

16

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

HARETICK: A REAL-TIME COMPACT KERNEL FOR
CRITICAL APPLICATIONS ON EMBEDDED PLATFORMS1

Mihai V. MICEA
Department of Computer Science and Engineering
POLITEHNICA University of Timisoara
2, Vasile Parvan Bv., 300223 – Timisoara, Romania
Tel: +40 256 403271, Fax: +40 256 403214
micha@dsplabs.utt.ro

Abstract. This paper discusses the problem of designing and implementing a real-time compact kernel for
embedded and DSP-based platforms, able to provide a fully predictable execution environment for critical
applications. Based on a sound and uniform set of models defined for time, signals and tasks, we describe the
architecture and operating principles of a particular real-time kernel – "HARETICK". Its modular and compact
architecture is designed around the key idea of enabling concurrent execution of hard real-time (HRT) and soft
real-time (SRT) tasks in two separate contexts. The HRT execution context is based on non-preemptive
scheduling algorithms and has precedence over the SRT context, which uses traditional, preemptive, priority-
based scheduling techniques.
Key words: real-time, embedded, operating kernel, non-preemptive, scheduling, temporal parameters

1 This work is supported in parts by a grant from Motorola, Incorporated, through the PhD Collaboration Program "DALT-
PhD/2001", with the Department of Computer Science and Engineering (DCSE) Timisoara.

Introduction

Embedded systems and digital signal processing
(DSP) systems [1], [2], are widely used in
today's digital control applications, requiring in
most cases real-time behavior of the hardware-
software components. Many applications have a
critical impact on the environment and/or on the
human factor with which they interact.
Examples of such applications include: modern
flight control systems, fly-by-wire, auto-pilot,
navigation equipment, rocket control and
guiding, military communication equipment,
automotive control, industrial mechatronics, and
nuclear plant surveillance and control systems.
 There are two essential characteristics a
hardware-software platform has to meet in order
to provide correct operation results for critical
applications [3], [4], [5], [6] and [7]:

(a) The entire process of system/application
development should include the time
coordinate,

(b) The system must provide maximum of
predictability for the hard real-time tasks.

 Although a very large number of projects
have been lately developed in the field of real-
time and embedded systems, both in the industry
and the academic communities, there still are
many important issues to be addressed.
 A large number of real-time systems are still
being developed as ad-hoc implementations and
oriented mainly towards particular applications
– especially if they have critical impact on the
environment. Many other real-time systems
derive from traditional, time-sharing
architectures, further adapted to real-time
applications and optimized in order to increase
their speed of reacting to events. Their main
disadvantage resides on the lack of compatibility
between their hardware/software architecture,
designed to provide a good average case
behavior, and the requirements of real-time
applications that specify a correct behavior of
the system even in worst case operating
conditions.
 Another important issue regarding the
predictability of hard real-time systems is related
to the unrestricted use of interrupts [7] and the
associated asynchronous mechanisms and tasks.

 Our current research focuses on developing
suitable methodologies and architectures that
enable hard real-time systems to meet the two
basic requirements previously stated in this
section. The approach is based on studying and
integrating proper models of time, signals and
tasks, emphasizing on non-preemptive
scheduling techniques.
 This paper discusses the problem of
designing and implementing a real-time compact
kernel for embedded and DSP-based platforms,
able to provide a fully predictable execution
environment for critical applications.

An Operating Environment for Real-Time
Applications

Our approach on designing and implementing
real-time systems for critical applications is
based on the following key ideas:

(i) Based on the general acceptance that even
the critical applications contain both types of
tasks – soft real-time (SRT) and hard real-
time (HRT) tasks, the host platform must
accommodate properly the concurrent
execution of the two types of tasks.

(ii) The use of interrupts and asynchronous
mechanisms in the system generates
predictability problems, affecting its
capability to guarantee that the temporal
specifications of hard real-time tasks can be
met, in any operating conditions [3], [5], [7].

(iii) In order to provide maximum
predictability for HRT tasks, non-preemptive
models and techniques are been studied and
used for scheduling and executing hard real-
time and critical tasks [8], [9].

(iv) The entire process of system/application
development should integrate the time
coordinate within homogenous methods and
models for each of its phases [5], [6].

