
15th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 21-23, 2020

978-1-7281-6870-8/20/$31.00 ©2020 IEEE

A Novel Intelligent Tutoring System For Learning Programming

Meng Wang

School of Computer Science and Engineering

Beihang University

Beijing, China

wangmeng@nlsde.buaa.edu.cn

Wenjun Wu, Yu Liang

School of Computer Science and Engineering

Beihang University

Beijing, China

wwj@nlsde.buaa.edu.cn, liangyu@nlsde.buaa.edu.cn

Abstract—The goal of this paper is to propose the concept,

structure and implementation of a novel intelligent tutoring

system designed for beginners in C language and Python. The

system is implemented by adding the functions of code

classification, program error repair and personal knowledge

tracing to an online programming practice platform. This

implementation makes the original platform become more

intelligent and help students learn programming better.

Keywords—intelligent tutoring system; code classification;

program error repair; personal knowledge tracing

I. INTRODUCTION

With the rapid development of computer technology,
programming has become a necessary skill for a qualified
college student, especially for students majoring in computer
science. Therefore, the relevant colleges of information
technology in the University pay great attention to the
cultivation of students' programming ability, and set up many
courses related to programming language, such as C language
and Python.

In addition to the teaching of theoretical knowledge,
programming practice is also a necessary part of this kind of
course, and training students through online judge (OJ) system
is a widely used way. Through OJs, students can submit their
own programs, and then the OJs will compile and execute the
source code, and compare the running result with the pre-
designed test cases to check the correctness of the code, and
provide the feedback to students. However, the function of
common OJs at present is too simple, only supports the
detection of code correctness, it is difficult to give more
personalized feedback.

Therefore, if an OJ can be more intelligent, such as having
functions of classifying the answer codes of the problem and
visualizing them clearly, and giving corresponding hints or
repair methods for program errors, and tracing students'
mastery of different knowledge points, the OJ will be more
educationally helpful to the beginners. This is why we call our
system “a novel intelligent tutoring system”. For program
beginners, this implementation will make them open their mind,
understand their mistakes in time, and have a clear
understanding of their learning. As a result, their learning
efficiency can be improved. On the other hand, for the teachers,

they can know the learning states of different students better by
using the feedback of the OJ, which will help them to improve
their teaching methods as well.

This paper is structured as follows. The first section
contains an introduction to the issues and possible
improvements of existing OJ systems, and section II presents
the related work about the topic. Section III describes the
system architecture, and section IV presents the methods and
implementation of the system. Section V shows some figures
of the user interfaces and section VI presents the experimental
results. Section Ⅶ describes the conclusion and future

research directions.

II. RELATED WORK

OJ is useful for students majoring in computer science to
practice programming. However, most of OJ's judgments on
the codes are binary: "accepted" or "not accepted". This may be
appropriate for experienced students, but for beginners, it may
be more helpful to give more feedback [1].

Intelligent tutoring system (ITS) may solve this problem.
ITS refers to any computer program that can be used for
learning and contains intelligence [2], which rose in the 1950s
and gained the attention of developed countries in the 1970s.
Since the 1990s, it has developed comprehensively and rapidly.
Traditional ITS consists of four parts: expert model, student
model, teaching model and learning environment or user
interface [2]. Its biggest advantage is that it can teach students
according to their aptitude, and provide personalized guidance
for different students, so as to improve students' independent
learning ability and learning efficiency. In recent years, ITS has
made further development in human-computer interaction,
virtual reality and other aspects, and is used more and more
widely.

It is of great significance for the program beginners to make
traditional OJ have more intelligent functions such as code
classification, program error repair, knowledge tracing, etc. In
terms of code classification, CodeWebs [3] can classify
different sub trees of abstract syntax tree based on the program
running results of same input, and the visual system OverCode
[4] uses the combination of lightweight program analysis and
manual rewriting rules to classify the codes submitted by
students. In terms of program repair, Gopinath et al. put

National Key Research and Development Program of China.

