Review of Overmodulation Control Techniques of Drive Inverters with Synchronous Space-Vector PWM

Valentin Oleschuk, Vladimir Ermuratskii, Irina Vasiliev
Institute of Power Engineering of Moldova
Chisinau, Republic of Moldova

Abstract—This manuscript presents short survey of basic techniques and algorithms of synchronous space-vector modulation for control of voltage source inverters of motor drives in the overmodulation control mode. These control regimes are characterized by specific control schemes which are differ from schemes of synchronous PWM for linear (undermodulation) control regimes of inverters. So, specialized overmodulation-focused schemes, techniques, and algorithms of synchronous PWM have been reviewed regarding some basic topologies of drive inverters: a) standard three-phase inverters; b) dual three-phase and six-phase systems; c) modular converters; d) triple-inverter-based systems, and e) five-phase inverters.

Keywords—inverters; space vector pulse width modulation, motor drives, motion control, spectral analysis

I. INTRODUCTION

For drive inverters with low switching frequency, in order to eliminate undesirable subharmonics in spectra of its voltage and current, it is necessary to provide synchronization of voltage waveforms of inverters [1,2]. During the last decades, novel method of synchronous space-vector PWM for drive inverters has been elaborated based on new approach for determination of the pulse patterns [3,4]. It allows ensuring synchronization and symmetry of voltage waveforms of inverters both with integral and fractional ratio between the switching frequency and fundamental frequency of inverters. Also, special attention has been paid to analysis of overmodulation control modes of PWM inverters and drives [5-22]. Overmodulation regimes are ones of the most complicated control modes of converters and drives. So, this paper presents short review of methods and techniques of synchronous PWM, developed and modified for overmodulation control of some basic topologies of inverters.

II. BASICS OF OVERMODULATION CONTROL OF INVERTERS WITH SYNCHRONOUS SPACE-VECTOR MODULATION [7-9]

Methods of synchronous modulation, elaborated primarily for three-phase inverters [3,4], have been developed for linear control of the phase voltage of drive systems in the zone of overmodulation [7-22]. Fig. 1 presents basic structure of power circuits of three-phase inverter and its voltage vectors. Fig. 2 illustrates control and modulation parameters of inverter, and shows (inside the 90°-interval) switching sequence of inverter, and the pole (Phases a, b, c) and line (V_ab) voltages of inverter with algorithms of discontinuous synchronous PWM [8].

Typical control scheme for inverters with standard V/F control of drive system during overmodulation is based on two-stage strategy with two threshold frequencies 1\(\text{ov}_F = 45.35\text{Hz} \) (modulation index \(m=0.907\) in this case) and 2\(\text{ov}_F = 47.6\text{Hz} \) (\(m=0.952\)) for systems with the maximum frequency \(F_m\) equal to 50Hz [1,3-6]. So, control process consists from two stages in this zone. And special coefficients of overmodulation 1\(\text{ov}K_1\) and 2\(\text{ov}K_2\) are used in the modified control correlations of inverters with synchronous PWM, providing linear control of the fundamental voltage in this zone [8,10]:

\[
K_{ov1} = \frac{1 - (F - F_{ov1})/(F_{ov2} - F_{ov1})}{1 - (F - F_{ov2})/(F_m - F_{ov2})} \quad (1)
\]

\[
K_{ov2} = \frac{1 - (F - F_{ov2})/(F_m - F_{ov2})}{1 - (F - F_{ov1})/(F_{ov2} - F_{ov1})} \quad (2)
\]

During the first control stage of the overmodulation zone, between the frequencies \(F_{ov1}\) and \(F_{ov2}\), a smooth linear increase of total active signals (\(\beta\)-parameters in Fig. 2) until the width of \(\beta = \tau\) (\(\tau\) - switching cycle) is observed, with simultaneous smooth reduction of all notches \(\lambda\) until zero at the \(F_{ov2}\). In the second zone, between \(F_{ov2}\) and \(F_m\), here is a smooth decrease in the widths of all \(\gamma\)-parameters until zero at the six-step mode observed at \(F_m\) [8].
Basic set of control functions of inverters with synchronous modulation for adjustment of drive systems during the whole control range (with overmodulation zone) includes (3)-(8) [8]:

\[
\begin{align*}
\beta_j &= \beta_1 \cos([j - 1.25] \tau K_{ov1}) \\
\gamma_j &= \beta_2 \cos([j - 0.87] \tau K_{ov2}) \\
\beta &= \beta' \cos([i - 1.25] \tau K_{ov1} K_s) \\
\gamma_1 &= \beta' [0.5 - 0.9 \tan((i - 2.2) \tau + \beta'' + \lambda_{i-1})/2] K_{ov2} \\
\lambda_j &= \tau - (\beta_j + \beta_{j+1})/2 \\
\lambda_i &= \lambda' = (\tau - \beta') K_{ov1} K_s,
\end{align*}
\]

where \(K_{ov1} = 1 \) until \(F_{ov1} = 0.907 F_m \), \(K_{ov2} = 1 \) until \(F_{ov2} \), \(\beta_1 = 1.1 m \) until \(F_{ov1} = 0.907 F_m \) (\(m = F/F_m \) – modulation index), and \(\beta' = \tau \) after \(F_{ov1} \).

