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Abstract. This paper presents the structure of a reconfigurable FPGA system for Petri Net simulation. The 
system is described as the interactions between processed elements that are functionally defined. According to 
the interconnection mode of the processed elements Petri Net models with any complexity can be implemented. 
The processed elements have a flexible architecture that allows their adaptation to the simulation of Petri Net 
model. The processed elements architecture and their interconnection mode gives the possibility to reduce the 
execution time that is necessary for reachability analysis of Petri Net. 
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Introduction 

 
As the computer systems become more and 
more complex a special attention is granted to 
the elaboration of parallel systems with a non-
determinist behavior, where the data processing 
components operate independently and interact 
with each other only in certain time moments.  
In multicomputer systems, distributed memory 
systems, communication networks performance 
must be guaranteed to a very high degree of 
certainty. In practically all cases a 
comprehensive test program cannot offer this 
degree of certainty. Design for these systems 
requires software-modeling tools that are 
capable of verifying temporal specifications as 
well as functional specifications [2]. 
There are many computational models that can 
be used as the basis for construction of a 
software model for complex target systems. One 
of the main requirements is that concurrency and 
synchronization must also be supported. A 
modeling paradigm that supports all these 
requirements is Petri Net model [4]. 
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Petri Net Model 
 
Petri Nets are defined as mathematical models 
that determine an efficient theoretical support 
for description of parallel processes behavior of 

discrete systems with asynchronous interactions 
[1, 3]. Petri Net describes in a compact form the 
internal structure of the system and relations 
between its elements, the modifications of the 
system states in a dynamic mode, parallel 
processes that occur in such systems, local 
interactions between processes and their non-
determinist behavior. Petri Nets are able to 
model such spread situations as concurrency, 
cooperation, synchronization, unsafe states, 
deadlocks that is very important for a design 
process. The abstraction level of Petri Net model 
is very high and corresponds to the description 
of system interactions in terms of two 
fundamental notions: events- transitions and 
conditions- places. 
A Petri-net is a 5-tuple N= {P, T, Pre, Post, M0}, 
where: 
 
P= {P1, P2, …, Pn} is a finite and non-empty set 
of places; 
T= {T1, T2, …, Tm} is a finite and non-empty set 
of transitions satisfying ΤΡ ∅ and  

=∩ΤΡ
+→× ΝΤΡ

+→× ΝΡΤ

+→ ΝΡ

 ∅   ; 
Pre: - is a function of forward 
incidence;  
Post: - is a function of backward 
incidence: 
M0:  is the initial marking. 



A marking M can be interpreted as an integer 
vector which includes per place p one element 
which correspond to the number of tokens on 
place p. The marking describes the state of the 
adequate dynamic system, and dynamic changes 
are modeled as tokens movement from one place 
to another. 
The sets of input and output places for a 
transition are noticed as *t and t*. The sets of 
input and output transitions for a place are 
noticed as *p and p*. 
Transition  is enabled in marking M, if 

. Any transition enabled 
in M

Tt∈
),()(: tppMPp ≥∈∀

i can fire, changing the marking of any 
 to marking MPp∈ i+1(p)=M(p)-(p,t)+(t,p). 

A marking M is reachable from the initial 
marking M0 if there exists a sequence of firings 
that transform M0 to M. A set of all reachable 
markings in the net forms a reachability set 
(RS). If it is accompanied by the transition 
relation then a reachability graph (RG) is 
formed. 
A Petri-net is said to be k-bounded if for all 
reachable markings, the number of tokens in any 
place is less than or equal to k. A 1-bounded net 
is said to be safe. 

 
The advantages of FPGA implementation 

 
The major drawback of Petri Nets is the larger 
state space that can be generated even by rather 
simple models. That’s why the software 
realization or hardware realization on sequential 
processor requires radical model simplification 
or extremely long run times. 
The advent of Field-Programmable Gate Array 
circuits allows using them as hardware solutions 
for simulation of Petri Net models with a large 
number of states. FPGA circuits contain 
thousands of gates equivalents and provide 
enough logic to implement several small 
processors on a single chip. There are many 
available tools for their programming as high 
level hardware description languages (e.g. 
VHDL, Verilog, ABEL, PALASM, Max+Plus) 
or traditional schematics. These languages also 
can be used to check the model before it is 
loaded on to the hardware. The possibility of a 

run-time reconfiguration allows the use of 
adoptive algorithms that can reduce the time that 
is necessary for Petri Net simulation. 
In the literature several studies of FPGA 
implementation of Petri Net have been 
described. In [6] reachability analyze of Petri 
Net by using an FPGA based accelerator is 
proposed. An FPGA implementation to execute 
the Petri Net transition firing algorithm is 
described in [5].  
 
Structure of the system 

 
The general structure of the system (Figure1) 
contains: PC – personal computer; I – interface; 
HPN - hardware implementation of Petri Net. 
 

 

 
 

Figure 1. The general structure of the system 

 
Hardware Petri Net Architecture 
 
HPN (Figure 2) consists from: PCC – 
communication channel with PC; SYN – 
synchronization block for transition firing 
control; RAM – memory for markings and 
places storage; Pi – place simulation block; Ti – 
transition simulation block; C – communication 
lines. 
 