162

mailto:wangmeng@nlsde.buaa.edu.cn
mailto:wwj@nlsde.buaa.edu.cn
mailto:liangyu@nlsde.buaa.edu.cn

forward a method in [5] which can repair programs that
manipulate complex structured data. Könighofer et al.
proposed automatic error location based on symbol execution
and model diagnosis as well as automatic program correction
based on template in [6]. However, these methods are designed
to fix large programs, not small but complex errors occurring
in program beginners’ codes. In contrast, the method proposed
in this paper uses dynamic analysis to achieve scalability,
which is more accurate. In addition, there is also a repair
method based on program mutation [7] and genetic
programming [8], by combining mutation and genetic operators,
and then selecting an appropriate repair strategy based on
fitness function. However, due to the huge search space of
mutation, the efficiency of this method is not high.

In terms of modeling students’ knowledge, the most
commonly used model is the Knowledge Tracing (KT) model
proposed by Corbett and Anderson in [9] in 1994. This model
uses the hidden Markov method to infer whether the students
have mastered a certain knowledge point by observing the
performance of a series of answers [10]. Because the model
can accurately infer the learning of student on specific
knowledge point and predict the correctness of student’s next
answer, it is widely used by most ITS. In detail, the KT model
assumes that the students' knowledge state is a binary variable:
not mastered (0) and mastered (1), then under the whole
learning system, students' knowledge mastery is a set of binary
variables. The model updates the probability distribution of
students' knowledge mastery by observing whether they answer
the questions correctly or not. Besides, the KT model also
assumes that there are four parameters for each knowledge
point: two knowledge parameters and two performance
parameters. The two knowledge parameters are initial
knowledge rate P(L0) and learning rate P(T). The initial
knowledge rate refers to the probability that students master the
knowledge point before learning on the tutoring system.
Learning rate refers to the probability that the students master
the knowledge point after learning which is not mastered
before. The two performance parameters are: guessing rate P(G)
and slip rate P(S). Guessing rate refers to the probability that
students can answer the questions correctly by guessing even if
they do not have the knowledge in advance. The slip rate refers
to the probability that students make a wrong answer even
though they have mastered the knowledge in advance. In
addition, the model assumes that students will not forget, that is,
knowledge points will not change from the mastered state to
the not mastered state.

In recent years, with the limitation of the traditional
Knowledge Tracing model becoming more and more
prominent, many extended models have also appeared. In [11],
Pardos and Heffernan invented the KT-IDEM model by adding
difficulty nodes to the traditional model, which achieves better
results than the traditional model in some data sets. Beck et al.
proposed the HELP model in [12] by measuring the influence
of teacher's help on students' answers. However, the "help"
measured by the model is proposed by students to their
teachers. The higher the students' knowledge level, the lower
their willingness to ask for help, which will affect the accuracy
of the model. In addition, many researches try to personalize
the parameters in the traditional model. For example, Pardos

and Heffernan put forward the Prior Per Student model in [13],
which has one more polynomial node representing the future
ability of students than the traditional model, and it has been
proved more accurate. Yudelson et al. proposed to expand the
traditional model based on the specific learning probability of
students in [14], and the experiment shows that the method is
indeed effective. Besides, Baker and Corbett put forward an
innovative method in [15], which can judge whether a student
has the behavior of guessing the answer from the context, so as
to avoid the influence of recognizability and model degradation
caused by uncertainty. The results show that the method
improves the accuracy and reliability significantly compared
with the traditional model.

III. ARCHITECTURE OF THE SYSTEM

The architecture of the proposed novel intelligent tutoring
system is shown in Fig. 1. The front-end of the system is

implemented with the Vue.js framework, html, css and some
UI libraries. And the back-end is implemented with the Django

framework and python. The front and back ends communicate
through Ajax. The database of the system is PostgreSql and
Object Relation Mapping (ORM) framework is used to operate
the data.

 The general running mechanism is that after the front-end

initiates some requests to the back-end, the back-end queries

the corresponding data from the PostgreSQL database, and
then returns to the front-end after analyzing and processing the

data. The front-end then visualizes the returned data through

some UI libraries such as Echarts, iView and Element UI so as
to present the feedback to the users in a vivid manner.

Fig. 1. Architecture of the system

The proposed novel intelligent tutoring system consists of
the following components (Fig. 2):

163

• The front-end module displays the system webpages,
including problem page, competition page, code
submission page, etc. At the same time, the system
administrator can set the system through the
management page.

• The back-end module receives requests from the front-
end, then executes the relevant queries on the database,
analyzes and processes the data and returns it to the
front-end for display.

• The PostgreSQL module stores the system data, such as
problem data, code data, user data and so on.