Figs. 3–4 present switching state sequence and voltage half-wave of inverter with discontinuous synchronous PWM with average switching frequency equal to 1.1kHz [8,10].

III. OVERMODULATION ADJUSTMENT OF DUAL THREE-PHASE INVERTERS AND DRIVES [11,12,14,16,17,20]

Dual three-phase (six-phase) induction motor drive fed by two three-phase voltage source inverters are between popular topologies of converters and drives [11,12,14]. Induction machine has in this case two sets of windings spatially shifted by 30 el. degrees with isolated neutral points (Fig. 5 [11]).

Figs. 6–13 present basic voltage and current waveforms (with its spectra) of dual three-phase drive controlled by algorithms of discontinuous synchronous PWM (DPWM) both in the first (Figs. 6–10) and the second (Figs. 11–14) parts of the zone of overmodulation. Average switching frequency of inverters is equal to 1kHz. Fig. 8 and Fig. 13 present phase currents \(I_{as} \) of drive system with synchronous PWM with the 10kW dual-three-phase induction motor, and also the corresponding useful \(I_{sa} \) component of the phase current. Figs. 9, 10, and 14 show spectra of the corresponding currents [11].
Fig. 7. Spectra of the V_{va} and V_{sa} voltages (DPWM, $F=46.5\,\text{Hz}$) [11].

Fig. 8. Phase current I_{as} and its I_{sa} component (DPWM, $F=46.5\,\text{Hz}$) [11].

Fig. 9. Spectrum of the I_{as} for system with DPWM ($F=46.5\,\text{Hz}$) [11].

Fig. 10. Spectrum of the I_{as} for system with DPWM ($F=46.5\,\text{Hz}$) [11].

Fig. 11. Pole voltages V_{a} and V_{sa}, phase voltage V_{as}, and useful (V_{sa}) and loss-producing (V_{m1}) components of the phase voltage for system with discontinuous synchronous PWM (DPWM) in overmodulation zone ($F=48.5\,\text{Hz}$) [11].

Fig. 12. Spectrum of the phase voltage V_{as} (DPWM, $F=48.5\,\text{Hz}$) [11].

Fig. 13. Phase current I_{as} and its I_{sa} component (DPWM, $F=48.5\,\text{Hz}$) [11].
Fig. 14. Spectrum of the I_{as} current of the system (DPWM, $F=48.5Hz$) [11].

Fig. 15 presents results of calculation of Total Harmonic Distortion factor (THD) for the phase current I_{as} (averaged values of $THD = (1 / I_{as}) \sum_{n=2}^{n} f_{n}^2$) of dual three-phase system with continuous (CPWM) and discontinuous (DPWM) versions of synchronous PWM. The average switching frequency of inverters is equal to 1kHz, control mode corresponds here to standard scalar Volts/Hertz control. So, algorithms of synchronous DPWM assure better harmonic composition of the output voltage and current of system in comparison with the using of algorithms of CPWM.

![THD of Ias during overmodulation](image)

Fig. 15. Averaged THD factor of the I_{as} versus modulation index m [11].

IV. FLEXIBLE OVERMODULATION CONTROL OF MODULAR CONVERTER [10]

Fig. 16 presents basic topology of modular converter consisting from three standard three-phase voltage source inverters along with a 0.33 p.u. output transformer and induction motor M as a load, which is especially useful for medium voltage application [10].

Fig. 17 and Fig. 18 show period of the line voltage of each inverter with synchronous discontinuous PWM and of the composed line voltage of modular converter (with an ideal transformer) with synchronous voltage control during the first (Fig. 15) and the second (Fig. 16) stages of the zone of overmodulation. Average switching frequency is equal to 700Hz.

![Top topology of modular converter](image)

Fig. 16. Topology of modular converter consisting from three voltage source inverters, with an induction motor (M) as a load [10].

![Line voltages of modular converter](image)

Fig. 17. Line voltages of modular converter ($F=46Hz, m=0.92$) [10].

