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Abstract—We analyze the accuracy of a Thalmic Myo 

armband in regards to short-range pointing interfaces. Through 

an experiment with multiple trials, we investigate the factors that 

could have an impact on the recognition rate. We found that 

removing the armband between sessions of use and a small 

spatial distance between pointing locations have a negative 

impact on the accuracy. By applying an exploratory approach, 
we found a configuration with a 97.3% recognition rate. 
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I.  INTRODUCTION 

When analyzing pointing or gesture interfaces designed and 
built for Smart TVs, we can observe that an abundance of them 
use static devices to record the user’s actions. For example, the 
Microsoft Kinect [12] device was used in the initial “Smart 
Pockets” [14] implementation to capture the human body and 
detect the hand’s position in relation to the user’s pockets and 
the TV set. Moreover, Khalaf et al. [1] conducted a 
comparative study using the Kinect device, a Leap Motion 
controller [15] and Intel’s RealSense [9] to allow participants 
to perform hand gestures while playing an object collection 
game. Their conclusion suggests that not all gesture 
recognition devices are suitable for gesture-based video games. 

However, as noted by Tsai et al. [16], using the Leap 
Motion controller can be restrictive since the user must stay in 
range of the device to capture their hand gestures. Therefore, 
they opted for a Thalmic Myo armband device instead. An 
example of a Virtual Reality system that used the Myo device 
is “Virtual Muscle Force” [11], which is an immersion system 
where the armband was used for performing interaction 
techniques.  

The limitations posed by static devices to record the user’s 
body or gestures are problematic for interfaces, as the user 
could be restricted from moving around or would need to 
always make sure that they are in the correct range to be 
detected by the equipment. Thus, having a device attached to 
the user’s body would solve this issue. The Thalmic Myo 
armband is more suitable for these scenarios because it must be 
placed on the user’s hand and it uses a Bluetooth connection, 
hence becoming more flexible in regards to where the 

participants could be performing the hand gestures. However, 
apart from detecting a set of gestures, the device also provides 
data about the hand orientation that could be used for 
controlling applications. 

In this paper, we open with presenting other articles that 
use the Myo armband in their studies followed by the details of 
our experiment during which we employed multiple trials due 
to the restrictions found in the initial study concerning the 
position of the armband on the user’s body. We continued with 
a discussion section were we further analyzed our results, 
drawing out a conclusion. 

II. RELATED WORK 

Given the sensors equipped on the Thalmic Myo armband 
[13], the device can be used for multiple purposes. With the 8 
built-in EMG sensors, it can detect the electrical activity of the 
hand’s muscles and recognize five default gestures. Also, with 
the embedded 9-axis IMU, the device is capable of providing 
hand orientation data. Therefore, the Myo armband has been 
used in applications from a variety of domains. 

In the medical field, Montoya et al. [10] designed and 
developed a Virtual Reality video game that used the EMG 
sensors to capture the upper limb muscle activity and fatigue 
with the goal of helping patients during their muscle 
rehabilitation process. In the game, by contracting their 
muscles, the users were creating a protection field against a 
monster that was shooting them with acid. Also, the system 
detected the patient’s muscle fatigue and adapted accordingly 
by lowering the required contraction level. Moreover, Zhang et 
al. [17] created “Bubble”, a system that aimed to help people 
with hand disabilities to grasp and hold objects. The Myo 
armband was used to detect the arm contractions in order to 
trigger the inflation of the chambers placed on the user’s 
fingers, which would stop when the arm muscles relaxed. 

Some systems saw a more immediate application, such as 
“MuscleSense” proposed by Lim et al. [2] that would record 
and analyze the user’s fatigue while they were doing different 
rounds of strength training with the purpose of enhancing the 
training efficacy in a session. 

When analyzing the user interfaces created with Myo, we 
can see that it has been used in pair with a smartwatch by 

185



Kurosawa et al. [5], where the orientation and EMG data have 
been used to control a cursor displayed on the screen of the 
smartwatch. The orientation data was used to detect the 
direction in which the cursor should be moved, whereas the 
EMG data triggered the cursor to be moved in the pointed 
direction when the user applied force. 

In regards to interfaces for controlling the TV, the Myo 
armband has been used to expand on the concept of “Smart 
Pockets” [14] by using the orientation provided by the device 
to detect when the user is pointing to the TV screen or has their 
hand in one of their pockets [8]. Moreover, Popovici and 
Vatavu [7] developed an application where the user could 
change the TV channel using the Myo device. The user could 
move the hand in front of their body to discover the nine 
available channels and once they found the desired channel, 
they could change it by applying a fist gesture. The applied 
NASA-TLX test showed that the application had a high 
workload that was mainly caused by the Myo’s gesture 
recognition accuracy, but at the same time, it had good 
usability and high desirability. Kerber et al. [4] reported that 
the standard gesture accuracy rate is just 68%, which explains 
the high workload when trying to change the channels from the 
[7] paper, however, by proposing an improved recognition 
algorithm, they increased the number of gestures to 40 with an 
accuracy rate of 95%. 