• The judging module judges the codes submitted by the
user and then stores the results in the database.

• The code classification module obtains the accepted
codes of a certain problem from the database and
classifies them and stores the results in the database.

• The error repair module repairs the error codes, and
gives some feedback such as the hints and repair
methods to the users.

• The knowledge tracing module obtains the users’
historical data of programming from the database, and
then stores the users' probability of mastering the
knowledge points into the database after analyzing and
processing the data.

Fig. 2. Components of the system

IV. THEORY, METHODS AND IMPLEMENTATION OF THE

DESIGNED SYSTEM

First of all, we assume that for a certain problem, the
accepted codes for the problem has been stored in the database
of the system. Then, by dynamic program analysis, these
accepted codes are automatically divided into several classes.
In each class, we will select a program as the specification of
the class, which matches the rest of the codes in the class. For
an existing error program that fails to be accepted, we will run
the repair algorithm on the error program and each
specification respectively, then choose the most appropriate

method to repair the error, and give the corresponding feedback.
The operation process is shown in Fig. 3.

Fig. 3. Process of the code classification and error repair

A. Code Classification

In our system, we use the CLARA engine [16] to classify
the codes. The classification algorithm used by the CLARA
engine is mainly based on program matching. Specifically, if
program P and Q can be matched, then they belong to the same
class, and the following conditions need to be satisfied: 1) P
and Q have the same control-flow structure, which means the
abstract syntax tree structures of program P and Q are the same;
2) There is a bijective relation between the variables of
program P and Q, such that the related variables have the same
values, in the same order, during the running of program P and
Q based on the same set of inputs [16]. By using these rules,
the CLARA engine can quickly and accurately analyze the
structures of a group of sample programs, so as to judge
whether they match and achieve the purpose of classification.
We extend CLARA by visualizing the classification result of a
given problem and present it as a tree diagram, which will be
introduced in the next section.

B. Error Repair

After the classification, a program set is generated, which
consists of specifications of each class. Then we use the
modified CLARA engine to repair the error programs. Fisrt,
the engine run the repair algorithm on the wrong program and

164

each specification respectively, and then a series of corrections
and repair costs will be generated each time. The corrections
here include adding, deleting and modifying some variables or
expressions in the error program, and they will not change the
control flow structure. As for the repair cost, it is obtained by
calculating the tree edit distance of different abstract syntax
trees before and after the error program is modified. After the
repair algorithm works on all specifications and the error
program one by one, the repair engine will choose the best
repair method with the lowest cost to modify the error program,
and give corresponding feedback by describing the error
location and specific modification.

C. Knowledge Tracing

Another function of the system is knowledge tracing. We
use the KT model, which is introduced in related work, to trace
students' mastery of different knowledge points.

As shown in Fig. 4, students' mastery of knowledge points
is constantly changing in the process of answering questions.
Specifically, K represents the knowledge node, with two states:
mastered (1) and not mastered (0). Q represents the question
node, with two states: right answer (1) and wrong answer (0).
P(L0), P(T), P(G) and P(S) are the four parameters in KT
model. According to the model, we process students' answer
sequences and present the result as a curve graph, which is easy
to understand.

Fig. 4. Knowledge tracing model

As for the implementation, the front-end of the system

adopts the Vue.js framework. Vue.js is a progressive
framework and it can be used to build beautiful user interfaces.
Its design idea is bottom-up and incremental development,
which is more open and flexible in actual use. In addition, the
front-end also uses the component libraries based on Vue.js

such as iView, element UI and Echarts.

The back-end of this system is developed in python. As a

high-level programming language, python is easy to use,
supports object-oriented programming, provides dynamic data
types and various library functions to complete complex
programming tasks. In addition, python programs have good
scalability and portability.

The overall framework of the back-end is Django. Django

is an open source framework that can be used to quickly build
high-performance and elegant websites. It follows the Model-

Template-View (MTV) development mode, which makes the
development easier.

The database used is PostgreSQL. PostgreSQL database is
an object-relational database, which supports rich data types,
such as common integer, boolean, character types, and large
objects stored in binary form, including pictures, audio, video,
as well as JSON type, array type and custom type data. At the
same time, the database is a complete transaction security
database, which supports foreign keys, subqueries, data
integrity checks, views, triggers and stored procedures.

