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Abstract—The goal of this paper is to propose the concept, 

structure and implementation of a novel intelligent tutoring 

system designed for beginners in C language and Python. The 

system is implemented by adding the functions of code 

classification, program error repair and personal knowledge 

tracing to an online programming practice platform. This 

implementation makes the original platform become more 

intelligent and help students learn programming better. 

Keywords—intelligent tutoring system; code classification; 

program error repair;  personal knowledge tracing 

I.  INTRODUCTION 

With the rapid development of computer technology, 
programming has become a necessary skill for a qualified 
college student, especially for students majoring in computer 
science. Therefore, the relevant colleges of information 
technology in the University pay great attention to the 
cultivation of students' programming ability, and set up many 
courses related to programming language, such as C language 
and Python. 

In addition to the teaching of theoretical knowledge, 
programming practice is also a necessary part of this kind of 
course, and training students through online judge (OJ) system 
is a widely used way. Through OJs, students can submit their 
own programs, and then the OJs will compile and execute the 
source code, and compare the running result with the pre-
designed test cases to check the correctness of the code, and 
provide the feedback to students. However, the function of 
common OJs at present is too simple, only supports the 
detection of code correctness, it is difficult to give more 
personalized feedback.  

Therefore, if an OJ can be more intelligent, such as having 
functions of classifying the answer codes of the problem and 
visualizing them clearly, and giving corresponding hints or 
repair methods for program errors, and tracing students' 
mastery of different knowledge points, the OJ will be more 
educationally helpful to the beginners. This is why we call our 
system “a novel intelligent tutoring system”. For program 
beginners, this implementation will make them open their mind, 
understand their mistakes in time, and have a clear 
understanding of their learning. As a result, their learning 
efficiency can be improved. On the other hand, for the teachers, 

they can know the learning states of different students better by 
using the feedback of the OJ, which will help them to improve 
their teaching methods as well. 

This paper is structured as follows. The first section 
contains an introduction to the issues and possible 
improvements of existing OJ systems, and section II presents 
the related work about the topic. Section III describes the 
system architecture, and section IV presents the methods and 
implementation of the system. Section V shows some figures 
of the user interfaces and section VI presents the experimental 
results. Section Ⅶ describes the conclusion and future 

research directions. 

II. RELATED WORK 

OJ is useful for students majoring in computer science to 
practice programming. However, most of OJ's judgments on 
the codes are binary: "accepted" or "not accepted". This may be 
appropriate for experienced students, but for beginners, it may 
be more helpful to give more feedback [1]. 

Intelligent tutoring system (ITS) may solve this problem. 
ITS refers to any computer program that can be used for 
learning and contains intelligence [2], which rose in the 1950s 
and gained the attention of developed countries in the 1970s. 
Since the 1990s, it has developed comprehensively and rapidly. 
Traditional ITS consists of four parts: expert model, student 
model, teaching model and learning environment or user 
interface [2]. Its biggest advantage is that it can teach students 
according to their aptitude, and provide personalized guidance 
for different students, so as to improve students' independent 
learning ability and learning efficiency. In recent years, ITS has 
made further development in human-computer interaction, 
virtual reality and other aspects, and is used more and more 
widely. 

It is of great significance for the program beginners to make 
traditional OJ have more intelligent functions such as code 
classification, program error repair, knowledge tracing, etc. In 
terms of code classification, CodeWebs [3] can classify 
different sub trees of abstract syntax tree based on the program 
running results of same input, and the visual system OverCode 
[4] uses the combination of lightweight program analysis and 
manual rewriting rules to classify the codes submitted by 
students. In terms of program repair, Gopinath et al. put 
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forward a method in [5] which can repair programs that 
manipulate complex structured data. Könighofer et al. 
proposed automatic error location based on symbol execution 
and model diagnosis as well as automatic program correction 
based on template in [6]. However, these methods are designed 
to fix large programs, not small but complex errors occurring 
in program beginners’ codes. In contrast, the method proposed 
in this paper uses dynamic analysis to achieve scalability, 
which is more accurate. In addition, there is also a repair 
method based on program mutation [7] and genetic 
programming [8], by combining mutation and genetic operators, 
and then selecting an appropriate repair strategy based on 
fitness function. However, due to the huge search space of 
mutation, the efficiency of this method is not high.  

