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Abstract. This paper discusses the problem of designing and implementing a real-time compact kernel for 
embedded and DSP-based platforms, able to provide a fully predictable execution environment for critical 
applications. Based on a sound and uniform set of models defined for time, signals and tasks, we describe the 
architecture and operating principles of a particular real-time kernel – "HARETICK". Its modular and compact 
architecture is designed around the key idea of enabling concurrent execution of hard real-time (HRT) and soft 
real-time (SRT) tasks in two separate contexts. The HRT execution context is based on non-preemptive 
scheduling algorithms and has precedence over the SRT context, which uses traditional, preemptive, priority-
based scheduling techniques. 
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Introduction 
 
Embedded systems and digital signal processing 
(DSP) systems [1], [2], are widely used in 
today's digital control applications, requiring in 
most cases real-time behavior of the hardware-
software components. Many applications have a 
critical impact on the environment and/or on the 
human factor with which they interact. 
Examples of such applications include: modern 
flight control systems, fly-by-wire, auto-pilot, 
navigation equipment, rocket control and 
guiding, military communication equipment, 
automotive control, industrial mechatronics, and 
nuclear plant surveillance and control systems. 
 There are two essential characteristics a 
hardware-software platform has to meet in order 
to provide correct operation results for critical 
applications [3], [4], [5], [6] and [7]: 

(a)  The entire process of system/application 
development should include the time 
coordinate,  

(b)  The system must provide maximum of 
predictability for the hard real-time tasks. 

 Although a very large number of projects 
have been lately developed in the field of real-
time and embedded systems, both in the industry 
and the academic communities, there still are 
many important issues to be addressed. 
 A large number of real-time systems are still 
being developed as ad-hoc implementations and 
oriented mainly towards particular applications 
– especially if they have critical impact on the 
environment. Many other real-time systems 
derive from traditional, time-sharing 
architectures, further adapted to real-time 
applications and optimized in order to increase 
their speed of reacting to events. Their main 
disadvantage resides on the lack of compatibility 
between their hardware/software architecture, 
designed to provide a good average case 
behavior, and the requirements of real-time 
applications that specify a correct behavior of 
the system even in worst case operating 
conditions. 
 Another important issue regarding the 
predictability of hard real-time systems is related 
to the unrestricted use of interrupts [7] and the 
associated asynchronous mechanisms and tasks. 



 Our current research focuses on developing 
suitable methodologies and architectures that 
enable hard real-time systems to meet the two 
basic requirements previously stated in this 
section. The approach is based on studying and 
integrating proper models of time, signals and 
tasks, emphasizing on non-preemptive 
scheduling techniques. 
 This paper discusses the problem of 
designing and implementing a real-time compact 
kernel for embedded and DSP-based platforms, 
able to provide a fully predictable execution 
environment for critical applications. 
 
An Operating Environment for Real-Time 
Applications 
 
Our approach on designing and implementing 
real-time systems for critical applications is 
based on the following key ideas: 

(i)  Based on the general acceptance that even 
the critical applications contain both types of 
tasks – soft real-time (SRT) and hard real-
time (HRT) tasks, the host platform must 
accommodate properly the concurrent 
execution of the two types of tasks. 

(ii)  The use of interrupts and asynchronous 
mechanisms in the system generates 
predictability problems, affecting its 
capability to guarantee that the temporal 
specifications of hard real-time tasks can be 
met, in any operating conditions [3], [5], [7]. 

(iii)  In order to provide maximum 
predictability for HRT tasks, non-preemptive 
models and techniques are been studied and 
used for scheduling and executing hard real-
time and critical tasks [8], [9]. 

(iv)  The entire process of system/application 
development should integrate the time 
coordinate within homogenous methods and 
models for each of its phases [5], [6]. 

(v)   For HRT systems design and 
implementation, the offline analysis of HRT 
and critical tasks, prior to their execution on 
the system, is an imperative requirement [6]. 