As for the background data operations, the system adopts
the Object Relation Mapping (ORM) framework. The ORM
framework associates the objects in the program with the
database by describing the mapping relationship between the
objects and the database. For example, ORM associates the
class name in the program with the table name in the database,
and associates the class property with the table field in the
database. The advantage of using ORM framework is that we
can add, delete, query and modify the data in the database
without caring about which database is used at the bottom of
the system, only need to operate the objects in the program.

V. USER INTERFACE OF THE SYSTEM

This part shows some user interfaces of the novel
intelligent tutoring system.

A. Code Classification

Fig. 5. Visualization of code classification result

165

The results of the code classification are shown in Fig. 5.
The tree type in Echarts is used to achieve visualization. The
tree extends from left to right. The leftmost node is the root
node, which represents the problem, while other nodes
represent the accepted codes of the problem. Assuming that the
number of layers of the root node is 0, then each node of the
first layer represents the specification of each class of the
problem’s accepted codes, and the child nodes of the
specification belong to the same class.

B. Error Repair

As is shown in Fig. 6, the above is the error code submitted
by the user, and the following is the system's feedback after the
repair. This page has two buttons: hint and repair. As the name
implies, the hint button can be used to view the error program
modification hint, which is not an explicit answer, while the
repair button can be used to view the specific repair methods.

Fig. 6. Error repair feedback

C. Knowledge Tracing

An example of learning curves generated by the KT model
is shown in Fig. 7, which represents the student’s learning trace
of a certain knowledge point. The abscissa of the graph
represents the programming exercises done by the student in
the process of learning, and the ordinate represents the specific
value of the probability that the student grasps the knowledge
point, ranging from 0 to 1. Each point on the graph represents
the posteriori probability of the student's mastery of the
knowledge point after completing the corresponding exercise.
The last point can be the final probability of the student's
mastery of the knowledge point.

Through the learning curve, students can clearly understand
their learning process, so as to practice more pertinently in the
following learning. In addition, teachers can find the learning
characteristics of each student, so as to improve the teaching
methods and achieve personalized teaching.

Fig. 7. Knowledge point learning curve

166

VI. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of our system, we
obtained the dataset from an introductory python programming
course offered at EduCoder. This dataset includes 6885
programs submitted by 1037 students through six assignments.
The collected programs include not only correct submissions
but also the wrong versions. Because the selected assignments
are for program beginners, the programs are simple, and the
accuracy of program classification are very high. Thus, we
focus on the analysis of the efficiency of error program repair.

We use our ITS to fix students’ wrong programs and the
repair results are in Table I. Similarly, because of the simplicity
of the assignments and programs, the system can easily fix the
most of wrong programs with a high time efficiency.

TABLE I. PROGRAM REPAIR RESULTS

Assignment # Wrong program Fix rate Time

1 714 97.34% 1.6s

2 74 94.59% 1.8s

3 64 93.75% 1.7s

4 221 90.05% 2.1s

5 640 85.16% 4.0s

6 327 88.38% 3.3s

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel intelligent tutoring
system for learning programming, which has the functions of
code classification, program error repair and knowledge tracing.
The code classification function can help students know
different solutions of the same problem, and the error repair
function can help students find out the error of their codes in
time. As for the knowledge tracing function, it can help
students have a clear understanding of their learning.

The main contribution of the paper is that we designed and
implemented a novel ITS for learning programming, which
uses the improved CLARA engine and KT model. Our ITS is
more intelligent and educationally helpful than the existing OJ
systems, and it can help beginners to improve their
programming skills better.

In the future, we can make improvements in the following
aspects:

First, the error repair function needs to be further optimized.
At present, the feedback generated by the system is similar to
the intermediate language and the readability is poor. This can
be improved by using deep learning and natural language
processing methods to produce more concise and readable
feedback.

Second, the function of knowledge tracing can be more
accurate. KT model is currently used in the system, but there
are many defects in the model, such as it is only suitable for a
single knowledge point, and it does not consider the
personalized factors of different students. Therefore, the model

can be improved later, such as using deep knowledge tracing
model [17], automatic temporal cognitive framework [18],
personalized factor model [19] or introducing multiple
knowledge points and personalized factors of different students
into the KT model, so as to describe students' learning more
accurately.

At last, peer assessment [20] can also be added to the
system. As a result, students can learn from each other and
make progress together.