In terms of modeling students’ knowledge, the most 
commonly used model is the Knowledge Tracing (KT) model 
proposed by Corbett and Anderson in [9] in 1994. This model 
uses the hidden Markov method to infer whether the students 
have mastered a certain knowledge point by observing the 
performance of a series of answers [10]. Because the model 
can accurately infer the learning of student on specific 
knowledge point and predict the correctness of student’s next 
answer, it is widely used by most ITS. In detail, the KT model 
assumes that the students' knowledge state is a binary variable: 
not mastered (0) and mastered (1), then under the whole 
learning system, students' knowledge mastery is a set of binary 
variables. The model updates the probability distribution of 
students' knowledge mastery by observing whether they answer 
the questions correctly or not. Besides, the KT model also 
assumes that there are four parameters for each knowledge 
point: two knowledge parameters and two performance 
parameters. The two knowledge parameters are initial 
knowledge rate P(L0) and learning rate P(T). The initial 
knowledge rate refers to the probability that students master the 
knowledge point before learning on the tutoring system. 
Learning rate refers to the probability that the students master 
the knowledge point after learning which is not mastered 
before. The two performance parameters are: guessing rate P(G) 
and slip rate P(S). Guessing rate refers to the probability that 
students can answer the questions correctly by guessing even if 
they do not have the knowledge in advance. The slip rate refers 
to the probability that students make a wrong answer even 
though they have mastered the knowledge in advance. In 
addition, the model assumes that students will not forget, that is, 
knowledge points will not change from the mastered state to 
the not mastered state. 

In recent years, with the limitation of the traditional 
Knowledge Tracing model becoming more and more 
prominent, many extended models have also appeared. In [11], 
Pardos and Heffernan invented the KT-IDEM model by adding 
difficulty nodes to the traditional model, which achieves better 
results than the traditional model in some data sets. Beck et al. 
proposed the HELP model in [12] by measuring the influence 
of teacher's help on students' answers. However, the "help" 
measured by the model is proposed by students to their 
teachers. The higher the students' knowledge level, the lower 
their willingness to ask for help, which will affect the accuracy 
of the model. In addition, many researches try to personalize 
the parameters in the traditional model. For example, Pardos 

and Heffernan put forward the Prior Per Student model in [13], 
which has one more polynomial node representing the future 
ability of students than the traditional model, and it has been 
proved more accurate. Yudelson et al. proposed to expand the 
traditional model based on the specific learning probability of 
students in [14], and the experiment shows that the method is 
indeed effective. Besides, Baker and Corbett put forward an 
innovative method in [15], which can judge whether a student 
has the behavior of guessing the answer from the context, so as 
to avoid the influence of recognizability and model degradation 
caused by uncertainty. The results show that the method 
improves the accuracy and reliability significantly compared 
with the traditional model. 

III. ARCHITECTURE OF THE SYSTEM 

The architecture of the proposed novel intelligent tutoring 
system is shown in Fig. 1. The front-end of the system is 

implemented with the Vue.js framework, html, css and some 
UI libraries. And the back-end is implemented with the Django 

framework and python. The front and back ends communicate 
through Ajax. The database of the system is PostgreSql and 
Object Relation Mapping (ORM) framework is used to operate 
the data. 

 The general running mechanism is that after the front-end 

initiates some requests to the back-end, the back-end queries 

the corresponding data from the PostgreSQL database, and 
then returns to the front-end after analyzing and processing the 

data. The front-end then visualizes the returned data through 

some UI libraries such as Echarts, iView and Element UI so as 
to present the feedback to the users in a vivid manner. 

 

Fig. 1. Architecture of the system 

The proposed novel intelligent tutoring system consists of 
the following components (Fig. 2): 
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• The front-end module displays the system webpages, 
including problem page, competition page, code 
submission page, etc. At the same time, the system 
administrator can set the system through the 
management page. 

• The back-end module receives requests from the front- 
end, then executes the relevant queries on the database, 
analyzes and processes the data and returns it to the 
front-end for display. 

• The PostgreSQL module stores the system data, such as 
problem data, code data, user data and so on. 

• The judging module judges the codes submitted by the 
user and then stores the results in the database. 

• The code classification module obtains the accepted 
codes of a certain problem from the database and 
classifies them and stores the results in the database.  

• The error repair module repairs the error codes, and 
gives some feedback such as the hints and repair 
methods to the users. 

• The knowledge tracing module obtains the users’ 
historical data of programming from the database, and 
then stores the users' probability of mastering the 
knowledge points into the database after analyzing and 
processing the data.  

