

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

APPLICATION OF A GENERALIST KNOWLEDGE BASED SYSTEM FOR AUTHORING
SEMANTIC NETWORKS

Corneliu NITU
1 Witherspoon Cr. Ottawa, ON K2K3L6 Canada

Abstract: Authoring a semantic network for a complex domain is a difficult process and any deficiencies in the
authoring process are likely to be reflected in a poor representation of the essential structure of the domain. The
proposed generalist knowledge based system can handle both general and specialized knowledge, as semantic
networks do, but offers an array of mechanisms to allow easy development of the knowledge base and to
maintain better control of the domain structure representation. Thus, this new knowledge based system can be
first used to capture the domain knowledge, then a semantic network can be automatically generated. This will
ensure the authoring of a semantic network that captures the domain structure in a consistent way.
Keywords: semantic networks, artificial intelligence, representation techniques knowledge representation
schema, knowledge-based systems.

Introduction

The proposed knowledge based system can
handle a wide range of knowledge, as semantic
networks do. This requires a special knowledge
representation schema, flexible enough to
accommodate all sorts of pieces of knowledge
and relations, but still able to allow the
structuring of information in a meaningful and
consistent way.
In addition to these requirements, this
knowledge based system provides support for
the domain knowledge acquisition, data
consistency checking and contradiction solving.
This recommends the proposed knowledge
based system as a tool to be used in the process
of authoring of semantic networks. This paper
presents the application of this knowledge based
system for authoring complex semantic
networks.

52

Knowledge representation using semantic
networks

A semantic network can be defined as a
graphical representation relating concepts and
information. A concept in a semantic network is
defined as a node and labeled arcs (links) define
the relationships between concepts. The example
semantic network shown in figure 1 describes

part of a simple astronomical solar system
domain. The oval nodes represent class nodes
and form the overall structure of the domain.
The rounded squares nodes represent the
instance nodes that are subsequently attached to
the class nodes. Each class node is therefore
used as an anchoring point for instance node.
Every instance node is connected directly to the
class structure of the semantic network.

The Earth

The Moon

AKO

Mars

Phobos Deimos

Satellite

Plannet

AKO

PART-OF

ISA

ISA
ISA

ISA
ISA

ISA

Solar
System
B d

Authored Link

Figure 1. An example domain

53

The most common and important link types are
the following:
ISA: relates an object to a class, i.e. it defines an
instance of a class. For example, “Mars” ISA
“Planet” , “Mars” being an instance of the class
“Planet”. This link is unidirectional in that
properties are inherited in one direction only.
For example, the “Mars” node inherits all
properties from the “Planet” node by virtue of
this link (such properties or attributes may
include the fact that a Planet orbits the Sun, thus
Mars orbits the Sun). However, “Planet” does
not inherit properties from “Mars”. The ISA
relationship usually represents information
towards the top of a hierarchy and therefore
represents more general information.
AKO (a-kind-of): relates a class to another class,
or may define a subset. This link type
demonstrates the relationship between classes.
This type is fundamental in connecting a class
nodes together to form one semantic network.
For example, “Planet” AKO “Solar System
Body”, meaning that a “Planet” is a kind of
“Solar System Body” and that a “Planet”
inherits all properties of the class “Solar System
Body”. The AKO link can be refered as
“narrower-than”, since it represents information
at the bottom of a hierarchy, which is usually
more detailed or narrower in scope.
PARTOF (part-of): represents how an object is
composed of other objects, or inherits only part
of the parent class. This link type demonstrates
how a class may be associated with component
parts. For example, “Geographical Feature”
PART OF “Planet”. The part-of link implies that
there is a relationship between instances of
classes connected via a part-of link.
HASA (has-a): relates an object to a property or
attribute. This is not used to represent structural
information (it is not used as a link type).
Instead it may be used to represent knowledge
within a class. For example, a “Planet” HASA
“Diameter”. This may be used to to ensure that
an object conforms to a class exactly.
The above link types allow the structure of a
domain to be represented. However, further link
types may be required, for example to represent
dependencies. Further links may include
“example-of”,“counter-example-of”,

