin + Bin)/2;

value4 = (Rin + Gin + Bin)/4;

value = (value2 + value4)/2;

Rout = 255 - value;

Gout = 255 - value;

Bout = 255 - value;

D. Threshold operation

Thresholding operations are particularly interesting for segmentation in the process of isolating an object of interest from its background.

Thresholding an image means transforming all pixels in two values only. This is a special type of quantization comparing the pixel values with a given threshold value ath that is usually constant. That allows the separate the pixel values in two classes. The described threshold function fthreshold (a) has to map all pixels to one of two fixed intensity values a0 or a1

[image: image14.png]ay fora <apy
a, fora=ap,

Forresnora(@ = {

with 0 < ath < amax [4].

A black and white image (binary) image can be obtained from a grayscale image through a thresholding operation.

In our implementation we use the thresholding with a fixed (arbitrary chosen) threshold value of an indexed 8-bits grayscale image. The thresholding operation will be performed by scanning the values of each pixel from the input image and replacing the corresponding pixel in the destination image using a0 = 0 and a1 = 255. The value of the threshold can be established inline Verilog testing code.

Table 6 Threshold Operation – Verilog code

		if (value > threshold) begin

Rout = 255;

Gout = 255;

Bout = 255;

end

if (value < threshold) begin

Rout = 0;

Gout = 0;

Bout = 0;

end

IV. EXPERIMENTAL RESULTS

The experimental results obtained when we apply the point operations described using Verilog HDL to a possible input image are shown in this section. We used an 8-bit RGB color image (lena.bmp) as an input image, shown in each left panel.

[image: image15.png]

Fig. 3 Verilog result for Contrast Operation using threshold = 127, valueToAdd = 10 and valueToSubtract = 15 (right image)

[image: image16.png]

Fig. 4 Verilog result for Contrast Operation using threshold = 90, valueToAdd = 10 and valueToSubtract = 15 (right image)

[image: image17.png]

Fig. 5 Verilog result for Brightness Operation using sign = 1 and value = 60 (right image)

[image: image18.png]

Fig. 6 Verilog result for Brightness Operation using sign = 0 and value = 60 (right image)

[image: image19.png]

Fig. 7 Verilog result for Invert Operation (right image)

[image: image20.png]

Fig. 8 Black & White result using threshold = 90 (right image)

[image: image21.png]

Fig. 9 Black & White result using threshold = 110 (right image)

V. CONCLUSION

Using HDLs for signal processing is a quite new approach extending the field of digital design to signal processing simulation. Since HDLs were designed to read binary files in ASCII format as inputs the basic idea of this research was to convert the input information in HDL readable data, pass those data through the virtually circuit described with Verilog, extract the binary results of the hardware simulation and convert them back into signal. All these actions are using the HDL development environment and its hardware simulation facilities. There are some important advantages of this technique. The most important one is due to the fact that processing is always related with a hardware structure with immediate implementation availability and is not generated based on a mathematical only model. More, the use of digital design tools in signal processing simulations is offering a shorter way to the final implementation of processing circuit since a configuration file is immediately available for use.

Image enhancements methods offer a wide variety of approaches for modifying image to achieve visually improve images. The image enhancement operations were here described using Verilog hardware description language and the Verilog models were simulated using ISIM Simulator from Xilinx ISE Design Suite. Verilog can’t handle the standard image formats so the images were converted to a binary-file, using an application created in Visual Studio. The binary-file was applied as vector to the Verilog block models. The output file was similarly converted and viewed using the same application created in Visual Studio, to show the original image and the results of the enhancement methods. The image enhancement methods considered include contrast manipulation, brightness manipulation, inverting images and threshold operation.

The technique described in this paper is part of a larger research oriented on the use of hardware description languages in signal processing simulations area. Other hardware processing simulations are to be studied as future work in order to evaluate and prove the advantage of this kind of approach. Extend the complex digital CAD tools into the signal processing field are offering not only a different developing solution but also a new larger implementation method which has to be considered together with the future digital technologies.

REFERENCES

[1] R. C. Gonzalez, R. E. Woods – “Digital Image Processing”, Prentice Hall, ISBN 0-13-094659-8, pp. 1-142, 2002.

[2] Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne Babu and V. Muthukumar - “Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages”, International Journal of Theoretical and Applied Computer Sciences, Volume 1, Number 1, pp. 9–34, 2006 (http://www.gbspublisher.com/ijtacs/1002.pdf).

[3] Venkateshwar Rao Daggu and Muthukumar Venkatesan – “Design and Implementation of an Efficient Reconfigurable Architecture for Image Processing Algorithms using Handel-C”, http://www.uweb.ucsb.edu/~shahnam/CannyAlgorithmImplementation.pdf

[4] Wilhelm Burger, Mark J. Burge - “Principles of Digital Image Processing – Fundamental Techniques”, Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84800-191-6_4, Springer-Verlag London Limited, 2009.

[5] A. Zuloaga, J.L. Martin, U. Bidarte, J.A. Ezquerra - “VHDL test bench for digital image processing systems using a new image format”, ECSI, 2007 (http://mx.reocities.com/CapeCanaveral/8482/).

[6] John C. Russ - “Image Processing Handbook (sixth edition)”, CRC Press, pp. 270-331, 2011

[7] Wilhelm Burger, Mark J. Burge - “Digital Image Processing – An Algorithmic Introduction Using Java”, e-ISBN 978-3-540-30941-3, Springer, 2008.

[8] Priyanka S. Chikkali, K. Prabhushetty - “FPGA based Image Edge Detector and Segmentation”, International Journal of Advanced Engineering Sciences and Technologies, vol. no. 9, issue no.2, pp187-192, ISSN 2230-7818, 2011.

[9] Raman Maini, H. Aggarwal - “A Comprehensive Review of Image enhancement Techniques”, Journal of Computing, vol. 2, issue 3, ISSN 2151-9617, pp. 269-300, 2010.

[10] Nick Efford - “Digital Image Processing – A Practical Introduction Using Java”, pp. 103-132, 2000.

[11] William K. Pratt - “Digital Image Procesing (fourth edition)”, A John Wiley & Sons, Inc. Publication, pp. 247-307, 2007.

PAGE

148