(vi)  Structures and mechanisms that generate 
unpredictability in the system operation, such 
as: interrupts, cache and virtual memories, 
pipelining, cycle stealing DMA, recursive 

function calls, unbounded program loops, 
dynamic resource allocation, must be avoided 
[3], [4], [5]. 

 Figure 1 depicts the OPEN-HARTS system 
(Operating Environment for Hard Real-Time 
Systems), composed of two main subsystems. 
 INVERTA (Integrated Visual Environment 
for Real-Time Application Analysis and 
Development), provides the programmer with 
the necessary tools for designing, specifying, 
programming, validating and analyzing the 
applications on a host (mobile) computer. 
 HARETICK (Hard Real-Time Compact 
Kernel), which runs on the target platform and 
provides two distinct execution contexts, 
operating concurrently: a non-preemptive 
context for HRT tasks, along with a traditional, 
preemptive context for SRT tasks. 
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Figure 1. General architecture of the OPEN-

HARTS system 

 After some real-time application has been 
successfully developed and analyzed within the 
INVERTA, it is loaded on the target platform to 
be executed with the necessary predictability 
under the HARETICK kernel. 
 
The HARETICK Kernel: Characteristics and 
Components 
 
HARETICK is a single-user, multitasking, 
hybrid real-time operating kernel for embedded 
and DSP-based platforms, designed to provide 
maximum predictability to critical or hard real-
time applications. "Hybrid real-time" refers to 
the fact that the kernel provides support for two 
concurrent task execution environments: the 
HRT context, for the execution of hard real-time 
tasks in a non-preemptive manner, and the SRT 
context, for the execution of soft real-time (or 
regular) tasks in a classical, preemptive and 
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priority-based manner. Therefore, HARETICK 
is able to guarantee that all the tasks scheduled 
and executed within the HRT context will meet 
all their temporal specifications, even in the 
worst case operating conditions. 
 As a consequence of the features mentioned 
above, HARETICK currently allows only one 
interrupt source: the Real Time Clock (RTC). 
 Figure 2 presents the main components of the 
kernel and their relationship. 
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Figure 2. Main HARETICK components 

 At system startup (after RESET), the BOOT 
sequence is launched, thus loading the other 
kernel components into memory. Then, system 
initialization is performed. As seen from Figure 
2, the SYSINIT task belongs to the SRT context 
(in fact, it is the first SRT task of the system). 
SYSINIT also starts the HRT execution context, 
by activating the RTC interrupts. Before 
termination, SYSINIT calls the SRT context 
scheduler (SSCD) which will take over the 
scheduling and execution of the SRT tasks in the 
system. 
 The execution within the HRT context starts 
with the system dispatcher/executive (HDIS), 
which is activated by each of the RTC interrupt 
events. The first hard real-time task HDIS 
launches is the HRT scheduler (HSCD). It uses 
non-preemptive algorithms optimized for 
embedded platforms (a modified version of the 
EDF – Earliest Deadline First approach [8], [9]), 
to fill in a Dispatch Table with HRT tasks and 
their calculated start times, in a cyclic manner. 

 DATALINK is a hybrid task (it contains both 
SRT and HRT components) for managing the 
communications link of the HARETICK to a 
host computer. After being successfully 
designed, programmed and analyzed within the 
INVERTA environment, a new application can 
be loaded on the target platform to be executed. 
The LOADER task is responsible for creating 
the structures needed to represent the application 
into the kernel. It can also be viewed as the 
application memory manager. The kernel user 
interface is implemented by the task 
MONITOR. 
 The kernel can provide various status and 
execution reports upon request. STATREPO is 
responsible for gathering the necessary data 
from the system and for generating the reports. 
 TiLT (Time Log Tool) is a subroutine 
attached to the system executive HDIS, which 
stores in a dedicated memory buffer information 
regarding each execution of HRT tasks. 
 