“supported-by” and “disputed-by”. Link types
such as these provide a greater depth of
information about a particular node. Therefore it
may be necessary to separate a node into several
nodes representing various levels of detail.
The semantic network is therefore a structure
that connects the entire domain together. It is
vital that the author connects the class nodes
together in an accurate fashion.
It may not be clear cut decision whether to
connect a node to a particular class node or not.
The author of the semantic network may have to
make a decision about connecting two class
nodes together when the relationship between
them is not a definite one. The author should
detail this relationship within the class node so
that any future author is clear about the defined
relationship. It may not always be the case that
such a one to one relationship can be defined,
i.e. an instance node may not fit exactly into the
semantic structure of the domain, but may still
be valuable to the study of the domain. In this
case the author should provide a suitable “non
specific” semantic node. For example, the author
may wish to add information about probe
missions to various planets. The author may
decide that it is not appropriate to add the
semantic node “Probe Missions” as a-kind-of “
Planet”. However, it may be appropriate to have
information about the Voyager missions to
Jupiter, with the “Jupiter” instance node. The
author could therefore define the semantic node
“Related Material” as part-of “Planet”. It is
important that this facility is used sparingly,
otherwise the benefits of structuring the domain
could be lost.
Authoring semantic networks using the
generalist knowledge based system
The main goal of the knowledge representation
schema presented in this section is to allow
storage / handling of large amounts of highly
structured interrelated knowledge.
In order to achieve this, the following issues
have to be addressed:
Knowledge should be organized in such way to
reflect the natural class-instance structure of the
domain.
An inheritance mechanism should be supported.
Inheritance allows knowledge to be stored at the

different levels of abstraction. It allows
representation of taxonomically structured
information and ensures the sharing of common
properties among classes.
It should be possible to define an abstract piece
of knowledge using another abstract pieces of
knowledge.
The building blocks of the knowledge base
An abstraction captures the qualitative aspects of
the problem. Describe the important properties
and relationships of the domain. Figure 2.
presents the format of an abstraction and the
terminology used in this paper to describe it.

Type . Label

Elem 1

Elem 2

. . .

Elem 3

elements

Abstraction
(base / specific)

Concrete
relation

General
relation

header

Figure 2. Abstraction format

Before going into details and describing each of
the concepts involved, the basic meaning of an
abstraction should be presented.
Abstractions are pieces of knowledge that are
involved in every rational process. They may
represent everything, from the most abstract
concept to the most concrete thing. Despite their
apparent simple structure, abstractions may
represent very complex pieces of knowledge. In
this case, they hide the entire underlying
complexity. The rational process which use
these abstractions may be or not aware /
interested in all this complexity (in most cases,
not).
All of the components of an abstraction are very
important in fully defining the abstraction:
The header (Type and Label)
The elements of the abstraction

The relations each element has with other
abstractions or elements.
Header

An abstraction allows representation of general
principles as well as specific situations. In order
to give a sense of the relative degree of
abstraction, the type and label are used.
The type indicates the meaning of one
abstraction. For example, if one abstraction has
the type “bird”, it should be clear what the
abstraction is about. Abstractions with the same
type should have the same elements.
The label provides information about the
relative degree of generality of a certain
abstraction. The label indicates if an abstraction
is a base abstraction or a specific abstraction.
The label can take the following values:
 “base”: the base abstraction has a high degree
of generality and can be considered as being the
most general between all abstractions with the
same type.
<name>: this is called a specific abstraction.
The identity of the specific abstraction has
certain significance.
<unique number>: again, this is a specific
abstraction. It is like an unnamed individual of a
type.
There is a subtle distinction between the two
abstraction label types: there is no difference in
the way an abstract notion is defined, but in the
type of the entities to which their elements have
relations to:
Elements of a base abstraction have relations
mainly to base abstractions. This indicates
possibilities.
Elements of a specific abstraction have relations
mainly to specific abstractions and elements of
specific abstractions. This indicates known facts.

