
15th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 21-23, 2020

978-1-7281-6870-8/20/$31.00 ©2020 IEEE

On one context-free language for
producer/consumer Petri net with the unbounded

buffer

Vadym Mukhin
Mathematical methods of system analysis department

National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”

Kyiv, Ukraine
v.mukhin@kpi.ua

Vitalii Statkevych
Mathematical methods of system analysis department

National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”

Kyiv, Ukraine
mstatckevich@yahoo.com

Abstract—We consider the producer/consumer Petri net

and the context-free formal language that it generates.
Nonregularity of the language is proved, the corresponding
pushdown automaton and context-free grammar are obtained.
The connection with the Dyck formal language is pointed out.

Keywords—Petri nets; formal languages; automata;
computer science; programming; software design

I. INTRODUCTION

Petri nets, introduced by C. A. Petri, are used in
modeling, analysis and design of various systems [1, 2]. Petri
nets can model nondeterministic and asynchronous
behaviour of the systems, parallelism and concurrency
features and conflicts. A variety of synchronization problems
are known, among them are the mutual exclusion problem,
the producer/consumer problem, the dining philosophers
problem, the readers/writers problem, et al. The dining
philosophers problem and the producer/consumer problem
were proposed by E. Dijkstra (1968).

A particular Petri net can be associated with a certain
language. In [1] twelve classes of Petri net languages are
introduced, known relations among them are given and the
connections with Chomsky hierarchy are stated (the theory
of formal languages is described in [3–5]). In particular
every regular language is a Petri net language, every Petri net
language is a context-sensitive language. There exist context-
free languages which are not Petri net languages (for

example even length palindromes }},{:{ *bawwwR),
as well as there exist Petri net languages which are not

context-free languages (for example }1:{ ncba nnn) [1].

If a particular Petri net is a bounded net, the reachability
graph of the net can be transformed into a finite automaton,
i.e. one can associate the graph vertices with the automaton
states, the graph edges with the automaton transitions and the
initial marking with the initial state [6]. Thus the bounded net
generates a regular language.

The paper [7] introduces the method of computing a
regular expression for the language of a safe Petri net. The
technique is based on reductions of Petri nets and omits the
constructing the complete reachability graph. The method is

illustrated using the dining philosophers problem as an
example.

However, the producer/consumer Petri net with the
unbounded buffer is not a safe Petri net, thus the method
proposed in [7] cannot be applied in our case. Further we
show that the corresponding language is not a regular
language, but a context-free language (see also [8]).

Context-free languages are essential in syntax analysis
and compilation process, therefore are related to
programming languages. Many programming languages use
constructions that are typical for context-free languages [3].
For example, let AAAf : be a binary operation on

an arbitrary set A , one can match the expression

)),())),,(,(,((654321 xxfxxfxfxff with the word

))()))((((of balanced parentheses, while the language
of balanced parentheses (the Dyck language [3, 5]) is
generated by the context-free grammar.

Different connections between Petri nets and the theory
of formal languages and grammars were investigated in [9–
13].

In this paper we consider the L -type Petri net language
for the producer/consumer problem with the unbounded
buffer. This Petri net language is context-free and can be
generated by context-free grammar, and classical
programming languages include several constructions which
can be analyzed by context-free grammars.

The paper is organized as follows. Basic notations and
constructions are given in Section II. We prove that the
considered language is nonregular and present the
corresponding pushdown automaton and the context-free
grammar in Section III. Connection with the Dyck language
is shown in Section IV. Practical application is given in
Section V. This paper uses the results obtained in [8, 14].

II. PRELIMINARIES

In the producer/consumer problem producer process A
creates objects (tokens), which are put in the buffer (place

5p), consumer process B removes objects (tokens) one at a

time from the buffer 5p and consumes them (see Fig. 1).

137

This problem has several variants, among them are: a) the

problem with the unbounded buffer; b) the problem with the
bounded buffer; c) the multiple-producer/multiple-consumer
problem, et al.

The problem with the bounded buffer deals with buffer of

size n with additional place 5p , which has initially n

tokens. The multiple-producer/multiple-consumer problem

deals with s producers and t consumers, so that places 1p

and 3p have initially s and t tokens respectively. We

denote the initial marking of the net as 0 .

We consider the L -type Petri net language for the
problem with the unbounded buffer. Let F be a finite set of
final markings. Let w be the sequence of transitions so that
the marking , obtained as a result of firing the sequence of

transitions w , is the final marking, i.e. F . Let

AT : be a labeling function. Then the L -type Petri
net language is equal to the set of strings)(w [1].