Time Management and Representation 
 
Time is a key operating dimension for real-time 
systems and it must be considered in all the 
development stages of such systems: formal 
specification and verification, programming, 
analysis, scheduling and execution [10], [11]. 
 A model of time, suitable for embedded and 
DSP-based platforms, can be defined based on 
the characteristics of system clock generating 
devices (here, the Real Time Clock, RTC). Thus, 
the system temporal domain has a linear and 
discrete structure, and is limited to the left (i.e. 
there exists the initial time instant, t0 = 0, 
corresponding to the system startup moment in 
the absolute time domain). The time unit 
corresponds to an interval ΔtRTC from the 
absolute time domain (Figure 3). 
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 The system time model has a metric, thus 
allowing one to express quantitative 
relationships between time instances or 
intervals, and to calculate the length (duration) 
of the time intervals, as in (1). 

  (1) 
⎩
⎨
⎧

=−=
Δ⋅=−=

 timesystem
 timeabsolute

0

0
kttT

tkT

kk

RTCmk ττ

 A correspondence between the absolute and 
the system time domains can be stated as in (2). 

 ( ) RTCii ttt Δ⋅−+= 00ττ  (2) 

 The real-time applications designed to run on 
the HARETICK kernel use the time model 
described above. The importance of time is 
emphasized on the kernel by the fact it 
implements three distinct structures for time 
management: the "Absolute Time" variable 
(Sys_AbsTime), the "Scheduling Time" variable 
(HScd_TSched) and the Real Time Clock device 
(RTC), composed of two cascaded timers. 
 Figure 4 presents the time management 
structures in HARETICK for an implementation 
with the Motorola DSP56307, a 24-bit digital 
signal processor [12], [13]. 
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Figure 4. Time management structures and 
mechanisms in the HARETICK kernel 

 The RTC measures the system real time and, 
once started (by the SYSINIT task), it runs in a 
continuous and independent manner. The RTC 
timers are programmed by the system executive 
(HDIS) to generate compare interrupts at 
particular time instants, corresponding to the 
start moments of scheduled HRT tasks. 

 The "Scheduling Time" is used by the HRT 
scheduler (HSCD) to compute the execution 
schedule of the HRT context in a cycling 
manner. At each execution of the HSCD 
(corresponding to the start of a new scheduling 
cycle), it also updates the system "Absolute 
Time" with the duration of the previous cycle. 
 
Hard Real-Time Task Representation: the 
ModX 
 
Assuming the non-preemptive operation, we 
introduce a particular model for HRT tasks, 
which can be used in real-time system 
specification, analysis and execution. 
 A ModX (executable module) is defined as a 
periodic, modular, HRT task, with complete and 
strict temporal specifications, scheduled and 
executed in non-preemptive context: 

 FSPT ,,,≡iM  (3) 

where: P = {PIN, POUT, PGLB} is the set of input, 
output and global parameters of Mi, respectively; 
S = {SIN, SOUT} is the set of input and output 
signals which Mi interacts with; F is the task's 
instruction set (its functional specification); and: 

  (4) 
⎭
⎬
⎫

⎩
⎨
⎧= jiiii SM

dy
M

dl
M

ex
M
pr NTTTT ,,,,T

represents the set of temporal parameters of Mi, 
in their respective order: period, execution time, 
deadline, delay of execution during each period, 
and execution count (see also Figure 5). 
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Figure 5. Temporal parameters of ModX Mi

 The non-preemptive approach of modeling 
each HRT task of an application as a ModX, 
requires actual values (in system time units, see 
(1) and (2)) for a minimum of temporal 
parameters, such as the period, execution time 
and execution count. These values are set or 
calculated during the application specification 
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and analysis phases, and will be verified during 
the validation phase. These phases must be 
performed prior to the actual scheduling and 
execution of the application [6], in order to 
ensure maximum predictability. Two basic 
relationships between the temporal parameters 
of any ModX that must be verified are given in 
(5) and (6): 