(v) For HRT systems design and
implementation, the offline analysis of HRT
and critical tasks, prior to their execution on
the system, is an imperative requirement [6].

(vi) Structures and mechanisms that generate
unpredictability in the system operation, such
as: interrupts, cache and virtual memories,
pipelining, cycle stealing DMA, recursive

function calls, unbounded program loops,
dynamic resource allocation, must be avoided
[3], [4], [5].

 Figure 1 depicts the OPEN-HARTS system
(Operating Environment for Hard Real-Time
Systems), composed of two main subsystems.
 INVERTA (Integrated Visual Environment
for Real-Time Application Analysis and
Development), provides the programmer with
the necessary tools for designing, specifying,
programming, validating and analyzing the
applications on a host (mobile) computer.
 HARETICK (Hard Real-Time Compact
Kernel), which runs on the target platform and
provides two distinct execution contexts,
operating concurrently: a non-preemptive
context for HRT tasks, along with a traditional,
preemptive context for SRT tasks.

INVERTA

HARETICK

Embedded platform

Host (mobile) platform

Communica
tion

lin
k

INVERTA

HARETICK

Embedded platform

Host (mobile) platform

Communica
tion

lin
k

Figure 1. General architecture of the OPEN-

HARTS system

 After some real-time application has been
successfully developed and analyzed within the
INVERTA, it is loaded on the target platform to
be executed with the necessary predictability
under the HARETICK kernel.

The HARETICK Kernel: Characteristics and
Components

HARETICK is a single-user, multitasking,
hybrid real-time operating kernel for embedded
and DSP-based platforms, designed to provide
maximum predictability to critical or hard real-
time applications. "Hybrid real-time" refers to
the fact that the kernel provides support for two
concurrent task execution environments: the
HRT context, for the execution of hard real-time
tasks in a non-preemptive manner, and the SRT
context, for the execution of soft real-time (or
regular) tasks in a classical, preemptive and

17

priority-based manner. Therefore, HARETICK
is able to guarantee that all the tasks scheduled
and executed within the HRT context will meet
all their temporal specifications, even in the
worst case operating conditions.
 As a consequence of the features mentioned
above, HARETICK currently allows only one
interrupt source: the Real Time Clock (RTC).
 Figure 2 presents the main components of the
kernel and their relationship.

RESET

BOOT

SRT Context

HRT Context

DATALINK

HSCD

SSCD HDIS TiLT

MONITOR

LOADER

STATREPO

User Application

Ex
ec

u
ti

on
 L

oo
p

Ex
ec

u
ti

on
 L

oo
ps

SYSINIT

RESET

BOOT

SRT Context

HRT Context

DATALINK

HSCD

SSCD HDIS TiLT

MONITOR

LOADER

STATREPO

User Application

Ex
ec

u
ti

on
 L

oo
p

Ex
ec

u
ti

on
 L

oo
ps

SYSINIT

Figure 2. Main HARETICK components

 At system startup (after RESET), the BOOT
sequence is launched, thus loading the other
kernel components into memory. Then, system
initialization is performed. As seen from Figure
2, the SYSINIT task belongs to the SRT context
(in fact, it is the first SRT task of the system).
SYSINIT also starts the HRT execution context,
by activating the RTC interrupts. Before
termination, SYSINIT calls the SRT context
scheduler (SSCD) which will take over the
scheduling and execution of the SRT tasks in the
system.
 The execution within the HRT context starts
with the system dispatcher/executive (HDIS),
which is activated by each of the RTC interrupt
events. The first hard real-time task HDIS
launches is the HRT scheduler (HSCD). It uses
non-preemptive algorithms optimized for
embedded platforms (a modified version of the
EDF – Earliest Deadline First approach [8], [9]),
to fill in a Dispatch Table with HRT tasks and
their calculated start times, in a cyclic manner.

