

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

≠∪

A HARDWARE IMPLEMENTATION OF PETRI NETS MODELS

Viorica SUDACEVSCHI, Ludmila GUTULEAC, Victor ABABII
Technical University of Moldova
Str. Stefan cel Mare, 168, Chisinau
Republic of Moldova
ababii@mail.utm.md, svm@mail.utm.md

Abstract. This paper presents the structure of a reconfigurable FPGA system for Petri Net simulation. The
system is described as the interactions between processed elements that are functionally defined. According to
the interconnection mode of the processed elements Petri Net models with any complexity can be implemented.
The processed elements have a flexible architecture that allows their adaptation to the simulation of Petri Net
model. The processed elements architecture and their interconnection mode gives the possibility to reduce the
execution time that is necessary for reachability analysis of Petri Net.
Keywords: Petri Net simulation, Petri Net Hardware implementation.

Introduction

As the computer systems become more and
more complex a special attention is granted to
the elaboration of parallel systems with a non-
determinist behavior, where the data processing
components operate independently and interact
with each other only in certain time moments.
In multicomputer systems, distributed memory
systems, communication networks performance
must be guaranteed to a very high degree of
certainty. In practically all cases a
comprehensive test program cannot offer this
degree of certainty. Design for these systems
requires software-modeling tools that are
capable of verifying temporal specifications as
well as functional specifications [2].
There are many computational models that can
be used as the basis for construction of a
software model for complex target systems. One
of the main requirements is that concurrency and
synchronization must also be supported. A
modeling paradigm that supports all these
requirements is Petri Net model [4].

24

Petri Net Model

Petri Nets are defined as mathematical models
that determine an efficient theoretical support
for description of parallel processes behavior of

discrete systems with asynchronous interactions
[1, 3]. Petri Net describes in a compact form the
internal structure of the system and relations
between its elements, the modifications of the
system states in a dynamic mode, parallel
processes that occur in such systems, local
interactions between processes and their non-
determinist behavior. Petri Nets are able to
model such spread situations as concurrency,
cooperation, synchronization, unsafe states,
deadlocks that is very important for a design
process. The abstraction level of Petri Net model
is very high and corresponds to the description
of system interactions in terms of two
fundamental notions: events- transitions and
conditions- places.
A Petri-net is a 5-tuple N= {P, T, Pre, Post, M0},
where:

P= {P1, P2, …, Pn} is a finite and non-empty set
of places;
T= {T1, T2, …, Tm} is a finite and non-empty set
of transitions satisfying ΤΡ ∅ and

=∩ΤΡ
+→× ΝΤΡ

+→× ΝΡΤ

+→ ΝΡ

 ∅ ;
Pre: - is a function of forward
incidence;
Post: - is a function of backward
incidence:
M0: is the initial marking.

A marking M can be interpreted as an integer
vector which includes per place p one element
which correspond to the number of tokens on
place p. The marking describes the state of the
adequate dynamic system, and dynamic changes
are modeled as tokens movement from one place
to another.
The sets of input and output places for a
transition are noticed as *t and t*. The sets of
input and output transitions for a place are
noticed as *p and p*.
Transition is enabled in marking M, if

. Any transition enabled
in M

Tt∈
),()(: tppMPp ≥∈∀

i can fire, changing the marking of any
 to marking MPp∈ i+1(p)=M(p)-(p,t)+(t,p).

A marking M is reachable from the initial
marking M0 if there exists a sequence of firings
that transform M0 to M. A set of all reachable
markings in the net forms a reachability set
(RS). If it is accompanied by the transition
relation then a reachability graph (RG) is
formed.
A Petri-net is said to be k-bounded if for all
reachable markings, the number of tokens in any
place is less than or equal to k. A 1-bounded net
is said to be safe.