  (5) iii M
pr

M
dl

M
ex TTT ≤≤<0

  (6) iiiii M
pr

M
dl

M
ex

M
dl

M
dy TTTTT ≤<−≤≤0

The formulas basically state that the execution 
time is a positive, non-zero value and it must be 
less than the deadline and the period of the 
ModX. 
 The execution time is considered to be a 
constant value during the entire task operation, 
and to be equal to the task's WCET (Worst Case 
Execution Time) that results from the program 
timing analysis [5]. The modular approach of 
defining the HRT task model – the ModX, 
enables automatic techniques of WCET 
estimation during application analysis. 
 From the structural and from the functional 
points of view, the ModX is a standalone 
software module, similar to the "basic block" 
element used in the compilers theory, and which 
is executed in non-preemptive context. 
Therefore, the ModX implements atomic 
operations, eliminating the need of 
synchronization of concurrent access to shared 
resources of the system or the application. 
 Information exchange between ModXs is 
performed through the input, output and global 
parameters. 
 As asynchronous mechanisms have been 
eliminated from the model, input signals are 
processed by their corresponding ModXs by 
periodic polling techniques. 
 While a ModX Mi, once loaded on the target 
platform, is scheduled for as long the application 
is running, its execution count parameter, , 
specifies three possibilities for the effective 
execution of M

iMN

i: 

 , states continuous execution of 
M

∞=iMN
i (i.e. the ModX will be executed each 

time it is scheduled); 

 , specifies that M0=iMN i will not be 
executed, although currently scheduled. 
This type of ModX is called a Ghost 
ModX; 

 , specifies that Mi will be 
executed at the time instance 
corresponding to the schedule. Before 
execution though, the kernel executive 
task decrements the execution count of M

∞<< iMN0

i. 
 An interesting feature of the ModX model is 
that its execution count (and, therefore, its 
effective execution) can be controlled (changed) 
at runtime by other ModXs or even by itself. 
 
Basic Kernel Operation 
 
Our discussion in this paper focuses on the 
particularities of operation of the HRT tasks (the 
ModXs) within the HARETICK kernel. 
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Figure 6. The ModX states and the general 

operation of the kernel 

 Figure 6 depicts the states of ModXs 
belonging to an application during its operation 
within the kernel. 
 The application is developed and analyzed on 
a host (mobile) computer within the INVERTA 
environment. Its ModXs are unknown to the 
HARETICK kernel and their status is defined as 
"NOP" (No Operation). 
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 Loading of the application onto the target 
platform is performed by the LOADER task, 
through the communication interface provided 
by the DATALINK task. The LOADER defines 
the following structures for representing the 
application and its ModXs: 

 The Program Directed Acyclic Graph 
Table (PDAGT) describes the control and 
data dependences of each ModX; 

 The Process Descriptor Table identifies 
each ModX along with its parameters 
(including the temporal behavior, see (4)); 

 The compiled code area (Mi.CODE); 
 The output parameter area (Mi.DOut); 
 The application's global parameter area; 
 The symbol table. 

 After all the ModXs have been successfully 
loaded into the system, they are in the "RDY" 
state, meaning they are Ready for Scheduling. 
 The HRT scheduler (HSCD) applies 
particular non-preemptive scheduling algorithms 
to fill the Dispatch Table with ModX identifiers 
and their corresponding starting times, thus 
defining a scheduling cycle, each time it is 
executed. 
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Figure 7. Structure of the Dispatch Table 

 
 The Dispatch Table (see Figure 7) is a special 
circular buffer of length 

 (λ + 1) ⋅ record_size (7) 

and containing 1 special record (the first one) 
and λ normal records. The special record 
identifies the execution of HSCD itself, which 
will start the next scheduling cycle. The other 
records describe the schedule of ModXs to be 
run during the current cycle. 
 At a given moment, in the Dispatch Table, 
there can be several records referring to the 
execution of a particular ModX during the 
current scheduling cycle, if the ModX period is 
short enough. Obviously, the start times will be 
different. 
 As a result of the non-preemptive approach 
regarding task scheduling within the HRT 
context, the start time of a particular ModX in 
the Dispatch Table complies with the relation: 
 

