

APPLICATION OF THE MAXIMUM PRINCIPLE TO SINGULARLY PERTURBED SYSTEMS WITH VARIABLE RANGE OF PHASE SPACE SOLUTION

Fedir SOPRONIUK, Maxim NEGADAYLOV

Yury Fedkovich National University of Chernivtsi str. Universietetska nr. 28, UA-58012 Chernivtsi fosopr@chnu.cv.ua

Abstract. Developed the method for finding solve of singularly perturbed dynamic control system with variable structure, that essentially using the Pontriagin maximum principle.

Keywords: phase space, Pontriagin maximum principle, singularly perturbed systems, equations.

Introduction

In the work for systems with variable range of phase space [1,2] with singularly perturbation [3,4] we propose the algorithm for finding solve. Algorithm essentially using Pontriagin maximum principle.

Mathematical model singularly perturbed system with variable range of phase space

On the segment $[T_0,T_1]$ with restricted partition $\tau = \{\tau_j,\ j = \overline{1,N}\}$, where $\tau_j = \{t: t \in [t_{j-1},t_j)\}$, j = 1,2,...,N-1, $\tau_N = \{t: t \in [t_{N-1},t_N]\}$, $t_0 = T_0 < < t_1 < ... < t_{N-1} < t_N = T_1$ let's consider the system, the dynamics of which has the next mathematical model:

$$\frac{dx_1^{(j)}(t)}{dt} = A_{11}^{(j)}(t)x_1^{(j)}(t) + A_{12}^{(j)}(t)x_2^{(j)}(t), (1)$$

$$\varepsilon_{j} \frac{dx_{2}^{(j)}(t)}{dt} = A_{21}^{(j)}(t)x_{1}^{(j)}(t) + A_{22}^{(j)}(t)x_{2}^{(j)}(t), \quad (2)$$

with variable conditions of phase space range

$$x_1^{(j)}(t_{j-1}) = C_{11}^{(j)}x_1^{(j-1)}(t_{j-1}) + C_{12}^{(j)}x_2^{(j-1)}(t_{j-1}),$$
 (3)

$$x_2^{(j)}(t_{j-1}) = C_{21}^{(j)} x_1^{(j-1)}(t_{j-1}) + C_{22}^{(j)} x_2^{(j-1)}(t_{j-1}).$$
(4)

In the relations (1)–(4): $x_1^{(j)}(t), x_2^{(j)}(t)$ – respectively n_1^j measurable and n_2^j measurable vectors of phase state if $t \in \tau_i$, $A_{11}^{(j)}(t), A_{12}^{(j)}(t), A_{21}^{(j)}(t), A_{22}^{(j)}(t)$ - known matrix, with size $n_1^j \times n_1^j$, $n_1^j \times n_2^j$, $n_2^j \times n_1^j$, $n_2^j \times n_2^j$ respectively, and matrix $A_{11}^{(j)}(t)$, $A_{21}^{(j)}(t)$, $A_{22}^{(j)}(t)$ have piecewise continuous elements, matrix $A_{12}^{(j)}(t)$ – differential elements under $t \in \tau_j$, $C_{11}^{(j)}, C_{12}^{(j)}, C_{21}^{(j)}, C_{22}^{(j)}$ - rectangular matrix whith size $n_1^j \times n_1^{j-1}$, $n_1^j \times n_2^{j-1}$, $n_2^j \times n_1^{j-1}$, $n_2^j \times n_2^{j-1}$ respectively, $\varepsilon_i > 0$ – small parameter, $j = \overline{1, N}$. Furthermore, we consider, that if j = 1then the next equals is right: $C_{11}^{(1)} = E_1^{(1)}$ $C_{12}^{(1)} = 0$, $C_{21}^{(1)} = 0$, $C_{22}^{(1)} = E_2^{(1)}$, where $E_1^{(1)}$, $E_2^{(1)}$ - unitary matrix with orders n_1^1 and n_2^1 respectively, $C_{12}^{(1)}$, $C_{21}^{(1)}$ – null matrix with size $n_1^1 \times n_2^1$, $n_2^1 \times n_1^1$, $x_1^{(0)}(t_0) = x_1^{(1)}(t_0) = x_{10}^{(1)}$ $x_2^{(0)}(t_0) = x_2^{(1)}(t_0) = x_{20}^{(1)}$ - the starting phase conditions of the system (1), (2) respectively under $t = t_0$.