 DATALINK is a hybrid task (it contains both
SRT and HRT components) for managing the
communications link of the HARETICK to a
host computer. After being successfully
designed, programmed and analyzed within the
INVERTA environment, a new application can
be loaded on the target platform to be executed.
The LOADER task is responsible for creating
the structures needed to represent the application
into the kernel. It can also be viewed as the
application memory manager. The kernel user
interface is implemented by the task
MONITOR.
 The kernel can provide various status and
execution reports upon request. STATREPO is
responsible for gathering the necessary data
from the system and for generating the reports.
 TiLT (Time Log Tool) is a subroutine
attached to the system executive HDIS, which
stores in a dedicated memory buffer information
regarding each execution of HRT tasks.

Time Management and Representation

Time is a key operating dimension for real-time
systems and it must be considered in all the
development stages of such systems: formal
specification and verification, programming,
analysis, scheduling and execution [10], [11].
 A model of time, suitable for embedded and
DSP-based platforms, can be defined based on
the characteristics of system clock generating
devices (here, the Real Time Clock, RTC). Thus,
the system temporal domain has a linear and
discrete structure, and is limited to the left (i.e.
there exists the initial time instant, t0 = 0,
corresponding to the system startup moment in
the absolute time domain). The time unit
corresponds to an interval ΔtRTC from the
absolute time domain (Figure 3).

τ0

t0 = 0

τ

System
time

Absolute
time

tt1

ΔtRTC (system time unit)

System startup
instance

t2 tk

τm

Tk (temporal interval)

τ0

t0 = 0

τ

System
time

Absolute
time

tt1

ΔtRTC (system time unit)

System startup
instance

t2 tk

τm

Tk (temporal interval)

Figure 3. Absolute time and system time
18

 The system time model has a metric, thus
allowing one to express quantitative
relationships between time instances or
intervals, and to calculate the length (duration)
of the time intervals, as in (1).

 (1)
⎩
⎨
⎧

=−=
Δ⋅=−=

 timesystem
 timeabsolute

0

0
kttT

tkT

kk

RTCmk ττ

 A correspondence between the absolute and
the system time domains can be stated as in (2).

 () RTCii ttt Δ⋅−+= 00ττ (2)

 The real-time applications designed to run on
the HARETICK kernel use the time model
described above. The importance of time is
emphasized on the kernel by the fact it
implements three distinct structures for time
management: the "Absolute Time" variable
(Sys_AbsTime), the "Scheduling Time" variable
(HScd_TSched) and the Real Time Clock device
(RTC), composed of two cascaded timers.
 Figure 4 presents the time management
structures in HARETICK for an implementation
with the Motorola DSP56307, a 24-bit digital
signal processor [12], [13].

System memory
23 0

HScd_TSched_Lo

HScd_TSched_Md

HScd_TSched_Hi

H
SC

D
D

at
a

M
em

or
y

Sys_AbsTime_Lo

Sys_AbsTime_Md

Sys_AbsTime_Hi

S
ys

_A
b
sT

im
e

Timer1

Timer0

RTC

23 0

Interrupt

System memory
23 0

HScd_TSched_Lo

HScd_TSched_Md

HScd_TSched_Hi

H
SC

D
D

at
a

M
em

or
y

Sys_AbsTime_Lo

Sys_AbsTime_Md

Sys_AbsTime_Hi

S
ys

_A
b
sT

im
e

Timer1

Timer0

Timer1

Timer0

RTC

23 0

Interrupt

Figure 4. Time management structures and
mechanisms in the HARETICK kernel

 The RTC measures the system real time and,
once started (by the SYSINIT task), it runs in a
continuous and independent manner. The RTC
timers are programmed by the system executive
(HDIS) to generate compare interrupts at
particular time instants, corresponding to the
start moments of scheduled HRT tasks.

 The "Scheduling Time" is used by the HRT
scheduler (HSCD) to compute the execution
schedule of the HRT context in a cycling
manner. At each execution of the HSCD
(corresponding to the start of a new scheduling
cycle), it also updates the system "Absolute
Time" with the duration of the previous cycle.