In our case let },,,{ 4321 aaaaA be an alphabet. We

associate symbols 1a , 2a , 3a , 4a with the transitions 1t ,

2t , 3t , 4t respectively so that the labeling function

AT : has the form ii at)(, 4,,1i . Thus

the concerned net is a free-labeled net. The only final
marking is equal to the initial marking, i.e.

)}0,0,1,0,1{(}{ 0 F . We denote the L -type Petri

net language of the concerned net as L .

A pushdown automaton (see [3–5]) is the 7-tuple

),,,,,,(0 FZITQP , where Q is a finite set of

states, T is a finite set of input symbols, is a finite stack

alphabet, *}){(QTQ is the

transition relation, QI is the set of start states, 0Z

is the initial stack symbol and QF is the set of accepting
states (here denotes an empty string).

A formal grammar [3–5] is the 4-tuple
),,,(SPTVG , where V is a finite set of variables

(also called nonterminal symbols N), T is a finite set of
terminal symbols, TV , P is a finite set of
production rules and VS is the start symbol.

III. THE PUSHDOWN AUTOMATON AND THE CONTEXT-FREE

GRAMMAR FOR THE PRODUCER/CONSUMER PETRI NET

LANGUAGE

Here we state the pushdown automaton that accepts the
language L and the context-free grammar that generates it.

Theorem 1. The L -type Petri net language L for the
producer/consumer problem is accepted by the pushdown

automaton }){,},{,,,,(000 qZqTQP , where the set

of states },,,{ 3210 qqqqQ , the set of input symbols

},,,{ 4321 aaaaT , the stack alphabet },{ 0ZA and

the transition relation contains 15 transitions

).,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

14314

010431322312

020231104210

0004293128

0301273316

0215000214

23031102

0101010000

AqAaq

ZqZaqAAqAaq

AZqZaqAqAaq

ZqZaqAqAaq

ZqZaqqAaq

AAqAaqAZqZaq

qAaqAqAaq

ZqZaqqZq

The top and the bottom of the stack nZZ 1 are

considered to be the leftmost symbol 1Z and the rightmost

symbol 0ZZn respectively. The proof of the theorem can

be easily obtained from the construction given in [8]. Thus
the language L is the context-free language. Note that the
given pushdown automaton P is the deterministic
pushdown automaton.

Theorem 2. The language L is nonregular.

Proof. We prove the theorem by contradiction, thus we
suppose that the language L is nonregular. Then according
to the pumping lemma for regular languages [3–5] there
exists a natural number 1p such that for every string

Lw of length nw || one can write xyzw , where

y , pxy || and Lzxyi for all 0i . We

consider the string Laaaaw pp)()(4321 of length

pw 4|| . Due to the inequality pxy || we obtain that

the nonempty string y contains only symbols 1a and 2a .

We also obtain Lxz in case of 0i . In order to
generate the string Lxz less than p tokens are put in the

buffer (place 5p) and precisely p tokens are removed from

the place 5p . The obtained contradiction proves that the

language L is nonregular.

We use the technique described in [3–5] in order to
convert the pushdown automaton P to the context-free
grammar, that generates the language L . We consider the
formal grammar),,,(SPTVG with the set of variables

},,:]{[}{ ZQqQqZqqSV jiji , the set

Fig. 1. Producer/consumer Petri net

138

of terminal symbols },,,{ 4321 aaaaT , the start symbol

S and the set of production rules P . The set P is
constructed in the following way:

 the set P contains][00 iqZqS for all Qqi ;

 for every transition

),,,,(1 kji ZZqZaq , 1k from the

transition relation the set P contains

][]][[][122111 kkkjki sZssZssZqaZsq for

every sequence of states Qss k ,,1 ;

 for every transition),,,,(ji qZaq the

set P contains aZqq ji][.

Thus P contains the following production rules:

][|][|][|][300200100000 qZqqZqqZqqZqS ,

][000 qZq for 0 ,

][][01100 ii qZqaqZq for 1 ,

][][110 ii AqqaAqq for 2 ,

 320][aAqq for 3 ,

]][[][00201 ijji qZqAqqaqZq for 4 ,

]][[][021 ijji AqqAqqaAqq for 5 ,

 331][aAqq for 6 ,

][][03102 ii qZqaqZq for 7 ,

][][0312 ii qZqaAqq for 8 ,

][][00402 ii qZqaqZq for 9 ,

][][042 ii AqqaAqq for 10 ,

]][[][02203 ijji qZqAqqaqZq for 11 ,

]][[][223 ijji AqqAqqaAqq for 12 ,

][][01403 ii qZqaqZq for 13 ,

][][143 ii AqqaAqq for 14 ,

where 30 i and 30 j . Afterwards, we remove
useless variables and corresponding production rules. Thus
we obtain the context-free grammar G , that generates the
language L , in simpler notation.