ACKNOWLEDGMENT

This work is supported in part by the National Key
Research and Development Program of China (Funding No.
2018YFB1004502), the National Natural Science Foundation
of China (Grant No. 61532004) and the State Key Laboratory
of Software Development Environment (Funding No.
SKLSDE-2017ZX-03).

REFERENCES

[1] Mani A, Venkataramani D, Petit Silvestre J, et al. Better feedback for
educational online judges[C]//Proceedings of the 6th International
Conference on Computer Supported Education, Volume 2: Barcelona,
Spain, 1-3 April, 2014. SciTePress, 2014: 176-183.

[2] Freedman R, Ali S S, McRoy S. Links: what is an intelligent tutoring
system?[J]. intelligence, 2000, 11(3): 15-16.

[3] Nguyen A, Piech C, Huang J, et al. Codewebs: scalable homework
search for massive open online programming courses[C]//Proceedings of
the 23rd international conference on World wide web. ACM, 2014: 491-
502.

[4] Glassman E L, Scott J, Singh R, et al. OverCode: Visualizing variation
in student solutions to programming problems at scale[J]. ACM
Transactions on Computer-Human Interaction (TOCHI), 2015, 22(2): 7.

[5] Gopinath D, Malik M Z, Khurshid S. Specification-based program repair
using SAT[C]//International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, Berlin, Heidelberg,
2011: 173-188.

[6] Könighofer R, Bloem R. Automated error localization and correction for
imperative programs[C]//Proceedings of the International Conference on
Formal Methods in Computer-Aided Design. FMCAD Inc, 2011: 91-100.

[7] Debroy V, Wong W E. Using mutation to automatically suggest fixes for
faulty programs[C]//Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on. IEEE, 2010: 65-74.

[8] Forrest S, Nguyen T V, Weimer W, et al. A genetic programming
approach to automated software repair[C]//Proceedings of the 11th
Annual conference on Genetic and evolutionary computation. ACM,
2009: 947-954.

[9] Corbett A T, Anderson J R. Knowledge tracing: Modeling the
acquisition of procedural knowledge[J]. User Modeling and User-
Adapted Interaction, 1994, 4(4):253-278.

[10] Trifa A , Hedhili A , Chaari W L . Knowledge tracing with an intelligent
agent, in an e-learning platform[J]. Education and Information
Technologies, 2019, 24(1):711-741.

[11] Pardos Z A , Heffernan N T . KT-IDEM: Introducing Item Difficulty to
the Knowledge Tracing Model[M]// User Modeling, Adaption and
Personalization. Springer Berlin Heidelberg, 2011.

[12] Beck J E, Chang K M, Mostow J, et al. Does Help Help? Introducing the
Bayesian Evaluation and Assessment Methodology[C]// International
Conference on Intelligent Tutoring Systems. 2008.

[13] Pardos Z A, Heffernan N T. Modeling Individualization in a Bayesian
Networks Implementation of Knowledge Tracing[J]. 2010.

[14] Yudelson M V, Koedinger K R, Gordon G J. Individualized Bayesian
Knowledge Tracing Models[C]// International Conference on Artificial
Intelligence in Education. 2013.

167

[15] Baker R S, Corbett A T, Aleven V. More Accurate Student Modeling
through Contextual Estimation of Slip and Guess Probabilities in
Bayesian Knowledge Tracing[J]. Lecture Notes in Computer Science,
2008, 5091:406-415.

[16] Gulwani S, Radiček I, Zuleger F. Automated clustering and program
repair for introductory programming assignments[C]//Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2018: 465-480.

[17] Piech C, Bassen J, Huang J, et al. Deep knowledge tracing[C]//Advances
in neural information processing systems. 2015: 505-513.

[18] Pu Y, Wu W, Jiang T. ATC Framework: A fully Automatic Cognitive
Tracing Model for Student and Educational Contents[J].

[19] Liang Y, Wu W, Wu L, et al. Inferring How Novice Students Learn to
Code: Integrating Automated Program Repair with Cognitive
Model[C]//CCF Conference on Big Data. Springer, Singapore, 2019: 46-
56.

[20] Han Y, Wu W, Ji S, et al. A Human-Machine Hybrid Peer Grading
Framework for SPOCs[J]. International Educational Data Mining
Society, 2019.

168