 

Fig. 2. Components of the system 

IV. THEORY,  METHODS AND IMPLEMENTATION OF THE 

DESIGNED SYSTEM 

First of all, we assume that for a certain problem, the 
accepted codes for the problem has been stored in the database 
of the system. Then, by dynamic program analysis, these 
accepted codes are automatically divided into several classes. 
In each class, we will select a program as the specification of 
the class, which matches the rest of the codes in the class. For 
an existing error program that fails to be accepted, we will run 
the repair algorithm on the error program and each 
specification respectively, then choose the most appropriate 

method to repair the error, and give the corresponding feedback. 
The operation process is shown in Fig. 3. 

 

Fig. 3. Process of the code classification and error repair 

A. Code Classification 

In our system, we use the CLARA engine [16] to classify 
the codes. The classification algorithm used by the CLARA 
engine is mainly based on program matching. Specifically, if 
program P and Q can be matched, then they belong to the same 
class, and the following conditions need to be satisfied: 1) P 
and Q have the same control-flow structure, which means the 
abstract syntax tree structures of program P and Q are the same; 
2) There is a bijective relation between the variables of 
program P and Q, such that the related variables have the same 
values, in the same order, during the running of program P and 
Q based on the same set of inputs [16]. By using these rules, 
the CLARA engine can quickly and accurately analyze the 
structures of a group of sample programs, so as to judge 
whether they match and achieve the purpose of classification. 
We extend CLARA by visualizing the classification result of a 
given problem and present it as a tree diagram, which will be 
introduced in the next section.  

B. Error Repair 

After the classification, a program set is generated, which 
consists of specifications of each class. Then we use the 
modified CLARA engine to repair the error programs. Fisrt, 
the engine run the repair algorithm on the wrong program and 
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each specification respectively, and then a series of corrections 
and repair costs will be generated each time. The corrections 
here include adding, deleting and modifying some variables or 
expressions in the error program, and they will not change the 
control flow structure. As for the repair cost, it is obtained by 
calculating the tree edit distance of different abstract syntax 
trees before and after the error program is modified. After the 
repair algorithm works on all specifications and the error 
program one by one, the repair engine will choose the best 
repair method with the lowest cost to modify the error program, 
and give corresponding feedback by describing the error 
location and specific modification.  

C. Knowledge Tracing 

Another function of the system is knowledge tracing. We 
use the KT model, which is introduced in related work, to trace 
students' mastery of different knowledge points.  

As shown in Fig. 4, students' mastery of knowledge points 
is constantly changing in the process of answering questions. 
Specifically, K represents the knowledge node, with two states: 
mastered (1) and not mastered (0). Q represents the question 
node, with two states: right answer (1) and wrong answer (0). 
P(L0), P(T), P(G) and P(S) are the four parameters in KT 
model. According to the model, we process students' answer 
sequences and present the result as a curve graph, which is easy 
to understand. 

 

Fig. 4. Knowledge tracing model 

As for the implementation, the front-end of the system 

adopts the Vue.js framework. Vue.js is a progressive 
framework and it can be used to build beautiful user interfaces. 
Its design idea is bottom-up and incremental development, 
which is more open and flexible in actual use. In addition, the 
front-end also uses the component libraries based on Vue.js 

such as iView, element UI and Echarts. 

The back-end of this system is developed in python. As a 

high-level programming language, python is easy to use, 
supports object-oriented programming, provides dynamic data 
types and various library functions to complete complex 
programming tasks. In addition, python programs have good 
scalability and portability. 

The overall framework of the back-end is Django. Django 

is an open source framework that can be used to quickly build 
high-performance and elegant websites. It follows the Model-

Template-View (MTV) development mode, which makes the 
development easier. 

The database used is PostgreSQL. PostgreSQL database is 
an object-relational database, which supports rich data types, 
such as common integer, boolean, character types, and large 
objects stored in binary form, including pictures, audio, video, 
as well as JSON type, array type and custom type data. At the 
same time, the database is a complete transaction security 
database, which supports foreign keys, subqueries, data 
integrity checks, views, triggers and stored procedures. 

As for the background data operations, the system adopts 
the Object Relation Mapping (ORM) framework. The ORM 
framework associates the objects in the program with the 
database by describing the mapping relationship between the 
objects and the database. For example, ORM associates the 
class name in the program with the table name in the database, 
and associates the class property with the table field in the 
database. The advantage of using ORM framework is that we 
can add, delete, query and modify the data in the database 
without caring about which database is used at the bottom of 
the system, only need to operate the objects in the program. 

