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Abstract—Real time operating systems (RTOS) have a 

growing importance in the development of embedded projects 

based on microcontrollers (MCUs). They allow the development 

of multitasking applications providing deterministic behavior 

and basic services for inter-task communication. When it is 

selected an RTOS, it must take into account several criteria such 

as: license costs, memory footprint, predictability, and latency in 

handling of the critical operations triggered by internal or 

external events. This latency can also be influenced by the time 

required for task context switching operation. In this paper, we 

compare the time for task context switching in the case of four 

RTOSs used on ARM Cortex™-M based microcontrollers: 

FreeRTOS, uC-OS/II, Keil RTX, and RT-Thread. For these 

RTOSs, the time for task context switching is measured if 

synchronization is performed through events, semaphores and 

mailboxes. The tests are performed on ARM Cortex™-M4 and 

ARM Cortex™-M0+ based MCUs.    

Keywords—real time; operating systems; task synchronization; 

microcontrollers 

I.  INTRODUCTION 

The real time operating systems (RTOS) are used to design 
and develop hard and soft real time applications [1]. This 
system must respond as quickly as possible to the 
external/internal events. Furthermore, these systems must be 
predictable, deterministic, reliable, fault tolerant and comply 
with the imposed deadlines [1] [2].  

The software design and development for simple embedded 
systems can be based on the super-loop concept [3] in which, 
functions are executed in a predefined order within an infinite 
loop. This concept cannot be used to develop applications that 
are more complex because they are very difficult to extend and 
debug. The disadvantages of the super-loop concept are solved 
by RTOSs [1] [3]  that allow modularization of the applications 
by splinting into tasks that are executed only when are 
scheduled, allowing an efficient use of resources provided by 
microcontrollers.  

RTOS systems include a kernel that provides services for 
task management, communication mechanisms, and task 
synchronization mechanisms. Examples of RTOS include uC-
OS/II, KEIL RTX, FreeRTOS, RT-Thread, eCOS, LynxOS, 

QNX, VxWorks, OSEK, etc. These RTOS are executed on the 
microcontrollers and are used for the development of 
multitasking applications with hard real time requirements. 
These RTOS do not use the virtual memory concept. Linux, 
Linux variants, or Windows operating systems can not run on 
microcontrollers due to resource requirements. These operating 
systems can run on microprocessors that support virtual 
memory. Furthermore, the RTOS systems are used for the 
development of devices that are integrated into IoT (Internet of 
Things) applications [4]. 

In order to compare the RTOSs, multiple features must be 
considered. The most important parameter is worst case 
execution time (WCET) for the execution of a task and of an 
interrupt service routine. In [5] it is specified that the most 
important parameter for an RTOS is the maximum amount of 
time during which the interrupts are disabled. Others important 
parameters of an RTOS are latency for handle the 
external/internal events, jitter for event handling, and time for 
task context switching [1]. Another important feature is 
modularity and scalability by which unnecessary services can 
be disabled to obtain a lower memory footprint. Unlike regular 
operating systems, RTOSs are designed for small memory 
systems. 

Examples of applications that are developed with RTOSs 
are [1]: Internet of Things, Industrial Internet of Things [4], 
automotive applications [6], medical systems [7], robotics, 
military systems [8], avionics [8], telecommunication systems, 
industrial automation [9], and flight control systems. The most 
of real time systems applications comply with a combination of 
hard real time requirements for critical operations and soft real 
time requirements for noncritical operation.  

In this paper, we measure and compare the time for task 
context switching in the case of four RTOSs if synchronization 
between two tasks is performed through events, semaphores 
and mailboxes. The tests are performed on ARM Cortex™-M4 
and ARM Cortex™-M0+ based MCUs using the following 
RTOSs: FreeRTOS, uC-OS/II, Keil RTX, and RT-Thread. 

This paper is structured as follows: Section II presents the 
RTOSs used for the tests and a study related the embedded 
systems, Section III describes the test applications, and in 
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Section IV are present the experimental results. The 
conclusions are drawn in Section V.  

II. REAL TIME OPERATING SYSTEM FOR SMALL 

MICROCONTROLLERS 

In every year, EETimes.com and Embedded.com publish a 
market study related to the embedded systems [10].  According 
with the last market study [10], 68% from the ongoing 
embedded projects are designed around of an embedded 
operating system (RTOS, kernel, etc.). This percentage is 
maintained over the past five years, with minor differences, and 
those that do not use an operating system confirmed that they 
are not needed. From the ongoing projects based on OS/RTOS, 
41% use an open source solution without commercial support 
(the trend is growing over past five years), 30% use a 
commercial solution (the trend is decreasing over past five 
years), 17% use an in-house solution, and 12% use an open 
source solution with commercial support [10].  