IV. CONNECTION WITH THE DYCK LANGUAGE

The producer/consumer problem has a connection with
the Dyck language. The Dyck language is a context-free

language over the alphabet },,,,,{ 11 nn aaaa with n2

symbols, that is generated by the context-free grammar

SaSaSaSaS nn ||| 11 . More informally the Dyck

language contains the strings of balanced parentheses of n

different types, where ia stands for the left parenthesis and

ia stands for the right one [3, 5].

One can choose another labeling function 221)(at ,

331)(at ,)()(4111 tt so that 1t and 4t are

null labeled transitions. Then the L -type Petri net language
is equal to the Dyck language with one type of parentheses,

the symbols 2a and 3a stand for the left and right

parenthesis respectively.

For the labeling function introduced above the

grammar G has the leftmost derivations][000 qZq ,

.)(][)(

][][

,)()(][)()(

][)()(

]][[)()(

][]][[)(

]][[][][

,][][

]][[][][

2
4321000

2
4321

0004321000

432100043
1

4321

0023
1

4321

00220
1

4321

002
1

222021

00220210011000

43210004321002321

00220210011000

aaaaqZqaaaa

qZqaaaaqZq

aaaaqZqaaaaaa

qZqaaaaa

qZqAqqaaaa

qZqAqqAqqaa

qZqAqqaaqZqaqZq

aaaaqZqaaaaqZqaaa

qZqAqqaaqZqaqZq

nnnn

nn

nn

nn

These derivations correspond to the Dyck language with

one type of parentheses, the pairs of symbols 21aa and

43aa stand for the left and right parenthesis respectively.

There also exist other leftmost derivations such as

][][

][]][[][

],[][

][]][[][

],[][

][]][[][

],[][

][]][[][

11143210432

12321220211

1011432100432

10232102202101

11413213132

12321220211

1014132103132

10232102202101

AqqaaaaAqqaaa

AqqaaAqqAqqaAqq

qZqaaaaqZqaaa

qZqaaqZqAqqaqZq

AqqaaaaAqqaaa

AqqaaAqqAqqaAqq

qZqaaaaqZqaaa

qZqaaqZqAqqaqZq

and similar to them, which can be viewed as the analogs of

derivations AaaaaA 1122

*

 and AaaaaA 1122

*

 (here

A denotes a variable) for the Dyck language with two
distinct types of parentheses.

We recall that the well-known Chomsky–Schützenberger
representation theorem states that a formal language is
context-free if and only if it is represented as a homomorphic
image of the intersection of the certain Dyck language and
certain regular language. The derivations obtained above due
to their simplicity illustrate the fact that in the particular case
of the producer/consumer Petri net the context-free language
L is “in close proximity” to the Dyck language.

139

Remark. As stated above, the multiple-producer/
multiple-consumer problem deals with s producers and t

consumers, so that places 1p and 3p have initially s and t

tokens respectively. Thus the initial marking of the

corresponding Petri net is equal to)0,0,,0,(0 ts . The

technique used in Theorem 1 can be extended to this case,
thus the pushdown automaton, that accepts the considered
Petri net language, can be obtained.

V. PRACTICAL APPLICATION OF THE SUGGESTED

MECHANISMS

We can use the constructions similar to the proposed
pushdown automata and the proposed context-free grammar
in order to implement the LL-parser (the description of LL-
parsing and the definition of)(kLL -grammar can be found

in [3, 15–17]). The LL-parser can use the procedure of string
splitting. Namely, the input string is split into several
substrings, the reducing of the string is repeated recursively
until parsing the entire input string. Syntax constructions are
supposed to begin with an opening brace and end with the
matching closing one.

This function can be implemented as follows [15]:
1) the function determines whether the string begins with

the opening brace and ends with the matching closing one;
2) both conditions met, the braces are deleted and the

string is passed to the function that parses the list of key-
value pairs.

Thus two different functions have to be implemented, i.e.
the function, that parses the given string, and the function,
that parses the list of key-value pairs.

The classical LL-parser uses the function to handle
nonterminal symbols, performing different actions for each
symbol [15]. In our case, braces are used in addition to
classical delimiters. Moreover, we use not only the function,
that splits the string by the delimiter (comma between key-
value pairs and colon between key and value), but also the
function, that splits the string by the matching closing brace
in case the value is an object itself [15, 16].