  (8) Mk.WCET+=+≥ kkki M
st

M
ex

M
st

M
st tttt

 

where:  is the start time of the current 

ModX (M

iM
stt

i), and  are the start time 
and the execution time, respectively, of the 
ModX previously scheduled in the table (see 

kk M
ex

M
st tt  and 

Figure 7). 
 All the ModXs referred in the Dispatch Table 
are in the "SCD" state (Scheduled). 
 The HARETICK executive (HDIS) is 
activated each time an RTC interrupt occurs. 
HDIS reads the current record in the Dispatch 
Table (i.e. the ModX scheduled for execution at 
the current time instance: Mi in Figure 7). HDIS 
also reads from the table the start time of the 
next ModX (Mj) and programs the RTC timers 
to generate an interrupt when that ModX is 

scheduled (i.e. at ). jM
stt

 HDIS also reads the execution count of the 
current ModX, and if it has a finite, non-zero 
value, the ModX will be launched in execution 
(after decrementing the count). In this case, it 
enters the "RUN" state. 
 On the other hand, if the execution count is 
zero, it defines a Ghost ModX, equivalent to the 
"GST" state. Ghost ModXs are not executed by 
the kernel. 
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Figure 8. Task scheduling and execution within 

the HARETICK kernel 

 Figure 8 depicts an example of application 
scheduling and execution on the HARETICK 
kernel, within its two operating contexts: HRT 
(for ModXs) and SRT. 
 The HRT context is launched after system 
startup and initialization (t0), using the only 
interrupt allowed, the RTC interrupt. First, the 
prefix component of the HRT executive (PD) 
saves the SRT context and prepares the 
scheduler (HSCD) for execution, which, in turn, 
creates the list of ModXs (Mi, Mj) to be run 
during the current scheduling cycle. At 
termination, every ModX calls the executive 

suffix (SD), which decides whether to restore 
the SRT context and hand over the control (t3), if 
there is enough time remaining until the next 
execution of a scheduled ModX. If not, SD waits 
to be interrupted by the RTC (the RUNIDLE 
state, started at instance t1 and interrupted at t2). 
 The SRT tasks (Li, etc) are scheduled and 
executed in a traditional, time-sharing and 
priority-based manner, by the SRT scheduler 
(SS). 
 Figure 8 also depicts the behavior of the 
kernel in the case of a Ghost ModX (Mj, 
scheduled a t3): PD calls directly the PD 
component of the HRT executive. 
 
Conclusion 
 
This paper discusses the problem of designing 
and implementing a real-time compact kernel for 
embedded and DSP-based platforms, able to 
provide a fully predictable execution 
environment for critical applications. Based on a 
sound and uniform set of models defined for 
time, signals and tasks, we describe the 
architecture and operating principles of a 
particular real-time kernel – "HARETICK", 
which is designed around the key idea of 
enabling concurrent execution of HRT and SRT 
tasks in two separate contexts. The HRT 
execution context is based on non-preemptive 
scheduling algorithms and has precedence over 
the SRT context, which uses traditional, 
preemptive, priority-based scheduling 
techniques. 
 Considering our approach from another 
perspective, the entire concept, mechanisms and 
structures used to support the HRT context in 
the HARETICK kernel, can be used as an 
extension to classical operating systems, which 
are based on time-sharing, preemptive task 
execution (equivalent to the SRT context), thus 
providing them with the capability of 
guaranteeing the temporal behavior needed by 
the HRT tasks of a particular application. The 
operations required to adapt a traditional system 
to the HRT context extension include setting the 
highest priority to the RTC interrupt and 
blocking all other interrupts during HRT 
executions. 
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 On the other hand, the SRT context helps also 
to overcome the system's drastic lack of 
efficiency when running the HRT context. The 
scheduling and execution mechanisms for the 
HRT tasks rely on pessimistic assumptions and 
evaluations of execution time and signal 
interaction (periodic polling). In the actual 
operating conditions of the system, these 
conditions have a small probability of 
occurrence, thus leading to many time intervals 
in which the system is idle. SRT tasks will then 
be executed. 
 Currently, the HARETICK kernel is partially 
developed and tested with good results on a 
Motorola DSP56307 platform. The HRT 
executive (HDIS) has been fully implemented 
and a preliminary version of scheduler (HSCD) 
has been used to test the system with simple sets 
of ModXs. All the tests proved a correct 
behavior of the HRT applications with respect to 
their temporal specifications. 
 