Hard Real-Time Task Representation: the
ModX

Assuming the non-preemptive operation, we
introduce a particular model for HRT tasks,
which can be used in real-time system
specification, analysis and execution.
 A ModX (executable module) is defined as a
periodic, modular, HRT task, with complete and
strict temporal specifications, scheduled and
executed in non-preemptive context:

 FSPT ,,,≡iM (3)

where: P = {PIN, POUT, PGLB} is the set of input,
output and global parameters of Mi, respectively;
S = {SIN, SOUT} is the set of input and output
signals which Mi interacts with; F is the task's
instruction set (its functional specification); and:

 (4)
⎭
⎬
⎫

⎩
⎨
⎧= jiiii SM

dy
M

dl
M

ex
M
pr NTTTT ,,,,T

represents the set of temporal parameters of Mi,
in their respective order: period, execution time,
deadline, delay of execution during each period,
and execution count (see also Figure 5).

t
Mi

Tex

Tdl

Tpr (Period k)

Tdy Tex

Tdl

Tpr (Period k+1)

Tdy

t
Mi

Tex

Tdl

Tpr (Period k)

Tdy Tex

Tdl

Tpr (Period k+1)

Tdy

Figure 5. Temporal parameters of ModX Mi

 The non-preemptive approach of modeling
each HRT task of an application as a ModX,
requires actual values (in system time units, see
(1) and (2)) for a minimum of temporal
parameters, such as the period, execution time
and execution count. These values are set or
calculated during the application specification

19

and analysis phases, and will be verified during
the validation phase. These phases must be
performed prior to the actual scheduling and
execution of the application [6], in order to
ensure maximum predictability. Two basic
relationships between the temporal parameters
of any ModX that must be verified are given in
(5) and (6):

 (5) iii M
pr

M
dl

M
ex TTT ≤≤<0

 (6) iiiii M
pr

M
dl

M
ex

M
dl

M
dy TTTTT ≤<−≤≤0

The formulas basically state that the execution
time is a positive, non-zero value and it must be
less than the deadline and the period of the
ModX.
 The execution time is considered to be a
constant value during the entire task operation,
and to be equal to the task's WCET (Worst Case
Execution Time) that results from the program
timing analysis [5]. The modular approach of
defining the HRT task model – the ModX,
enables automatic techniques of WCET
estimation during application analysis.
 From the structural and from the functional
points of view, the ModX is a standalone
software module, similar to the "basic block"
element used in the compilers theory, and which
is executed in non-preemptive context.
Therefore, the ModX implements atomic
operations, eliminating the need of
synchronization of concurrent access to shared
resources of the system or the application.
 Information exchange between ModXs is
performed through the input, output and global
parameters.
 As asynchronous mechanisms have been
eliminated from the model, input signals are
processed by their corresponding ModXs by
periodic polling techniques.
 While a ModX Mi, once loaded on the target
platform, is scheduled for as long the application
is running, its execution count parameter, ,
specifies three possibilities for the effective
execution of M

iMN

i:

 , states continuous execution of
M

∞=iMN
i (i.e. the ModX will be executed each

time it is scheduled);

 , specifies that M0=iMN i will not be
executed, although currently scheduled.
This type of ModX is called a Ghost
ModX;

 , specifies that Mi will be
executed at the time instance
corresponding to the schedule. Before
execution though, the kernel executive
task decrements the execution count of M

∞<< iMN0

i.
 An interesting feature of the ModX model is
that its execution count (and, therefore, its
effective execution) can be controlled (changed)
at runtime by other ModXs or even by itself.

Basic Kernel Operation

Our discussion in this paper focuses on the
particularities of operation of the HRT tasks (the
ModXs) within the HARETICK kernel.

System
Tasks

System
Resources

ModX
States

LOADER HSCD HDISDATALINK
"schedule" "dispatch"

"terminate"

M1
M2
M3
M4

...
PDT

App.
Graph

...
PDAGT

Global
Variables

M4.DOut

M4.DOut

M4.DOut

M4.DOut

Data
Memory

M1.CODE

Program
Memory

M2.CODE

M3.CODE

M4.CODE

NOP RDY SCD RUN GST

Processor

M3

Data
Memory

Local
Variables

M3

Heap

Symbol
Table

HARETICK

M3
M1
M2
M4

...