In relation to pointing interfaces, Popovici et al. [6] 
evaluated the user performance for recalling and pointing to 
nine mid-air locations. These mid-air locations defined the 
participant’s nine most favorite channels. Their user study 
revealed that users had a recall rate of 80%, which for some 
participants reached to 100%. However, something to note is 
that some participants had difficulties in filling the list of nine 
channels. Also, the best configuration for both user and system 
accuracy was the one shaped as a matrix.  

III. EXPERIMENT 

A. Apparatus and Development Tools 

The Myo armband is a wearable device that provides the 
hand’s orientation at a time t in the form of a unit quaternion. 

 qtwt, xt, yt, zt  

When using the device in pointing mode, the recorded 
quaternions must be corrected by applying an offset: 

 qoffset (woffset, xoffset, yoffset, zoffset) 

The offset is a known fixed location captured for each user 
before recording any data. The offset is applied by multiplying 
the quaternion qt (1) reported at a time t with the offset (2) as 
follows: 

wr  woffset · wt − xoffset · xt − yoffset · yt − zoffset · zt 
xr = woffset · xt + xoffset · wt + yoffset · zt − zoffset · yt 

yr = woffset · yt − xoffset · zt + yoffset · wt + zoffset · xt  

zr = woffset · zt + xoffset · yt − yoffset · xt + zoffset · wt 

To compute the distance between two corrected 
quaternions, we applied the following formula [3]: 

 d(q1, q2) = 1 <q1, q2>2 

Where <q1, q2> is the inner product: 

 < q1, q2 >= w1 · w2 + x1 · x2 + y1 · y2 + z1 · z2 

For example, if we have q1 and q2: 

 q1, 0.2, 0.3, 0.4 
 q2, 0.6, 0.7, 0.8 

The inner product is: 

 < q1, q2 >= 0.1 · 0.5 + 0.2 · 0.6 + 0.3 · 0.7 + 0.4 · 0.8 
 < q1, q2 >= 0.7 

Thus, the distance between q1 and q2 is: 

 d(q1, q2) = 1 0.72 
 d(q1, q2) = 0.51 

Although it is no longer produced by Thalmic Labs, 
support is still available and Myo remains a remarkable 
wearable device for rapid prototyping and evaluation. 

We used the Myo JavaScript SDK provided for developers 
for implementing the communication between the device and 
the web page application. The application was built using 
HTML 5, CSS 3 and JavaScript and it ran under Google 
Chrome (v80.0.3987.122) on a laptop that was connected to a 
large, 55-inch Smart TV (Samsung UE55D). 

B. Participants 

 

Fig. 1. Snapshot of a participant during the experiment. The participant was 

touching one of the 48 elements displayed on the Smart TV screen. 
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Fig. 2. Visual representation of all the 48 elements displayed at once. 

We had ten (10) volunteers (5 male, 5 female) that 
participated in the experiment, ages between 20 and 28 
(M=22.4, SD=2.41). One participant was left handed. 

C. Task 

The task that the participants had to accomplish was to 
touch 48 elements displayed one at a time randomly on the 
screen while wearing the Myo armband on their dominant and 
non-dominant hand. The elements were displayed in the form 
of a red cross and the volunteers were asked to try to touch the 
point where the two lines of the element intersect, see Fig. 1 
and Fig. 2. Each element was displayed only once during a 
repetition. 

At the beginning of the experiment, the participants were 
asked to stand in front of the Smart TV at a comfortable 
distance to be able to touch any element displayed on the 
screen. The initial position was marked and measured so that if 
the participant needed to take a break, they would be able to 
continue the experiment from the same location. 

Half of the participants started with the Myo armband on 
their dominant hand and the other half on their non-dominant 
hand. The next step was to record the offset and have the 
participant touch the 48 elements displayed on the screen. This 
was repeated for 5 times and afterwards, the hand was switched 
repeating the whole process for the other hand. The participants 
were told that they can take a break whenever they needed to. 

 

Fig. 3. Comparison of the recognition rate between the right and left hand for 

each participant. The bars colored with blue represent the recognition rate for 

the left hand and the orange bars are the corresponding recognition rates for 

the right hand. 