 
 

Figure 2. Hardware Petri Net Architecture 
 
Pi (Figure 3) has the following inputs and 
outputs: 
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SET, RESET – set and reset inputs for place pi; 
W(t,p) – the set of input arc weights for place pi 
to increase the number of tokens; W(p,t) – the 
set of output arc weights from place pi to 
decrease the number of tokens; M(pi) – the 
number of markings in place pi; F(Pi) – the set 
of firing conditions, where: 
For direct arcs, 

Fd(Pi)={fi}, . 
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For inhibited arcs, 
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Figure 3. The Petri Net place module 
 
 
For test arcs,  
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⎩
⎨
⎧

≥
<

=
),()(,1
),()(,0

tpWpM
tpWpM

f
i

i
i

).()()()( PiFPiFPiFPiF tid ∧∧=  
If  Fi(Pi) or Ft(Pi) are not defined, then Fi(Pi)=1 
and Ft(Pi)=1. 
The RESET signal zeroes the pi state. The SET 
signal loads in the state register the initial 
number of tokens. When W(t,p) is enabled the 
register value is increased by the number that 
correspond to the arc weight. When signal 
W(p,t) is enabled the register value is decreased 
by the number that correspond to the arc weight. 
Output M(pi) determines the number of tokens in 

the place pi. Outputs F(Pi) represent the result of 
the register state verification. If the number of 
tokens is larger then 0 then M(Pi)=1.  
The algorithm for Pi performance: 
 

BEGIN 
  Procedure RESET; 
  Procedure SET; 
  Procedure INCREMENT_Pi 
 BEGIN 
 FOR I=1 TO N DO 

 IF 1),( =ptWi  THEN INCREMENT(Pi); 

    ELSE CONTINUE; 
 END; 
  
 Procedure DECREMENT_Pi 
 BEGIN 
 FOR I=1 TO M DO 

 IF 1),( =tpWi  THEN DECREMENT(Pi); 

    ELSE CONTINUE; 
 END; 
 
  Procedure CONDITION_Pi 
 BEGIN 
 FOR I=1 TO Q DO 

 IF  THEN ),()( tpWPiM ≥ 1=if ; 

            ELSE 0=if ; 

 END; 
END. 
 
The transition simulation block is represented in 
Figure 4, where: SYN - synchronization signal 
that allows the transition firing; F(Pi) - a set of 
firing conditions. If al these inputs are equal to 1 
the transition is enabled. W(t,p) and W(p,t) were 
described previously. 
 

 
 

Figure 4. The Petri Net transition module 
 
The RAM memory is presented in Figure 5, 
where WR RAM – enables the writing operation 
execution to the memory; M(p1) – M(pk) – state 
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inputs for current place; CT/RG ADR – the 
counter/register where the memory address is 
formed; PC Control – the unit for memory 
control by PC; Sel RAM – signal for memory 
selection for operation execution; CLR – zeroes 
the CT/RG ADR; Read RAM – enables the data 
reading operation and the increment  of the 
CT/RG ADR; Data OUT – output data for PC. 
The algorithm for Tj performance: 
 
 
BEGIN 

IF )1(&),1,1)(( === SYNGiPiFi   THEN  

   BEGIN 
   , 

); 

1),( =ptW
1),( =tpW

   END; 
       ELSE  CONTINUE; 
END. 
 
At CT/RG ADR inputs the state signals for each 
place are applied which generate the address of 
the memory cell for writing data operation. At 
each application of the writing signal WR RAM 
in the memory cell the transition code which 
contribute to the place state forming is 
memorized. 
 

 
 

Figure 5. The RAM memory organization 
 
PC Control port forms the signal Sel RAM 
which enables the memory operation. At each 
Read RAM signal the Data OUT outputs contain 
the transition code that is processed by PC. At 
the same time the CT/RG ADR is increment for 
next memory cell selection. 
 
The algorithm for RAM performance: 
 
BEGIN 

     Procedure DATA_WRITE 
 BEGIN 
 WHILE WR_RAM=1 THEN 
CT/Rg_ADR[M(pi)]=Tj; 
 END; 
     Procedure DATA_READ 
 BEGIN 
 (Sel_RAM = 1, CLR=1); 
 ROR I=1 TO M(Pi) DO 
 (Sel_RAM=1, Read_RAM=1, OUT 
DATA); 

END; 
END. 
 
The synchronization block is presented in Figure 
6, where:  

 
 

Figure 6. The synchronization block 
 
CLR – the signal that zeroes the places Pi, 
i=1,2,..,N. INIT – initialization of the position’s 
states; SYN1,…,SYNk – synchronization signals 
for transition firing; WR RAM -  signal for 
writing operation in RAM memory; PC Control 
– the port for system control by PC; Reset 
Simulation – system initialization for the next 
simulation model; Start Simulation – the 
beginning of the simulation. 
 
The algorithm for B SYN performance: 
 
BEGIN 
   Procedure RESET_SIMULATION; 
   Procedure START_SIMULATION; 
   Procedure SIMULATION 
  
 
BEGIN 
 CLR=1; 
 INIT=1; 
 FOR I=1 TO K DO 
 BEGIN 
 INIT=1; 
 FOR J=1 TO K DO 
 BEGIN 
 OUT (SYN1, SYN2, …, SYNk); 
WR_RAM=1; 
 END; 
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 END; 
 END; 
END. 
 
The table of synchronization signals creation is 
presented (Table 1). 
Table 1. Table of synchronization signals 

I,J
 

SY
N

1

SY
N

2

SY
N

3

 SY
N

k-
2

SY
N

k-
1

SY
N

k

1,1 1 0 0  0 0 0 
1,2 0 1 0  0 0 0 
… .. .. ..  .. .. .. 
1,k 0 0 0  0 0 1 
2,1 0 1 0  0 0 0 
2,2 0 0 1  0 0 0 
… .. .. ..  .. .. .. 
2,k 1 0 0  0 0 0 
k,1 0 0 0  0 0 1 
k,2 1 0 0  0 0 0 
… .. .. ..  .. .. .. 
k,k 0 0 0  0 1 0 
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