The advantages of FPGA implementation

The major drawback of Petri Nets is the larger
state space that can be generated even by rather
simple models. That’s why the software
realization or hardware realization on sequential
processor requires radical model simplification
or extremely long run times.
The advent of Field-Programmable Gate Array
circuits allows using them as hardware solutions
for simulation of Petri Net models with a large
number of states. FPGA circuits contain
thousands of gates equivalents and provide
enough logic to implement several small
processors on a single chip. There are many
available tools for their programming as high
level hardware description languages (e.g.
VHDL, Verilog, ABEL, PALASM, Max+Plus)
or traditional schematics. These languages also
can be used to check the model before it is
loaded on to the hardware. The possibility of a

run-time reconfiguration allows the use of
adoptive algorithms that can reduce the time that
is necessary for Petri Net simulation.
In the literature several studies of FPGA
implementation of Petri Net have been
described. In [6] reachability analyze of Petri
Net by using an FPGA based accelerator is
proposed. An FPGA implementation to execute
the Petri Net transition firing algorithm is
described in [5].

Structure of the system

The general structure of the system (Figure1)
contains: PC – personal computer; I – interface;
HPN - hardware implementation of Petri Net.

Figure 1. The general structure of the system

Hardware Petri Net Architecture

HPN (Figure 2) consists from: PCC –
communication channel with PC; SYN –
synchronization block for transition firing
control; RAM – memory for markings and
places storage; Pi – place simulation block; Ti –
transition simulation block; C – communication
lines.

Figure 2. Hardware Petri Net Architecture

Pi (Figure 3) has the following inputs and
outputs:

25

SET, RESET – set and reset inputs for place pi;
W(t,p) – the set of input arc weights for place pi
to increase the number of tokens; W(p,t) – the
set of output arc weights from place pi to
decrease the number of tokens; M(pi) – the
number of markings in place pi; F(Pi) – the set
of firing conditions, where:
For direct arcs,

Fd(Pi)={fi}, .
⎩
⎨
⎧

≥
<

=
),()(,1
),()(,0

tpWpM
tpWpM

f
i

i
i

For inhibited arcs,

Fi(Pi)={fi}, .
⎩
⎨
⎧

≥
<

=
),()(,0
),()(,1
tpWpM
tpWpM

f
i

i
i

Figure 3. The Petri Net place module

For test arcs,

Ft(Pi)={fi}, .
⎩
⎨
⎧

≥
<

=
),()(,1
),()(,0

tpWpM
tpWpM

f
i

i
i

).()()()(PiFPiFPiFPiF tid ∧∧=
If Fi(Pi) or Ft(Pi) are not defined, then Fi(Pi)=1
and Ft(Pi)=1.
The RESET signal zeroes the pi state. The SET
signal loads in the state register the initial
number of tokens. When W(t,p) is enabled the
register value is increased by the number that
correspond to the arc weight. When signal
W(p,t) is enabled the register value is decreased
by the number that correspond to the arc weight.
Output M(pi) determines the number of tokens in

the place pi. Outputs F(Pi) represent the result of
the register state verification. If the number of
tokens is larger then 0 then M(Pi)=1.
The algorithm for Pi performance:

BEGIN
 Procedure RESET;
 Procedure SET;
 Procedure INCREMENT_Pi
 BEGIN
 FOR I=1 TO N DO

 IF 1),(=ptWi THEN INCREMENT(Pi);

 ELSE CONTINUE;
 END;

 Procedure DECREMENT_Pi
 BEGIN
 FOR I=1 TO M DO

 IF 1),(=tpWi THEN DECREMENT(Pi);

 ELSE CONTINUE;
 END;

 Procedure CONDITION_Pi
 BEGIN
 FOR I=1 TO Q DO

 IF THEN),()(tpWPiM ≥ 1=if ;

 ELSE 0=if ;

 END;
END.

The transition simulation block is represented in
Figure 4, where: SYN - synchronization signal
that allows the transition firing; F(Pi) - a set of
firing conditions. If al these inputs are equal to 1
the transition is enabled. W(t,p) and W(p,t) were
described previously.