![Line voltages of modular converter](image)

Fig. 18. Line voltages of modular converter ($F=48Hz, m=0.96$) [10].

and variable (modes 2 and 3) phase shift between signals of three inverters. The presented results show, that variable phase shift of signals and output voltages of inverters assures improvement of value of $WTHD$ factor for system operating at the second stage of the zone of overmodulation [10].
V. OVERMODULATION CONTROL OF TRIPLE INVERTERS OF TRANSFORMER-BASED DRIVE SYSTEM [22]

Fig. 20 presents three-inverter-based drive system with double-delta configuration of inverter-side windings of power transformer [22]. For this topology of system, instantaneous value of winding voltage V_{wl} is determined during the whole adjustment range (including zone of overmodulation) as function of the pole voltages $V_{a10} - V_{c30}$ of three inverters:

$$V_{wl} = V_{a30} + (V_{a30} + V_{b30} + V_{c30})/3 - V_{b20} - (V_{a20} + V_{b20} + V_{c20})/3$$

Figs. 21-24 show simulation results of power installation based on three inverters ($V_{dc1} = V_{dc2} = V_{dc3}$), operating at the first part of the zone of overmodulation (Figs. 21-22), and at the second stage of overmodulation control (Figs. 23-24). Switching frequency of three inverters is equal to 1.05kHz [22].

Fig. 25 presents diagram of Weighted Total Harmonic Distortion (WTHD) factor of the V_{a1b1} and V_{wl} voltages of drive installation with two basic sorts of synchronous discontinuous PWM ($WTHD_1 = (1/V_{wl}) \left(\sum_{k=2}^{1000} (V_{wl_k} / k)^2 \right)^{0.5}$), and shows that WTHD factor of the V_{wl} voltage of the presented topology of ac drive system is better than WTHD factor of the line-to-line V_{a1b1} voltage of every inverter [22].
Fig. 24. Harmonic composition of the basic voltages of installation with discontinuous PWM (DPWM30, \(F_p = 49.5 \text{Hz} \), \(F_s = 1 \text{kHz} \), \(F_s/F_p = 21.1 \), \(m = 0.99 \)) [22].

Results of simulation of system, presented in Figs. 21–24, show, that for the all analyzed control modes both line voltages and winding voltages have quarter-wave symmetry and are characterized by the absence in its voltage spectra of even harmonics and subharmonics.

VI. SYNCHRONOUS OVERMODULATION CONTROL OF FIVE-PHASE INVERTERS [15,18,19,21]

Novel strategy of synchronous control of inverters in the zone of overmodulation, with specific peculiarities of the used scheme of synchronous multi-zone PWM, has been applied for control of five-phase inverters [15,18,19,21]. In accordance with this PWM strategy, developed and disseminated for five-phase systems, the proposed three-stage control process insures smooth transition to the ten-step control mode at the maximum fundamental frequency of five-phase installation.

Structure of basic power circuits of five-phase inverter with neutral point n is illustrated by Fig. 26 [18]. For this system, mutual phase shift between voltages of phases a, b, c, d and e is equal to 72 el. grad. Fig. 27 presents diagram of voltage space-vectors of five-phase system consisting from ten large (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and ten medium (1', 2', 3', 4', 5', 6', 7', 8', 9', 10') voltage space-vectors designated (by five-digit numbers) in accordance with standard designation [19].

A. The First Stage of Synchronous Overmodulation Control

In order to obtain linearity of the fundamental voltage/fundamental frequency (Volts/Hertz) characteristic of five-phase system with standard scalar control mode during the whole control diapason, scalable coefficient equal to \(0.64/0.53 = 1.20 \) should be included in the corresponding correlations providing determination of widths (of duration) of the corresponding active switching states of five-phase inverter with synchronous PWM [19].

So, the first inverter modulation index \(m_{ov1} \), characterizing the beginning of operation of inverter in the zone of overmodulation, can be calculated as

\[
m_{ov1} = 0.53/0.64 = 0.83
\]

In particular, if the maximum fundamental frequency \(F_{ten-step} = 50 \text{Hz} \), the threshold fundamental frequency \(F_{ov1} \), which characterizes the beginning of the zone of overmodulation of five-phase inverter with scalar control, is equal to \(F_{ov1} = m_{ov1} F_{ten-step} = 41.5 \text{Hz} \).

The second threshold modulation index in accordance with (9) is determined as [19]

\[
m_{ov2} = 0.615/0.64 = 0.97
\]
The second threshold fundamental frequency F_{ov2}, which characterizes the upper limit of the first control stage in the zone of overmodulation of five-phase inverter with scalar control ($F_{ten-step}=50\, \text{Hz}$), is equal to $F_{ov2} = m_{ov2} F_{ten-step} = 48.34\, \text{Hz}$.

