
14th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 24-26, 2018

978-1-5386-1495-2/18/$31.00 ©2018 IEEE

Performance Analysis of Tasks Synchronization for

Real Time Operating Systems

Ioan Ungurean1,2, Nicoleta Cristina GAITAN1,2
1Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava

2Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies,

and Distributed Systems for Fabrication and Control (MANSiD)

Suceava, Romania

ioanu@eed.usv.ro, cristinag@eed.usv.ro

Abstract—Real time operating systems (RTOS) have a

growing importance in the development of embedded projects

based on microcontrollers (MCUs). They allow the development

of multitasking applications providing deterministic behavior

and basic services for inter-task communication. When it is

selected an RTOS, it must take into account several criteria such

as: license costs, memory footprint, predictability, and latency in

handling of the critical operations triggered by internal or

external events. This latency can also be influenced by the time

required for task context switching operation. In this paper, we

compare the time for task context switching in the case of four

RTOSs used on ARM Cortex™-M based microcontrollers:

FreeRTOS, uC-OS/II, Keil RTX, and RT-Thread. For these

RTOSs, the time for task context switching is measured if

synchronization is performed through events, semaphores and

mailboxes. The tests are performed on ARM Cortex™-M4 and

ARM Cortex™-M0+ based MCUs.

Keywords—real time; operating systems; task synchronization;

microcontrollers

I. INTRODUCTION

The real time operating systems (RTOS) are used to design
and develop hard and soft real time applications [1]. This
system must respond as quickly as possible to the
external/internal events. Furthermore, these systems must be
predictable, deterministic, reliable, fault tolerant and comply
with the imposed deadlines [1] [2].

The software design and development for simple embedded
systems can be based on the super-loop concept [3] in which,
functions are executed in a predefined order within an infinite
loop. This concept cannot be used to develop applications that
are more complex because they are very difficult to extend and
debug. The disadvantages of the super-loop concept are solved
by RTOSs [1] [3] that allow modularization of the applications
by splinting into tasks that are executed only when are
scheduled, allowing an efficient use of resources provided by
microcontrollers.

RTOS systems include a kernel that provides services for
task management, communication mechanisms, and task
synchronization mechanisms. Examples of RTOS include uC-
OS/II, KEIL RTX, FreeRTOS, RT-Thread, eCOS, LynxOS,

QNX, VxWorks, OSEK, etc. These RTOS are executed on the
microcontrollers and are used for the development of
multitasking applications with hard real time requirements.
These RTOS do not use the virtual memory concept. Linux,
Linux variants, or Windows operating systems can not run on
microcontrollers due to resource requirements. These operating
systems can run on microprocessors that support virtual
memory. Furthermore, the RTOS systems are used for the
development of devices that are integrated into IoT (Internet of
Things) applications [4].

In order to compare the RTOSs, multiple features must be
considered. The most important parameter is worst case
execution time (WCET) for the execution of a task and of an
interrupt service routine. In [5] it is specified that the most
important parameter for an RTOS is the maximum amount of
time during which the interrupts are disabled. Others important
parameters of an RTOS are latency for handle the
external/internal events, jitter for event handling, and time for
task context switching [1]. Another important feature is
modularity and scalability by which unnecessary services can
be disabled to obtain a lower memory footprint. Unlike regular
operating systems, RTOSs are designed for small memory
systems.

Examples of applications that are developed with RTOSs
are [1]: Internet of Things, Industrial Internet of Things [4],
automotive applications [6], medical systems [7], robotics,
military systems [8], avionics [8], telecommunication systems,
industrial automation [9], and flight control systems. The most
of real time systems applications comply with a combination of
hard real time requirements for critical operations and soft real
time requirements for noncritical operation.

In this paper, we measure and compare the time for task
context switching in the case of four RTOSs if synchronization
between two tasks is performed through events, semaphores
and mailboxes. The tests are performed on ARM Cortex™-M4
and ARM Cortex™-M0+ based MCUs using the following
RTOSs: FreeRTOS, uC-OS/II, Keil RTX, and RT-Thread.

This paper is structured as follows: Section II presents the
RTOSs used for the tests and a study related the embedded
systems, Section III describes the test applications, and in

63

Section IV are present the experimental results. The
conclusions are drawn in Section V.