Dispatch
Table

M1
HSCD

INVERTA

L1

M1 M2

L3

M3

M4

L2

L4

Application Graph

"load"

"unload"System
Tasks

System
Resources

ModX
States

LOADER HSCD HDISDATALINK
"schedule" "dispatch"

"terminate"

M1
M2
M3
M4

...
PDT

M1
M2
M3
M4

...
PDT

App.
Graph

...
PDAGT

Global
Variables

M4.DOut

M4.DOut

M4.DOut

M4.DOut

Data
Memory

M1.CODE

Program
Memory

M2.CODE

M3.CODE

M4.CODE

NOP RDY SCD RUN GST

Processor

M3

Data
Memory

Local
Variables

M3

Heap

Symbol
Table

HARETICK

M3
M1
M2
M4

...

Dispatch
Table

M1
HSCD

INVERTA

L1

M1 M2

L3

M3

M4

L2

L4

Application Graph

"load"

"unload"

Figure 6. The ModX states and the general

operation of the kernel

 Figure 6 depicts the states of ModXs
belonging to an application during its operation
within the kernel.
 The application is developed and analyzed on
a host (mobile) computer within the INVERTA
environment. Its ModXs are unknown to the
HARETICK kernel and their status is defined as
"NOP" (No Operation).

20

 Loading of the application onto the target
platform is performed by the LOADER task,
through the communication interface provided
by the DATALINK task. The LOADER defines
the following structures for representing the
application and its ModXs:

 The Program Directed Acyclic Graph
Table (PDAGT) describes the control and
data dependences of each ModX;

 The Process Descriptor Table identifies
each ModX along with its parameters
(including the temporal behavior, see (4));

 The compiled code area (Mi.CODE);
 The output parameter area (Mi.DOut);
 The application's global parameter area;
 The symbol table.

 After all the ModXs have been successfully
loaded into the system, they are in the "RDY"
state, meaning they are Ready for Scheduling.
 The HRT scheduler (HSCD) applies
particular non-preemptive scheduling algorithms
to fill the Dispatch Table with ModX identifiers
and their corresponding starting times, thus
defining a scheduling cycle, each time it is
executed.

Dispatch Table

. . .
. . .

HDis_Tab_Ptr

(current position)

Special Record:
HSCD

PID Start Times

HSCD

Mi

Mj

Mk

Sys_HDis_Table

(base address)

tst
Mk

λ

p+1

p

p−1

1

0

Offset

λ Normal
Records
(ModXs)

Circular
Buffer

tst
HSCD

tst
Mj

tst
Mi

Dispatch Table

. . .
. . .

HDis_Tab_Ptr

(current position)

Special Record:
HSCD

PID Start Times

HSCDHSCD

MiMi

MjMj

MkMk

Sys_HDis_Table

(base address)

tst
Mktst
Mk

λ

p+1

p

p−1

1

0

Offset

λ Normal
Records
(ModXs)

Circular
Buffer

tst
HSCDtst
HSCD

tst
Mjtst
Mj

tst
Mitst
Mi

Figure 7. Structure of the Dispatch Table

 The Dispatch Table (see Figure 7) is a special
circular buffer of length

 (λ + 1) ⋅ record_size (7)

and containing 1 special record (the first one)
and λ normal records. The special record
identifies the execution of HSCD itself, which
will start the next scheduling cycle. The other
records describe the schedule of ModXs to be
run during the current cycle.
 At a given moment, in the Dispatch Table,
there can be several records referring to the
execution of a particular ModX during the
current scheduling cycle, if the ModX period is
short enough. Obviously, the start times will be
different.
 As a result of the non-preemptive approach
regarding task scheduling within the HRT
context, the start time of a particular ModX in
the Dispatch Table complies with the relation:

 (8) Mk.WCET+=+≥ kkki M
st

M
ex

M
st

M
st tttt

where: is the start time of the current

ModX (M

iM
stt

i), and are the start time
and the execution time, respectively, of the
ModX previously scheduled in the table (see

kk M
ex

M
st tt and

Figure 7).
 All the ModXs referred in the Dispatch Table
are in the "SCD" state (Scheduled).
 The HARETICK executive (HDIS) is
activated each time an RTC interrupt occurs.
HDIS reads the current record in the Dispatch
Table (i.e. the ModX scheduled for execution at
the current time instance: Mi in Figure 7). HDIS
also reads from the table the start time of the
next ModX (Mj) and programs the RTC timers
to generate an interrupt when that ModX is

scheduled (i.e. at). jM
stt

 HDIS also reads the execution count of the
current ModX, and if it has a finite, non-zero
value, the ModX will be launched in execution
(after decrementing the count). In this case, it
enters the "RUN" state.
 On the other hand, if the execution count is
zero, it defines a Ghost ModX, equivalent to the
"GST" state. Ghost ModXs are not executed by
the kernel.