Elements

The elements are very important, since they
define “first hand” the abstraction. The elements
can be anything from the following (but not
limited to):
Enumeration of possible values (e.g. “yellow”
and “red” for an abstraction called “color”).

54

55

Parts of an abstraction (e.g. “engine” for an
abstraction called “car”).
They are giving an indication of the nature of
the relations, which start from the elements.

Relations

They are semantic relationships, which describe:
the ways in which a system’ parts are combined
relations agent – action – recipient.
interactions between parts
causal relationship between events occurring
over time.
Relations are necessary in description of
complex systems and in classification. The
relations do not have names or labels, and their
meaning should be deduced from the element
from which they start.
Relations can start only from an element of an
abstraction. They may point toward:
an abstraction.
an element of an abstraction.
It is allowed to have elements with multiple
relations. This is not considered a contradiction.
Each relation has a validity factor associated
with it. This factor gives a measure of the
confidence in that relation and, at the same time,
its sign shows either the relation reflects a fact
known to be true or known to be false.

Conditional relations

These are relations whose existence depends on
certain conditions. They have the same meaning
as regular relations, but their existence cannot be
taken as granted.
The format of the conditional relations and their
usage has been described in Nitu (2000).

Expanding the knowledge base

At any moment, the knowledge base contains a
“world description”. Starting from this, the
system should:
actively infer additional pieces of knowledge
and continuously process in order to
confirm/invalidate existing pieces of knowledge.
The system is not a passive repository of
complete described situations. It is expected that

a new situation will be described only partially.
Based on the knowledge already existing in the
 KB (abstract and particular situations) the
system should react by formulating and
reasoning.
The net result of this activity is:the inference of
new facts about the new situation and the
identification of additional pieces of knowledge
that should be provided in order to better place
the new situation in the context.
The most important aspect that needs to be
addressed is the mechanism of creation of new
abstractions.
First, let see how new abstractions are “inserted”
in the knowledge system. There are two
mechanisms for the creation of abstractions
starting from existing abstractions from the
knowledge base. These are described in the
following sections.

Cloning – creation of new abstractions

The classical dividing lines between the class
type and its instances are blurring in this
knowledge representation model. The well-
known notion of class type has a little
significance in this model. In fact, a base
abstraction doesn’t differ too much from a
specific abstraction. A specific abstraction may
have more relations than a base abstraction of
the same type, and those relations may be better
specified (eg. Bird has color vs. My_Bird has
color yellow.).
Lets name cloning the process of creation of
new abstraction of the “same type” as other
abstraction. This means, all abstractions will
have the same elements. The Type field in the
header of the new abstraction will be the same
as the old abstraction.
A very important characteristic of this model is
that it is possible to create a new abstraction
both by cloning a base abstraction or a specific
abstraction.
The process of cloning has mainly the following
parts:
All relations of the source abstraction have to be
analyzed.
Some of the old relations may be dropped, some
new relations may appear.

For each of the relations of the new abstraction,
there are several choices:

The relation has exactly the same destination as
in the source abstraction.

The relation may point to another element of the
same abstraction.

The relation may point to another abstraction
(with the same type, however).

The Figure 3. illustrates the process of cloning
on an example:

Bird . base

classification

colour

owner

Vertebrates . base

fish

bird

Colour . base

red

yellow

green

Human . base

Birth date

Name

Human . Me

Birth date

Name

Bird . MyBird

classification

colour

owner

Cloning

Cloning

Figure 3. Example of cloning

Of course, the set of conditional relations is
transmitted to the new abstract notion. However,
it may be updated to accommodate:
The new name of the abstract notion
The creation of abstractions for own need.