Figure 4. The Petri Net transition module

The RAM memory is presented in Figure 5,
where WR RAM – enables the writing operation
execution to the memory; M(p1) – M(pk) – state

26

inputs for current place; CT/RG ADR – the
counter/register where the memory address is
formed; PC Control – the unit for memory
control by PC; Sel RAM – signal for memory
selection for operation execution; CLR – zeroes
the CT/RG ADR; Read RAM – enables the data
reading operation and the increment of the
CT/RG ADR; Data OUT – output data for PC.
The algorithm for Tj performance:

BEGIN

IF)1(&),1,1)((=== SYNGiPiFi THEN

 BEGIN
 ,

);

1),(=ptW
1),(=tpW

 END;
 ELSE CONTINUE;
END.

At CT/RG ADR inputs the state signals for each
place are applied which generate the address of
the memory cell for writing data operation. At
each application of the writing signal WR RAM
in the memory cell the transition code which
contribute to the place state forming is
memorized.

Figure 5. The RAM memory organization

PC Control port forms the signal Sel RAM
which enables the memory operation. At each
Read RAM signal the Data OUT outputs contain
the transition code that is processed by PC. At
the same time the CT/RG ADR is increment for
next memory cell selection.

The algorithm for RAM performance:

BEGIN

 Procedure DATA_WRITE
 BEGIN
 WHILE WR_RAM=1 THEN
CT/Rg_ADR[M(pi)]=Tj;
 END;
 Procedure DATA_READ
 BEGIN
 (Sel_RAM = 1, CLR=1);
 ROR I=1 TO M(Pi) DO
 (Sel_RAM=1, Read_RAM=1, OUT
DATA);

END;
END.

The synchronization block is presented in Figure
6, where:

Figure 6. The synchronization block

CLR – the signal that zeroes the places Pi,
i=1,2,..,N. INIT – initialization of the position’s
states; SYN1,…,SYNk – synchronization signals
for transition firing; WR RAM - signal for
writing operation in RAM memory; PC Control
– the port for system control by PC; Reset
Simulation – system initialization for the next
simulation model; Start Simulation – the
beginning of the simulation.

The algorithm for B SYN performance:

BEGIN
 Procedure RESET_SIMULATION;
 Procedure START_SIMULATION;
 Procedure SIMULATION

BEGIN
 CLR=1;
 INIT=1;
 FOR I=1 TO K DO
 BEGIN
 INIT=1;
 FOR J=1 TO K DO
 BEGIN
 OUT (SYN1, SYN2, …, SYNk);
WR_RAM=1;
 END;

27

28

 END;
 END;
END.

The table of synchronization signals creation is
presented (Table 1).
Table 1. Table of synchronization signals

I,J

SY
N

1

SY
N

2

SY
N

3

 SY
N

k-
2

SY
N

k-
1

SY
N

k

1,1 1 0 0 0 0 0
1,2 0 1 0 0 0 0
…
1,k 0 0 0 0 0 1
2,1 0 1 0 0 0 0
2,2 0 0 1 0 0 0
…
2,k 1 0 0 0 0 0
k,1 0 0 0 0 0 1
k,2 1 0 0 0 0 0
…
k,k 0 0 0 0 1 0

References

[1] Peterson. Petri Net theory and modeling of
systems. New York, 1984.
[2] Agrawal D. et al. Evaluation the

performance of multicomputer configurations //
IEEE Comput., may 1989.

[3] G. Ciardo and K. S. Trivedi. A
decomposition approach for Stochastic Petri Net
models. In Proc. 4th Intern. Workshop on Petri
Nets and Performance Models, Melbourne,
Australia, December 1991.

[4] Gavriliuc A., Gutuleac E., Enicov I. A
Software Tool for Distributed System Evaluation
// Proceedings of the Symposium on Electronics
and Telecommunications, vol. 3, Romania,
Timisoara, sept., 1994.

[5] G. A. Bundell. An FPGA implementation of
the Petri Net firing algorithm. In Proc. 4th
Australasian Conf. on Parallel and Real-Time
Systems, pp. 434-445, 1997.

[6] John Morris et al. A Re-configurable
Processor for Petri Net Simulation. Proceedings
of the 33rd Hawaii International Conference on
System Sciences – 2000.

	Introduction
	References

