
 

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS 
S u c e a v a,  R o m a n i a,  M a y  27 – 29,  2 0 0 4  

 
 
THE THEOREMS ABOUT THE SYSTEM’S PRACTICAL STABILITY WITH THE 
MEASURABILITY OF THE PHASE SPACE 
 
 
Yevgeny SOPRONIUK 
Yury Fedkovich National University of Chernivtsi 
str.Universietska  nr.28, UA-58012 Chernivtsi 
jsopr@sacura.cv.ua 
 
 
Abstract. The attributes and the proved theorems of the practical stability were formulated for the systems with 
the variable measurability. The determined criteria of the practical stability, which are suitable for the direct 
use as numerical algorithms of definition of the domain stability. On the base of there theorems the constructive 
problems’ solutions of practical stability for the non-stationary linear systems of differential equations were 
cited. 
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The aim of the given scientific work is the 
investigation of the practical stability [1,2] with 
the variable measurability of the phase space 
[3,4]. 
For this system we consider limited time 
intervals and limited perturbation space of initial 
conditions. The stability task with the same 
features is called the chasks of practical stability. 
 
The mathematical model of practical stability 
systems with the variable measurability  
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In this paper under  we will understand the 
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0G  – the multitude of admissible initial 

conditions of system (1) and (2) in case 0tt = . 
For the construction of the effective methods of 
the checking the quality of practical stability of 
dynamic system let us consider the multitude of 
the initial conditions of type 
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where B  is additionally denoted matrix with 
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also the Reley’s  irregularity 
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where minjλ , maxjλ  – is respectively minimum 
and maximum own meaning of additional  
denoted matrix , jB Nj ,1= . 
Theorem 1. If for the system (1) and (2) will be 
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Hence, using the (5) condition we have 
, that contradict to the (6) 

condition. Therefore our supposition is 
incorrect. The theorem 1 is proved. 
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