Inheritance – creation of new abstract
notions

The mechanism of inheritance permits the
creation of new abstraction with a new type.
This mechanism works in exactly the same way
as cloning; it is in fact only a special case of
cloning.
These are the reasons to employ inheritance
mechanism:
A specific abstraction is considered to be a good
starting point for further derivation. In this case,
that specific abstraction will be cloned and the
clone will receive a new type and the label
“base”.
New elements have to be added to a base
abstraction.
When a new base abstraction has to be created
through multiple inheritance.
Figure 4 illustrates the use of the inheritance
mechanism through an example.
Normally, inheritance should be used only when
cloning cannot be used with the same effect.
There are situations when both cloning and
inheritance can be used for the same result. The
knowledge engineer will choose the best
approach, depending on the future needs of
knowledge base expansions.
From the presentation of the knowledge base
building blocks and the mechanisms used for
expanding the knowledge base, the following
rules can be drawn:
Those abstractions with the label set to “base”
are mapping to classes in the semantic network
domain. The other abstractions map to instances.
The ISA relations from semantic networks can
be deduced from the type field in the
abstraction’s header. If two abstractions have the
same type, the one with the label “base” is the
class and the another abstraction is an instance.
However, this implicit information regarding the
relation between class and instance may not be
easy to extract. In the interest of an efficient
generation of semantic networks, the relation
class-instance has to be explicitelly stored in the
knowledge base.

56

Conclusion The HAS-A relations from semantic networks
map naturally to the elements of an abstraction.
The same applies for PART-OF relations.

The main idea behind this representation is that
the way in which abstract concepts are inter-
connected defines the meaning of those
concepts.

The A-KIND-OF relations, defining inheritance
relations in the semantic networks domain, have
to be explicitly defined in the knowledge base.

The model used for the knowledge base
organization can be mapped, under certain
restrictions, to the model used for the knowledge
representation using semantic networks.

Vehicle . base

type

owner

Vehicle . Car

type

owner

Cloning

Car . base

type

owner

extras

Inheritance

Car . MyCar

type

owner

extras

Cloning

By first employing the new proposed knowledge
based system to capture the essential structure of
a domain and then generating automatically a
semantic networks, a better control of the
domain structure representation is achieved.

References

[1] Luger, G.F. and Stubblefield, W.A. (1998)
Artificial Intelligence – Structures and
Strategies for Complex Problem Solving,
Addison Wesley Longman
[2] Nitu, C. (2000) Distributed System for
Knowledge Representation and Decision
Making,Int.Conference, Int.Conference DAS
2000
[3] Nitu, C. (2001) A Knowledge Representation
Schema for a Generalist Knowledge Based
System, Int.Conference CSCS 2001
[4] Nitu, C. (2002) A Distributed Reasoning
System for Paralel and Distributed Knowledge-
based Systems, Int. Conference, DAS 2002

 [5] Nitu, C. (2003), Application of a Generalist
Knowledge Based System in the Control of
Optical Switches, Int.Conference CSCS 2003

Figure 4. Example of inheritance

If, for a certain domain, the knowledge
acquisition is done following the above
described rules, then it will be straightforward to
generate a semantic network starting from the
final knowledge base.

[6] Patterson, D. (1990) Introduction to
Artificial Intelligence & Expert Systems.
Prentice-Hall
[7] Rich, E. and Knight, K (1991) Artificial
Intelligence, McGraw-Hill.

57

	Corneliu NITU
	1 Witherspoon Cr. Ottawa, ON K2K3L6 Canada

	
	Introduction
	Header
	Elements
	The elements are very important, since they define “first hand” the abstraction. The elements can be anything from the following (but not limited to):

	Relations
	Conditional relations
	Expanding the knowledge base
	Cloning – creation of new abstractions
	Inheritance – creation of new abstract notions
	Conclusion
	References