II. REAL TIME OPERATING SYSTEM FOR SMALL

MICROCONTROLLERS

In every year, EETimes.com and Embedded.com publish a
market study related to the embedded systems [10]. According
with the last market study [10], 68% from the ongoing
embedded projects are designed around of an embedded
operating system (RTOS, kernel, etc.). This percentage is
maintained over the past five years, with minor differences, and
those that do not use an operating system confirmed that they
are not needed. From the ongoing projects based on OS/RTOS,
41% use an open source solution without commercial support
(the trend is growing over past five years), 30% use a
commercial solution (the trend is decreasing over past five
years), 17% use an in-house solution, and 12% use an open
source solution with commercial support [10].

The most used operating systems [10] are Embedded Linux
(22%), followed by FreeRTOS (20%) and in-house solution
(19%). Other RTOS (excepting Windows, Android, Linux
solutions) for small microcontroller are: Texas Instruments
RTOS (5%), Texas Instruments DSP/BIOS (5%), Micrium uC-
OS/III (5%), Keil RTX (4%), Micrium uC-OS/II (4%), Wind
River VxWorks (4%). We can observe that the most used
RTOS for small microcontrollers is FreeRTOS (it is considered
that Embedded Linux is not used in small microcontrollers).

A. FreeRTOS

FreeRTOS [11] is an open source RTOS. According with
[10], it is the most used RTOS on project for small
microcontrollers ongoing in 2017. It supports multitasking and
provides services for inter task communication and
synchronization mechanisms such as semaphores, mutexes,
event group, mailbox, and software times. FreeRTOS uses a
preemptive scheduling and was designed for small
microcontrollers with small data and code memory. In
FreeRTOS, more tasks can have the same priority. In this case,

the scheduler will use a round robin scheduling scheme for the
levels of priority with more tasks. OpenRTOS is the version of
the FreeRTOS with commercial support and license provided
by WITTENSTEIN Group [12].

B. Micrium uC-OS/II and Micrium uC-OS/III

Micro-Controller Operating Systems (uC-OS) [5][13] is a
commercial RTOS provided by Micrium (subsidiary of Silicon
Labs). The license is provided per product or per product line
and was designed for time critical real time applications. It
supports multitasking and services for mutexes, semaphores,
events, mailboxes, and message queue. The difference between
uC-OS/II and Micrium uC-OS/III is that the last support more
task with the same priority level using a round robin scheduling
policy. It support a large number of CPU architectures such as:
ARM7-9-11/Cortex™-M1-3-4-A8/9, MSP430, PowerPC, etc.

C. Keil RTX

RTX [14] is a RTOS provided with source code by KEIL
under royalty-free license. It supports multitasking and services
for mutexes, semaphores, events, mailboxes. It provides round-
robin, preemptive and non-preemptive (collaborative)
scheduling policies. The support for debug RTX is integrated
in the MDK-ARM tools. Furthermore, it implements the
CMSIS-RTOS API standardized by the ARM. Because the
source code is provided with MDK-ARM tools, it is
exclusively used in the development of the ARM Cortex™-Mx
processor-based devices.

D. RT-Thread

RT-Thread [15] is an open source RTOS provided by the
RT-Thread Development Team that is designed for MCU with
small memory. It supports a large number of CPU architectures
such as [16]: ARM Cortex™-Mx, AVR32, MIPS, x86, and
ARM Cortex™-A8/A9. It supports preemptive scheduling and
round-robin policy for the threads with the same priority level.
It provides services for inter-thread communication and
synchronization mechanism such as semaphores, mutexes,
mailbox, message queue, and events.