The most used operating systems [10] are Embedded Linux 
(22%), followed by FreeRTOS (20%) and in-house solution 
(19%). Other RTOS (excepting Windows, Android, Linux 
solutions) for small microcontroller are: Texas Instruments 
RTOS (5%), Texas Instruments DSP/BIOS (5%), Micrium uC-
OS/III (5%), Keil RTX (4%), Micrium uC-OS/II (4%), Wind 
River VxWorks (4%). We can observe that the most used 
RTOS for small microcontrollers is FreeRTOS (it is considered 
that Embedded Linux is not used in small microcontrollers).  

A. FreeRTOS 

FreeRTOS [11] is an open source RTOS. According with 
[10], it is the most used RTOS on project for small 
microcontrollers ongoing in 2017. It supports multitasking and 
provides services for inter task communication and 
synchronization mechanisms such as semaphores, mutexes, 
event group, mailbox, and software times. FreeRTOS uses a 
preemptive scheduling and was designed for small 
microcontrollers with small data and code memory. In 
FreeRTOS, more tasks can have the same priority. In this case, 

the scheduler will use a round robin scheduling scheme for the 
levels of priority with more tasks.  OpenRTOS is the version of 
the FreeRTOS with commercial support and license provided 
by WITTENSTEIN Group [12].  

B. Micrium uC-OS/II and Micrium uC-OS/III 

Micro-Controller Operating Systems (uC-OS) [5][13] is a 
commercial RTOS provided by Micrium (subsidiary of Silicon 
Labs). The license is provided per product or per product line 
and was designed for time critical real time applications. It 
supports multitasking and services for mutexes, semaphores, 
events, mailboxes, and message queue. The difference between 
uC-OS/II and Micrium uC-OS/III is that the last support more 
task with the same priority level using a round robin scheduling 
policy. It support a large number of CPU architectures such as: 
ARM7-9-11/Cortex™-M1-3-4-A8/9, MSP430, PowerPC, etc. 

C. Keil RTX 

RTX [14] is a RTOS provided with source code by KEIL 
under royalty-free license. It supports multitasking and services 
for mutexes, semaphores, events, mailboxes. It provides round-
robin, preemptive and non-preemptive (collaborative) 
scheduling policies. The support for debug RTX is integrated 
in the MDK-ARM tools. Furthermore, it implements the 
CMSIS-RTOS API standardized by the ARM. Because the 
source code is provided with MDK-ARM tools, it is 
exclusively used in the development of the ARM Cortex™-Mx 
processor-based devices. 

D. RT-Thread 

RT-Thread [15] is an open source RTOS provided by the 
RT-Thread Development Team that is designed for MCU with 
small memory. It supports a large number of CPU architectures 
such as [16]: ARM Cortex™-Mx, AVR32, MIPS, x86, and 
ARM Cortex™-A8/A9. It supports preemptive scheduling and 
round-robin policy for the threads with the same priority level. 
It provides services for inter-thread communication and 
synchronization mechanism such as semaphores, mutexes, 
mailbox, message queue, and events.   

 

 
Fig. 1. Time diagram for the tasks of test applications 
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III. THE TEST APPLICATIONS 

In this paper, we want to test the performances of task 
context switching in case of the four RTOSs: FreeRTOS, uC-
OS/II, Keil RTX, and RT-Thread. The test applications consist 
of two tasks/threads with distinctive priorities in order to use 
only the preemptive scheduling scheme. The highest priority 
task expects a synchronization mechanism (event / semaphore / 
mailbox) in an infinite loop (it will be in the waiting state most 
of the time). When the expected synchronization mechanism 
occurs, the task sets to high the pin used for the test and the 
task goes back in the waiting state for the synchronization 
mechanism. The lower priority task, at every 1ms, sets to low 
the pin used for the test and performs the post operation for the 
synchronization mechanism waited by the higher priority task. 
This operation determines a task context switching operation 
performed by the RTOS scheduler, and the switching time can 
be determined by measuring the total time while the test port is 
on low level. Because the application has only two tasks and 
there are no active interrupts that can interfere with the task 
context switching, the jitter will be negligible. The time 
diagram of the two tasks is presented in Fig. 1. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In order to test the task context switching performance of 
the RTOSs mentioned in Section III, for each RTOS, there are 
developed different applications: one for synchronizing 
through an event, one for synchronizing via a binary 
semaphore and one for synchronizing through a mailbox. For 
the tests, two development kits have been used: KEIL 
MCBSTM32F400 with STM32F407IG ARM Cortex™-M4 
MCU and STM32 NUCLEO-L053R8 with STM32L053R8 
ARM Cortex™-M0+ MCU. For software development and 
debug, the MDK-ARM Professional 5.24 toolchain have been 
used. For the first development kit, the system clock of the 
MCU was configured for a working frequency at 168MHz and 
for the second development kit the system clock of the MCU 
was configured for a working frequency at 32MHz. The 
internal time tick for each RTOS was configured for a period 
of 1ms. Furthermore, the RTOSs have been configured to use a 
fully preemptive scheduling (they do not use multiple tasks on 
the same priority level). 