V. USER INTERFACE OF THE SYSTEM 

This part shows some user interfaces of the novel 
intelligent tutoring system. 

A. Code Classification 

 
 

Fig. 5. Visualization of code classification result 
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The results of the code classification are shown in Fig. 5. 
The tree type in Echarts is used to achieve visualization. The 
tree extends from left to right. The leftmost node is the root 
node, which represents the problem, while other nodes 
represent the accepted codes of the problem. Assuming that the 
number of layers of the root node is 0, then each node of the 
first layer represents the specification of each class of the 
problem’s accepted codes, and the child nodes of the 
specification belong to the same class.  

B. Error Repair 

As is shown in Fig. 6, the above is the error code submitted 
by the user, and the following is the system's feedback after the 
repair. This page has two buttons: hint and repair. As the name 
implies, the hint button can be used to view the error program 
modification hint, which is not an explicit answer, while the 
repair button can be used to view the specific repair methods. 

 

Fig. 6. Error repair feedback  

C. Knowledge Tracing 

An example of learning curves generated by the KT model 
is shown in Fig. 7, which represents the student’s learning trace 
of a certain knowledge point. The abscissa of the graph 
represents the programming exercises done by the student in 
the process of learning, and the ordinate represents the specific 
value of the probability that the student grasps the knowledge 
point, ranging from 0 to 1. Each point on the graph represents 
the posteriori probability of the student's mastery of the 
knowledge point after completing the corresponding exercise. 
The last point can be the final probability of the student's 
mastery of the knowledge point. 

Through the learning curve, students can clearly understand 
their learning process, so as to practice more pertinently in the 
following learning. In addition, teachers can find the learning 
characteristics of each student, so as to improve the teaching 
methods and achieve personalized teaching. 

 

 

 

 

Fig. 7. Knowledge point learning curve 
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VI. EXPERIMENTAL RESULTS 

In order to evaluate the effectiveness of our system, we 
obtained the dataset from an introductory python programming 
course offered at EduCoder. This dataset includes 6885 
programs submitted by 1037 students through six assignments. 
The collected programs include not only correct submissions 
but also the wrong versions. Because the selected assignments 
are for program beginners, the programs are simple, and the 
accuracy of program classification are very high. Thus, we 
focus on the analysis of the efficiency of error program repair.  

We use our ITS to fix students’ wrong programs and the 
repair results are in Table I. Similarly, because of the simplicity 
of the assignments and programs, the system can easily fix the 
most of wrong programs with a high time efficiency.  

TABLE I.  PROGRAM REPAIR RESULTS 

Assignment # Wrong program  Fix rate Time 

1 714 97.34% 1.6s 

2 74 94.59% 1.8s 

3 64 93.75% 1.7s 

4 221 90.05% 2.1s 

5 640 85.16% 4.0s 

6 327 88.38% 3.3s 

 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a novel intelligent tutoring 
system for learning programming, which has the functions of 
code classification, program error repair and knowledge tracing. 
The code classification function can help students know 
different solutions of the same problem, and the error repair 
function can help students find out the error of their codes in 
time. As for the knowledge tracing function, it can help 
students have a clear understanding of their learning. 

The main contribution of the paper is that we designed and 
implemented a novel ITS for learning programming, which 
uses the improved CLARA engine and KT model. Our ITS is 
more intelligent and educationally helpful than the existing OJ 
systems, and it can help beginners to improve their 
programming skills better.  

In the future, we can make improvements in the following 
aspects: 

First, the error repair function needs to be further optimized. 
At present, the feedback generated by the system is similar to 
the intermediate language and the readability is poor. This can 
be improved by using deep learning and natural language 
processing methods to produce more concise and readable 
feedback. 

Second, the function of knowledge tracing can be more 
accurate. KT model is currently used in the system, but there 
are many defects in the model, such as it is only suitable for a 
single knowledge point, and it does not consider the 
personalized factors of different students. Therefore, the model 

can be improved later, such as using deep knowledge tracing 
model [17], automatic temporal cognitive framework [18],  
personalized factor model [19] or introducing multiple 
knowledge points and personalized factors of different students 
into the KT model, so as to describe students' learning more 
accurately. 

At last, peer assessment [20] can also be added to the 
system. As a result,  students can learn from each other and  
make progress together. 
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