Fig. 1. Time diagram for the tasks of test applications

64

III. THE TEST APPLICATIONS

In this paper, we want to test the performances of task
context switching in case of the four RTOSs: FreeRTOS, uC-
OS/II, Keil RTX, and RT-Thread. The test applications consist
of two tasks/threads with distinctive priorities in order to use
only the preemptive scheduling scheme. The highest priority
task expects a synchronization mechanism (event / semaphore /
mailbox) in an infinite loop (it will be in the waiting state most
of the time). When the expected synchronization mechanism
occurs, the task sets to high the pin used for the test and the
task goes back in the waiting state for the synchronization
mechanism. The lower priority task, at every 1ms, sets to low
the pin used for the test and performs the post operation for the
synchronization mechanism waited by the higher priority task.
This operation determines a task context switching operation
performed by the RTOS scheduler, and the switching time can
be determined by measuring the total time while the test port is
on low level. Because the application has only two tasks and
there are no active interrupts that can interfere with the task
context switching, the jitter will be negligible. The time
diagram of the two tasks is presented in Fig. 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to test the task context switching performance of
the RTOSs mentioned in Section III, for each RTOS, there are
developed different applications: one for synchronizing
through an event, one for synchronizing via a binary
semaphore and one for synchronizing through a mailbox. For
the tests, two development kits have been used: KEIL
MCBSTM32F400 with STM32F407IG ARM Cortex™-M4
MCU and STM32 NUCLEO-L053R8 with STM32L053R8
ARM Cortex™-M0+ MCU. For software development and
debug, the MDK-ARM Professional 5.24 toolchain have been
used. For the first development kit, the system clock of the
MCU was configured for a working frequency at 168MHz and
for the second development kit the system clock of the MCU
was configured for a working frequency at 32MHz. The
internal time tick for each RTOS was configured for a period
of 1ms. Furthermore, the RTOSs have been configured to use a
fully preemptive scheduling (they do not use multiple tasks on
the same priority level).

For FreeRTOS, the xEventGroupWaitBits and
xEventGroupSetBits services were used to synchronize the
tasks through an event, xTaskNotify and xTaskNotifyWait
services to synchronize the tasks via a mailbox, and the
xSemaphoreGive and xSemaphoreTake services to synchronize
the tasks through a semaphore. For Keil RTX, thee osSignalSet
and osSignalWait services were used to synchronize the tasks
through an event, osMailPut and osMailGet services to
synchronize the tasks via a mailbox, osSemaphoreRelease and
osSemaphoreWait services to synchronize the tasks through a
semaphore. For uC-OS/II, the OSFlagPost and OSFlagPend
services were used to synchronize the tasks through an event,
OSMboxPost and OSMboxPend services to synchronize the
tasks via a mailbox, and OSSemPost and OSSemPend services
to synchronize the tasks through a semaphore. For RT-Thread,
the rt_event_send and rt_event_recv services were used to
synchronize the tasks through an event, rt_mb_send and

rt_mb_recv services to synchronize the tasks via a mailbox,
and rt_sem_release and rt_sem_take services to synchronize
the tasks through a semaphore. Fig. 2 presents the oscilloscope
print screen obtained by measuring the signal from the test pin
if the task synchronization is achieved by a FreeRTOS event on
the STM32F407IG ARM Cortex ™ -M4 MCU.

Fig. 2. Time for FreeRTOS task context switching on STM32F407IG ARM

Cortex™-M4 for synchronization through an event

Fig. 3 presents all results obtained for STM32F407IG ARM
Cortex™ -M4 MCU. It can be observed that the best
performances are achieved by Keil RTX RTOS and the lowest
performances are achieved by FreeRTOS. In case of
FreeRTOS, the lowest latency for task context switching is
achieved in the case of synchronization through a mailbox, and
in the case of the other three RTOSs, the lowest latency is
achieved if the synchronization is through a semaphore. It was
expected that the lowest latency would be achieved in case of
synchronization through an event. This does not happened
because RTOSs provide synchronization services on a group of
events and not a single event resulting in greater overhead. In
this case, groups of 32 events were used and the
synchronization was performed on a single event from the 32.
Fig. 4 presents all results obtained for STM32L053R8 ARM
Cortex™-M0+ MCU. It can be observed that the same
performance differences are maintained as in the previous case
(it must be taken into account that in this case the working
frequency is lower and that way it is used a MCU based on
ARM Cortex™ -M0+). Regarding the measured values, the
measurements errors are generated by the oscilloscope
(PicoScope 2205MSO – that provides a vertical resolution up
to 12 bits and a time base accuracy of ±100 ppm). The jitter for
task context switching is not present, because the task that
waits a synchronization directive has the highest priority task
from the systems.

When an RTOS is selected to develop an embedded
application, it should not be considered only the time for task
context switching. Other features such as predictability,
compliance with the required deadlines, support, available
documentation, compatibility with previous projects, licensing
costs, and certifications (such as certifications for safety-critical
application) should be considered. For these reasons,
FreeRTOS is the most used RTOS for embedded systems
although it has the longest time for task context switching.
When an RTOS is selected, it is very important the
field/environment in which the embedded system will be used.