References 
 
[1] V. Cretu., T. Jurca, M. V. Micea, I. Sora, 
(2003) Instrumentation and Measurement in 
Romania: Technical Developments at 
'Politehnica' University of Timisoara, in IEEE 
Instrumentation & Measurement Magazine, Vol. 
6, No. 3, pp. (41-47), September. 
[2] M. V. Micea, M. Stratulat, D. Ardelean, D. 
Aioanei, (2001) Implementing Professional 
Audio Effects with DSPs, in Transactions on 
Automatic Control and Computer Science, Vol. 
46 (60), Periodica Politehnica,  Timisoara, pp. 
(55-60). 
[3] J. A. Stankovic, (1992) Real-Time 
Computing, Invited paper, BYTE, pp. (155-160), 
August. 
[4] J. A. Stankovic, (1992) Distributed Real-
Time Computing: The Next Generation, Invited 
keynote paper, Special issue of Journal of the 
Society of Instrumentation and Control 

Engineers of Japan, Vol. 31, No. 7, pp. (726-
736). 
[5] R. Chapman, (1994) Program Timing 
Analysis, Technical Report, Dependable 
Computing Systems Centre, University of York. 
[6] K. Ramamritham, J. A. Stankovic, (1994) 
Scheduling Algortihms and Operating Systems 
Support for Real-Time Systems, in Proceedings 
of the IEEE, Vol. 82, No. 1, pp. (55-67), 
January. 
[7] D. B. Stewart, (2001) Twenty-five Most 
Common Mistakes with Real-time Software 
Development, in 2001 Embedded Systems 
Conference, Class 270, San Francisco, April. 
[8] K. Jeffay, D. Stanat, C. Martel, (1991) On 
Non-Preemptive Scheduling of Periodic and 
Sporadic Tasks, in Proceedings of the 12th IEEE 
Real-Time Systems Symposium, San Antonio, 
Texas, IEEE Computer Society Press, pp. (129-
139), December. 
[9] L. George, N. Rivierre, M. Spuri, (1996) 
Preemptive and Non-Preemptive Real-Time Uni-
Processor Scheduling, Rapport de recherche, Nr. 
2966, Institut National de Recherche en 
Informatique et en Automatique, INRIA, 
Rocquencourt, France, September. 
[10] D. Chen, A. Mok, S. Baruah, (1998) On 
Modeling Real-time Task Systems, Lecture 
Notes in Computer Science, No. 1494, Springer-
Verlag, pp. (153-169), October. 
[11] P. Bellini, R. Mattolini, P. Nesi, (2000) 
Temporal Logics for Real-time System 
Specification, ACM Computing Surveys, Vol 
32, No. 1. 
[12] Motorola, Inc., (2000) DSP56300: 24-Bit 
Digital Signal Processor: Family Manual, Rev. 
3, DSP56300FM/AD, Semiconductor Products 
Sector, DSP Division, Austin, USA, November. 
[13] Motorola, Inc., (1998) DSP56307: 24-Bit 
Digital Signal Processor: User's Manual, 
DSP56307UM/D, Revision 0, 08/10/98, SPS, 
DSP Division, Austin, USA, August. 

 


	Introduction
	An Operating Environment for Real-Time Applications
	The HARETICK Kernel: Characteristics and Components
	Time Management and Representation
	Hard Real-Time Task Representation: the ModX
	Basic Kernel Operation
	Conclusion
	References