For FreeRTOS, the xEventGroupWaitBits and 
xEventGroupSetBits services were used to synchronize the 
tasks through an event, xTaskNotify and xTaskNotifyWait 
services to synchronize the tasks via a mailbox, and the 
xSemaphoreGive and xSemaphoreTake services to synchronize 
the tasks through a semaphore. For Keil RTX, thee osSignalSet 
and osSignalWait services were used to synchronize the tasks 
through an event, osMailPut and osMailGet services to 
synchronize the tasks via a mailbox, osSemaphoreRelease and 
osSemaphoreWait services to synchronize the tasks through a 
semaphore. For uC-OS/II, the OSFlagPost and OSFlagPend 
services were used to synchronize the tasks through an event, 
OSMboxPost and OSMboxPend services to synchronize the 
tasks via a mailbox, and OSSemPost and OSSemPend services 
to synchronize the tasks through a semaphore. For RT-Thread, 
the rt_event_send and rt_event_recv services were used to 
synchronize the tasks through an event, rt_mb_send and 

rt_mb_recv services to synchronize the tasks via a mailbox, 
and rt_sem_release and rt_sem_take services to synchronize 
the tasks through a semaphore. Fig. 2 presents the oscilloscope 
print screen obtained by measuring the signal from the test pin 
if the task synchronization is achieved by a FreeRTOS event on 
the STM32F407IG ARM Cortex ™ -M4 MCU.  

 

Fig. 2. Time for FreeRTOS task context switching on STM32F407IG ARM 

Cortex™-M4 for synchronization through an event 

Fig. 3 presents all results obtained for STM32F407IG ARM 
Cortex™ -M4 MCU. It can be observed that the best 
performances are achieved by Keil RTX RTOS and the lowest 
performances are achieved by FreeRTOS. In case of 
FreeRTOS, the lowest latency for task context switching is 
achieved in the case of synchronization through a mailbox, and 
in the case of the other three RTOSs, the lowest latency is 
achieved if the synchronization is through a semaphore. It was 
expected that the lowest latency would be achieved in case of 
synchronization through an event. This does not happened 
because RTOSs provide synchronization services on a group of 
events and not a single event resulting in greater overhead.  In 
this case, groups of 32 events were used and the 
synchronization was performed on a single event from the 32. 
Fig. 4 presents all results obtained for STM32L053R8 ARM 
Cortex™-M0+ MCU. It can be observed that the same 
performance differences are maintained as in the previous case 
(it must be taken into account that in this case the working 
frequency is lower and that way it is used a MCU based on 
ARM Cortex™ -M0+). Regarding the measured values, the 
measurements errors are generated by the oscilloscope 
(PicoScope 2205MSO – that provides a vertical resolution up 
to 12 bits and a time base accuracy of ±100 ppm). The jitter for 
task context switching is not present, because the task that 
waits a synchronization directive has the highest priority task 
from the systems.  

When an RTOS is selected to develop an embedded 
application, it should not be considered only the time for task 
context switching. Other features such as predictability, 
compliance with the required deadlines, support, available 
documentation, compatibility with previous projects, licensing 
costs, and certifications (such as certifications for safety-critical 
application) should be considered. For these reasons, 
FreeRTOS is the most used RTOS for embedded systems 
although it has the longest time for task context switching. 
When an RTOS is selected, it is very important the 
field/environment in which the embedded system will be used. 
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Fig. 3. Time for task context switching on STM32F407IG ARM Cortex™-M4 MCU 

 
 

Fig. 4. Time for task context switching on STM32L053R8 ARM Cortex™-M0+ MCU 

V. CONCLUSIONS 

In this paper, it was presented a comparison in terms of task 
context switching time for four RTOSs (FreeRTOS, uC-OS/II, 
Keil RTX, and RT-Thread). For each RTOS, we developed an 
application that triggers the task context switching through an 
event, a semaphore, and a mailbox. By means of a test pin, it 
was possible to measure the time for task context switching. 
The tests were performed on ARM Cortex™-M4 and ARM 
Cortex™-M0+ based MCUs. It has been noticed that the 
FreeRTOS is the most used RTOS but it has the highest 
context switching time. The best performances were obtained 
for Keil RTX. Although FreeRTOS has the largest latency, it is 
a good choice due to predictability, deterministic behavior, 
documentations accessibility, compatibility with previous 
projects, and open sources license. 
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