65

Fig. 3. Time for task context switching on STM32F407IG ARM Cortex™-M4 MCU

Fig. 4. Time for task context switching on STM32L053R8 ARM Cortex™-M0+ MCU

V. CONCLUSIONS

In this paper, it was presented a comparison in terms of task
context switching time for four RTOSs (FreeRTOS, uC-OS/II,
Keil RTX, and RT-Thread). For each RTOS, we developed an
application that triggers the task context switching through an
event, a semaphore, and a mailbox. By means of a test pin, it
was possible to measure the time for task context switching.
The tests were performed on ARM Cortex™-M4 and ARM
Cortex™-M0+ based MCUs. It has been noticed that the
FreeRTOS is the most used RTOS but it has the highest
context switching time. The best performances were obtained
for Keil RTX. Although FreeRTOS has the largest latency, it is
a good choice due to predictability, deterministic behavior,
documentations accessibility, compatibility with previous
projects, and open sources license.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS/CCCDI-UEFISCDI, Contract no. 220PED⁄2017, PN-
III-P2-2.1-PED-2016-1473, within PNCDI III.

REFERENCES

[1] G. C. Buttazzo, "Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications", Springer Science & Business
Media, 2011.

[2] S. Daniel, A. Seuret, and O. Sename, "Real-time control systems:
feedback, scheduling and robustness." International Journal of Systems
Science 48.11 (2017): 2368-2378.

[3] K. C. Wang, "Models of Embedded Systems, "Embedded and Real-
Time Operating Systems. Springer, Cham, 2017. 95-111.

[4] I. Ungurean, N. C. Gaitan, and V. G. Gaitan. "A Middleware Based
Architecture for the Industrial Internet of Things." KSII Transactions on
Internet & Information Systems 10.7 (2016).

[5] J. J. Labrosse, "MicroC/OS II: The Real Time Kernel", KA,
Lawrence:CMP Books, 2002.

[6] C. Dietrich and D. Lohmann, "OSEK-V: application-specific RTOS
instantiation in hardware." Proceedings of the 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems. ACM, 2017.

[7] T. Carpenter, J. Hatcliff, and E. Y. Vasserman. "A Reference Separation
Architecture for Mixed-Criticality Medical and IoT Devices."
Proceedings of the 1st ACM Workshop on the Internet of Safe Things.
ACM, 2017.

[8] E. Fedosov, I. Koverninsky, A. Kan, V. Volkov, and Y. Solodelov, "Use
of real-time operating systems in the integrated modular avionics."
Procedia Computer Science 103 (2017): 384-387.

[9] I. Ungurean and N. C. Gaitan. "Monitoring and control system for smart
buildings based on OPC UA specifications." Development and
Application Systems (DAS), 2016 International Conference on. IEEE,
2016.

[10] ***, “2017 Embedded Markets Study, Integrating IoT and Advanced
Technology Designs, Application Development & Processing
Environments”, https://m.eet.com/media/1246048/2017-embedded-
market-study.pdf

[11] ***, “Why RTOS and What Is RTOS?”, https://www.freertos.org/about-
RTOS.html

[12] ***, “OPENRTOS, part of embedded FreeRTOS – OpenRTOS –
SafeRTOS family”, https://www.highintegritysystems.com/openrtos

[13] ***, Real-Time Kernels: µC/OS-II and µC/OS-III,
https://www.micrium.com/rtos/kernels/

[14] ***, RTX v5 Implementation, http://arm-
software.github.io/CMSIS_5/RTOS2/html/rtx5_impl.html

[15] ***, “RT-Thread, RTOS”, https://www.rt-thread.org/

[16] ***, “RT-Thread github homepage”, https://github.com/RT-Thread/rt-
thread

66

https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://www.freertos.org/about-RTOS.html
https://www.freertos.org/about-RTOS.html
https://www.highintegritysystems.com/openrtos
https://www.micrium.com/rtos/kernels/
http://arm-software.github.io/CMSIS_5/RTOS2/html/rtx5_impl.html
http://arm-software.github.io/CMSIS_5/RTOS2/html/rtx5_impl.html
https://www.rt-thread.org/
https://github.com/RT-Thread/rt-thread
https://github.com/RT-Thread/rt-thread