Thus top-down parsing can be performed by splitting the
string [15]. So strings of the given format can be parsed.
Also it provides the opportunity to use and parse the syntax
constructions of the specific format. Moreover, one can
develop the domain-specific language (DSL) for the
particular domain and the interpreter using the LL-parser.

So the implementation of LL-parser can be used for
different problems connected with formal representation of
syntax constructions and development of new constructions
for programming languages.

VI. CONCLUSIONS

In this paper the L -type Petri net language for the
producer/consumer problem was considered. The language
was proved to be nonregular by using the pumping lemma
for regular languages. The pushdown automaton with the
initial stack symbol, that accepts the language, was stated
(we recall that another version of the pushdown automaton
without the initial stack symbol was presented in [8]). The
context-free grammar, that generates the considered

language, was constructed. The connection with the Dyck
language was illustrated, several significant corresponding
derivations were given.

Thus we have shown the possibility to transform the
producer/consumer Petri net into the pushdown automata,
therefore to prove that the producer/consumer Petri net
language is the context-free language. The obtained results
will be used in further investigations of Petri net languages.

Also the proposed mechanisms can be applied in LL-
parser implementation in order to deal with syntax
constructions.

REFERENCES
[1] J. L. Peterson, Petri net theory and the modeling of systems, Prentice

Hall, 1981.

[2] T. Murata, “Petri nets: properties, analysis and applications”,
Proceedings of the IEEE, vol. 77, no. 4, April 1989.

[3] A. Aho, J. D. Ullman, The theory of parsing, translation and
computing. Vol. 1: Parsing, Prentice Hall, 1972.

[4] J. E. Hopcroft, R. Motvani, J. D. Ullman, Introduction to automata
theory, languages and computation, 3rd ed., Addison-Wesley, 2006.

[5] A. Je. Pentus, M. R. Pentus, Theory of formal languages, Moscow
State Univ., 2004 [in Russian].

[6] R. Valk, G. Vidal-Naquet, “Petri nets and regular languages”, Journal
of Computer and System Sciences, vol. 23, pp. 299–325, 1981.

[7] A. Gronewold, H. Fleischhack, “Computing Petri net languages by
reductions”, Fundamentals of computation theory: 10th International
conference; proceedings, FCT’95, Drezden, Germany, August 22–25,
1995, Springer, pp. 253–262.

[8] V. Statkevych, “Regular expressions for producer/consumer Petri net
languages with bounded buffer of size 1 and 2 [in Russian]”, System
Analysis and Information Technology: 19th International conference,
Kyiv, Ukraine, May 22–25, 2017, NTUU “KPI”, p. 122.

[9] M. Jantzen, G. Zetzsche, “Labeled step sequences in Petri nets”,
Applications and Theory of Petri Nets: 29th International conference,
Xi'an, China (June 23–27, 2008), Proceedings, pp. 270–287.

[10] J. Dassow, S. Turaev, “Petri net controlled grammars: the case of
special Petri nets”, Journal of Universal Computer Science, vol. 15,
no. 14, pp. 2808–2835, 2009.

[11] J. Dassow, G. Mavlankulov, M. Othman, S. Turaev, M.H. Selamat
and R. Stiebe, “Grammars controlled by Petri nets”. In book: Petri
nets: Manufacturing and Computer Science, pp. 337–358, 2012.

[12] I. Spectorsky, “Application of Petri nets to the analysis of context-free
grammars [in Russian]”, System Research & Information
Technologies, vol. 4, pp. 129–133, 2011.

[13] V. Statkevich, “Connection between Petri nets and Polish notation [in
Russian]”, System Research & Information Technologies, vol. 2,
pp. 7–13, 2016.

[14] V. Statkevych, “On regular expressions for producer/consumer Petri
net languages with bounded buffer”, Nonlinear analysis and
applications: 4th International scientific conference on memory of
corresponding member of National Academy of Science of Ukraine
V. S. Mel’nik, Kyiv, Ukraine, 4–6 April, 2018, NTUU “KPI”, p. 68.

[15] K. Lvov, “About LL parsing: An approach to parsing through the
concept of string cutting [in Russian]”,
https://habr.com/ru/post/412905

[16] R. Edelmann, J. Hamza, V. Kunčak, “LL(1) Parsing with derivatives
and zippers. Efficient, functional, and formally verified approach to
parsing”, arXiv:1911.12737v1 [cs.FL], 28 Nov. 2019,
https://arxiv.org/pdf/1911.12737.pdf

[17] M. D. Adams, C. Hollenbeck, and M. Might, “On the complexity and
performance of parsing with derivatives”, In Proc. of the 37th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, New York, NY, USA, pp. 224–
236, 2016. https://doi.org/10.1145/2908080.2908128

140