21

22

Figure 8. Task scheduling and execution within

the HARETICK kernel

 Figure 8 depicts an example of application
scheduling and execution on the HARETICK
kernel, within its two operating contexts: HRT
(for ModXs) and SRT.
 The HRT context is launched after system
startup and initialization (t0), using the only
interrupt allowed, the RTC interrupt. First, the
prefix component of the HRT executive (PD)
saves the SRT context and prepares the
scheduler (HSCD) for execution, which, in turn,
creates the list of ModXs (Mi, Mj) to be run
during the current scheduling cycle. At
termination, every ModX calls the executive

suffix (SD), which decides whether to restore
the SRT context and hand over the control (t3), if
there is enough time remaining until the next
execution of a scheduled ModX. If not, SD waits
to be interrupted by the RTC (the RUNIDLE
state, started at instance t1 and interrupted at t2).
 The SRT tasks (Li, etc) are scheduled and
executed in a traditional, time-sharing and
priority-based manner, by the SRT scheduler
(SS).
 Figure 8 also depicts the behavior of the
kernel in the case of a Ghost ModX (Mj,
scheduled a t3): PD calls directly the PD
component of the HRT executive.

Conclusion

This paper discusses the problem of designing
and implementing a real-time compact kernel for
embedded and DSP-based platforms, able to
provide a fully predictable execution
environment for critical applications. Based on a
sound and uniform set of models defined for
time, signals and tasks, we describe the
architecture and operating principles of a
particular real-time kernel – "HARETICK",
which is designed around the key idea of
enabling concurrent execution of HRT and SRT
tasks in two separate contexts. The HRT
execution context is based on non-preemptive
scheduling algorithms and has precedence over
the SRT context, which uses traditional,
preemptive, priority-based scheduling
techniques.
 Considering our approach from another
perspective, the entire concept, mechanisms and
structures used to support the HRT context in
the HARETICK kernel, can be used as an
extension to classical operating systems, which
are based on time-sharing, preemptive task
execution (equivalent to the SRT context), thus
providing them with the capability of
guaranteeing the temporal behavior needed by
the HRT tasks of a particular application. The
operations required to adapt a traditional system
to the HRT context extension include setting the
highest priority to the RTC interrupt and
blocking all other interrupts during HRT
executions.

H
SC

D
SD

t
0 = 0

PD
M

i
M

j
SD

PD
SD

SR
T

H
SC

D
SDt

1

R
U

N
ID

LE

O
fflin

e W
C

E
T

 M
i

PD
M

i
SD

Li

PD

Li

PD
SD

PD

H
R

T
Sch

ed.

SR
T

Sch
ed.

H
R

T

E
xec.

SR
T

E

xec.

PD

PD

SY
SIN

IT
SS

SR
T

SS

B
O

O
T

SY
SIN

IT
B

O
O

T

H
SC

D
 Sch

edulin
g C

ycle
System
Start

M
j: G

h
ost M

odX

H
SC

D

H
SC

D

t
2

t
3
t

4
t

5
t

6
t

7
t

8

R
un

tim
e W

C
E

T
 M

i

H
SC

D
SD

t
0 = 0

PD
M

i
M

j
SD

PD
SD

SR
T

H
SC

D
SDt

1

R
U

N
ID

LE

O
fflin

e W
C

E
T

 M
i

PD
M

i
SD

Li

PD

Li

PD
SD

PD

H
R

T
Sch

ed.

SR
T

Sch
ed.

H
R

T

E
xec.

SR
T

E

xec.