To allow synchronous character of PWM processes during control of five-phase system in the first part of overmodulation range, special coefficient K_{ov1} (11), connecting modulation index m of inverter with two threshold indices m_{ov1} and m_{ov2}, is included in basic control correlations in this sub-zone [19]:

$$K_{ov1} = 1 - (m - m_{ov1})/(m_{ov2} - m_{ov1}) \tag{11}$$

So, during the first control stage of the overmodulation zone, between fundamental frequencies F_{ov1} and F_{ov2}, a smooth linear decrease of widths of the δ_k' and δ_k'' active signals [19] is observed in accordance with (12):

$$\delta_k' + \delta_k'' = 0.382 \beta_k K_{ov1} \tag{12}$$

Fig. 28 ($F=43\, \text{Hz}, \, m=0.86$) illustrates synchronous voltage control of five-phase inverter during the first control stage of the overmodulation zone [19]. The presented in Fig. 28 curves of the output voltage of inverter have quarter-wave symmetry, and its spectra are without undesirable subharmonics.

To illustrate modulation process in system during the second part of overmodulation range, Fig. 29 presents basic voltages of five-phase inverter ($F=48.75\, \text{Hz}, \, m=0.975$) [19].

C. The Third Stage of Synchronous Overmodulation Control

To insure smooth transition of five-phase system to the ten-step control mode at the maximum fundamental frequency of inverter ($m=1$ in this case), the third specific coefficient of overmodulation K_{ov3} (16) should be included in equations (17)-(18), and its realization assures providing smooth decrease until zero of the widths of the γ-signals in this control sub-zone:

$$K_{ov3} = 1 - (m - m_{ov3})/(m_{ten-step} - m_{ov3}) = 1 - (m - m_{ov3})/(1 - m_{ov3}) \tag{16}$$

$$\gamma_j = \beta_j (1 + 0.5 - 0.809 \tan[(i - j)\tau]) K_{ov3} \tag{17}$$

$$\gamma_1 = 5\beta' (\lambda + \beta') F_K K_{ov3} \tag{18}$$

Fig. 30 presents basic voltage waveforms of five-phase inverter operating in the third part of the zone of overmodulation ($F = 49.6\, \text{Hz}, \, m = 0.992$). The switching frequency is equal to $3\, \text{kHz}$. Fig. 31 presents basic voltage waveforms of five-phase inverter at the maximum fundamental frequency $F_{ten-step}=50\, \text{Hz}$, at the ten-step operation mode ($m=1$).

The described scheme of synchronous space-vector PWM of five-phase system with scalar V/F control insures both good utilization of dc-voltage and process of linear control of the fundamental voltage during the whole control range. Fig. 32 shows this linear variation of the first harmonic of the fundamental voltage of inverter versus modulation index m.

Fig. 30. Basic voltages of five-phase inverter at the second part of the overmodulation zone ($F=49.75\, \text{Hz}, \, m=0.997$) [19].

Fig. 31. Basic voltages of five-phase inverter at the third part of the overmodulation zone ($F=49.6\, \text{Hz}, \, m=0.992$).
systems with low switching frequency of inverters. especially important for the medium-power and high-power do not contain even harmonics and subharmonics, which is symmetry of the output voltage of inverters, spectra of which synchronous PWM insure quarter-wave or half-wave peculiarities, rational control scheme in the overmodulation inverter systems. And for five-phase systems, due to its specific synchronous PWM, of dual three-phase and six-phase inverter suitable for adjustment of standard three-phase inverters with voltage of drive inverters and symmetry of waveforms of the Specialized overmodulation-focused schemes and algorithms and sophisticated control regimes of power converters.

VII. CONCLUSIONS

Overmodulation modes are ones of the most complicated and sophisticated control regimes of power converters. Specialized overmodulation-focused schemes and algorithms of synchronous multi-zone space-vector modulation, reviewed in the paper, assure both linear control of the fundamental voltage of drive inverters and symmetry of waveforms of the output voltage of drive inverters in this specific control zone.

It has been shown in the presented review, that two-stage control scheme in the zone of overmodulation is the most suitable for adjustment of standard three-phase inverters with synchronous PWM, of dual three-phase and six-phase inverter systems, of modular converters, of transformer-based triple-inverter systems. And for five-phase systems, due to its specific peculiarities, rational control scheme in the overmodulation range consists from three stages.

Overmodulation-oriented techniques and algorithms of synchronous PWM insure quarter-wave or half-wave symmetry of the output voltage of inverters, spectra of which do not contain even harmonics and subharmonics, which is especially important for the medium-power and high-power systems with low switching frequency of inverters.

REFERENCES