D. Results 

For the data captured for each hand, we applied a user-
dependent training where we trained a classifier for each 
participant. We took this approach because the distance 
between the participants and the screen varied from 49cm to 
61cm (M=52.3cm, SD=6.18cm), which means that the offset 
that was set at the beginning of the experiment had a different 
location for each participant. This distance varied based on the 
participant’s height and hand length. Therefore, applying the 
classifier on the whole set of data would result in lower 
recognition rates. 

When the participant touched an element on the screen, we 
captured the exact location provided by the touchscreen and the 
orientation from the Myo armband. Therefore, for each 
provided orientation we know which element should have been 
accessed and we can compare it with the result of a recognition 
algorithm. Thus, we created a classifier that would be used for 
calculating the recognition rate, which was implemented using 
the following pseudo-code: 

 

The result was a recognition rate of 25.4% for the right 
hand and 24.7% for the left hand. Given that the recognition 
rates were so low, we conducted some smaller trials to analyze 
the possible issues. At the beginning of the trials, we recorded 
data for both dominant and non-dominant hands, the results can 
be seen in Fig. 3, however, given that the recognition rates 
were so low, we focused on increasing the overall value and 
continued the trials using only the right hand. 

 

Fig. 4. Recognition rates for the experimental trials. 

 

for i = 1, participants, i += 1: 
    for T = 1, 5 training repetitions, T += 1: 
        for R = 1, 100, R += 1: 
            *) pick T random samples for each element as the  
   training set 
            *) pick one random sample not selected  
                previously for each element 
            for candidate = 1, 48 elements, candidate += 1: 
                *) classify the candidate based on the training set 
                    by finding the element with the minimum 
                    distance 
                *) check if the provided result is correct 
            endfor 
        endfor 
    endfor 
endfor 
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Initially, we ran a one participant trial for the right hand 
with the same procedure, but the Myo armband was not 
removed from the arm between the 5 repetitions. The result 
was that the recognition rate increased to 68.3%. 

In the next trial, we kept the restriction of not removing the 
armband between repetitions and we decreased the number of 
elements to 20. The result was a recognition rate of 92.6%. 
However, not removing the device between sessions of use is 
not feasible, thus we conducted another trial where we had 9 
elements and the participant had to remove the device between 
repetitions. The result was a recognition rate of 97.3%. We 
decreased to 9 elements as papers such [6] and [7] created 
interfaces using 9 mid-air locations. 

As the number of elements decreased, their size changed. 
Given that the touchscreen had an active display area of 
1209.6mm x 680.4mm, initially, each element had a size of 
151.2mm x 113.4mm. When the elements decreased to 20, 
their size increased to 241.92mm x 170.1mm, and when the 
number of elements was 9, their size was 403.2mm x 
226.8mm. Fig. 2. displays all the 48 elements at once, however, 
during the trials, each element was displayed by itself at 
random order. 

IV. DISCUSSION 

When analyzing the recognition rate for the 48 elements 
from the initial trial in comparison to the second trial where the 
Myo armband was not removed, we can conclude: 

 When trying to point to a fixed location in space using a 
device that offers orientation data relative to the user’s 
body, the recognition rate will be low because the 
orientation might be different. The user is touching the 
same point, but it can be from different angles. 

 Even when setting the offset and correcting the 
recorded quaternions, the differences in angles can still 
be substantial. 

 Removing the Myo armband and placing it back on the 
arm could also provide differences in the hand 
orientation as the armband might not be placed on the 
exact initial location. 

Moreover, when the number of elements was decreased to 
20 and the restriction of removing the device between 
repetitions was still ignored, the recognition rate increased 
dramatically (from 68.3% to 92.6%). This further enforces the 
fact that the user may touch the same point but the hand is 
coming from different angles. Given that between the two trials 
the space allocated for each element increased 2.4 times in size, 
we can conclude that depending on the space that is used 
around the user, there must be a minimum spatial distance 
between each location, as pointed by Popovici et al. in [6]. 

This is further emphasized by the fact that when the number 
of points was decreased to 9, the recognition rate was high 
(97.3%), even though the Myo armband was removed between 
repetitions. This is a critical item as it is difficult to build a 
system where the device cannot be removed between sessions. 

V. CONCLUSION 

We presented an analysis of the Thalmic Myo armband in 
regards to its accuracy in short-range pointing tasks to find the 
best configuration for creating an invisible interface displayed 
in front of the body. We discovered that the device also poses 
some limitations as it can be placed in different locations 
between sessions and the hand orientation may be different 
depending on the angle from which a point is accessed. 
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