PD

PD

SY
SIN

IT
SS

SR
T

SS

B
O

O
T

SY
SIN

IT
B

O
O

T

System
Start

H
SC

D
 Sch

edulin
g C

ycle
t

2
t

3
t

4
t

5
t

6
t

7
t

8

M
j: G

h
ost M

odX
R

un
tim

e W
C

E
T

 M
i

H
SC

D

H
SC

D

23

 On the other hand, the SRT context helps also
to overcome the system's drastic lack of
efficiency when running the HRT context. The
scheduling and execution mechanisms for the
HRT tasks rely on pessimistic assumptions and
evaluations of execution time and signal
interaction (periodic polling). In the actual
operating conditions of the system, these
conditions have a small probability of
occurrence, thus leading to many time intervals
in which the system is idle. SRT tasks will then
be executed.
 Currently, the HARETICK kernel is partially
developed and tested with good results on a
Motorola DSP56307 platform. The HRT
executive (HDIS) has been fully implemented
and a preliminary version of scheduler (HSCD)
has been used to test the system with simple sets
of ModXs. All the tests proved a correct
behavior of the HRT applications with respect to
their temporal specifications.

References

[1] V. Cretu., T. Jurca, M. V. Micea, I. Sora,
(2003) Instrumentation and Measurement in
Romania: Technical Developments at
'Politehnica' University of Timisoara, in IEEE
Instrumentation & Measurement Magazine, Vol.
6, No. 3, pp. (41-47), September.
[2] M. V. Micea, M. Stratulat, D. Ardelean, D.
Aioanei, (2001) Implementing Professional
Audio Effects with DSPs, in Transactions on
Automatic Control and Computer Science, Vol.
46 (60), Periodica Politehnica, Timisoara, pp.
(55-60).
[3] J. A. Stankovic, (1992) Real-Time
Computing, Invited paper, BYTE, pp. (155-160),
August.
[4] J. A. Stankovic, (1992) Distributed Real-
Time Computing: The Next Generation, Invited
keynote paper, Special issue of Journal of the
Society of Instrumentation and Control

Engineers of Japan, Vol. 31, No. 7, pp. (726-
736).
[5] R. Chapman, (1994) Program Timing
Analysis, Technical Report, Dependable
Computing Systems Centre, University of York.
[6] K. Ramamritham, J. A. Stankovic, (1994)
Scheduling Algortihms and Operating Systems
Support for Real-Time Systems, in Proceedings
of the IEEE, Vol. 82, No. 1, pp. (55-67),
January.
[7] D. B. Stewart, (2001) Twenty-five Most
Common Mistakes with Real-time Software
Development, in 2001 Embedded Systems
Conference, Class 270, San Francisco, April.
[8] K. Jeffay, D. Stanat, C. Martel, (1991) On
Non-Preemptive Scheduling of Periodic and
Sporadic Tasks, in Proceedings of the 12th IEEE
Real-Time Systems Symposium, San Antonio,
Texas, IEEE Computer Society Press, pp. (129-
139), December.
[9] L. George, N. Rivierre, M. Spuri, (1996)
Preemptive and Non-Preemptive Real-Time Uni-
Processor Scheduling, Rapport de recherche, Nr.
2966, Institut National de Recherche en
Informatique et en Automatique, INRIA,
Rocquencourt, France, September.
[10] D. Chen, A. Mok, S. Baruah, (1998) On
Modeling Real-time Task Systems, Lecture
Notes in Computer Science, No. 1494, Springer-
Verlag, pp. (153-169), October.
[11] P. Bellini, R. Mattolini, P. Nesi, (2000)
Temporal Logics for Real-time System
Specification, ACM Computing Surveys, Vol
32, No. 1.
[12] Motorola, Inc., (2000) DSP56300: 24-Bit
Digital Signal Processor: Family Manual, Rev.
3, DSP56300FM/AD, Semiconductor Products
Sector, DSP Division, Austin, USA, November.
[13] Motorola, Inc., (1998) DSP56307: 24-Bit
Digital Signal Processor: User's Manual,
DSP56307UM/D, Revision 0, 08/10/98, SPS,
DSP Division, Austin, USA, August.

	Introduction
	An Operating Environment for Real-Time Applications
	The HARETICK Kernel: Characteristics and Components
	Time Management and Representation
	Hard Real-Time Task Representation: the ModX
	Basic Kernel Operation
	Conclusion
	References