Assuming, that quality of functioning system (1), (2) determining by value of the functional

$$I(x_1^{(1)}(\cdot),...,x_1^{(N)}(\cdot),x_2^{(1)}(\cdot),...,x_2^{(N)}(\cdot)) =$$

$$= \frac{1}{2} \sum_{j=1}^{N} \int_{t_{j-1}}^{t_{j}} (x_{1}^{(j)*}(s)Q_{1}^{(j)}(s)x_{1}^{(j)}(s) + x_{2}^{(j)*}Q_{2}^{(j)}(s)x_{2}^{(j)}(s))ds + \frac{1}{2} x_{1}^{(N)*}(t_{N})Q_{3}^{(N)}x_{1}^{(N)},$$
(5)

where $Q_1^{(j)}(t)$, $Q_2^{(j)}(t)$, $Q_3^{(N)}$ – symmetrical positive-defining matrix with sizes $n_1^j \times n_1^j$, $n_2^j \times n_2^j$, $n_1^N \times n_1^N$ respectively, matrix elements $Q_2^{(j)}(t)$ differentiable when $t \in \tau_j$, $j = \overline{1, N}$, the symbol '*' meaning the transposition operation.

Formulate of the task. Main means and confirmations.

Problem 1. Finding the minimum of the functional (5) per $x_2^{(1)}(t),...,x_2^{(N)}(t)$ under the next limitations: $x_1^{(1)}(t),...,x_1^{(N)}(t)$ is the solve of (1) with the conditions (3).

Assume that $X_1^{(j)}(t,s)$ – normal fundamention solution corresponding (1) homogeneous system, or matrix solution of the next task:

$$\frac{dX_{1}^{(j)}(t,s)}{dt} = A_{11}^{(j)}(t)X_{1}^{(j)}(t,s),$$

$$X_{1}^{(j)}(s,s) = E_{1}^{(j)},$$
(6)

where $E_1^{(j)}$ – unitary matrix with sizes $n_1^j \times n_1^j$, $s \in \tau_i$, $t \in \tau_i$, $j = \overline{1, N}$.

Than, solution (1), that satisfy starting condition $x_1^{(1)}(t_0) = x_{10}^{(1)}$ and condition (3), is

$$x_{1}^{(j)}(t) = X_{1}^{(j)}(t, t_{j-1})C_{11}^{(j)}...X_{1}^{(j)}(t_{1}, t_{0})C_{11}^{(1)}x_{10}^{(1)} +$$

$$+ \sum_{k=1}^{j-1} \int_{t_{k-1}}^{t_{k}} W_{k}^{(j)}(t, s)A_{12}^{(k)}(s)x_{2}^{(j)}(s)ds +$$

$$+ \int_{t+1}^{t} W_{j}^{(j)}(t, s)A_{12}^{(j)}(s)x_{2}^{(j)}(s)ds +$$

$$+\sum_{k=1}^{j} W_{k}^{(j)}(t,t_{k}) C_{12}^{(k)} x_{20}^{(1)}, \qquad (7)$$

where

$$\begin{split} W_k^{(j)}(t,s) &= X_1^{(j)}(t,t_{j-1})C_{11}^{(j)}X_1^{(j-1)}(t_{j-1},t_{j-2})C_{11}^{(j-1)}...\\ &\dots X_1^{(k+1)}(t_{k+1},t_k)C_{11}^{(k+1)}X_1^{(k)}(t_k,s),\\ &s \in \tau_k, \ t \in \tau_j, \ 1 \leq k \leq j \leq N \ . \end{split}$$

Ground of the solve construction for singularly perturbed system with variable range of phase space

Theorem. The solution of the problem 1 is

$$x_2^{(j)o}(t) = (Q_2^{(j)}(t))^{-1} A_{12}^{(j)*}(t) R^{(j)}(t) x_1^{(j)}(t), (8)$$

where $R^{(j)}(t)$ – matrix solution of the tasks

$$\frac{dR^{(j)}(t)}{dt} = -A_{11}^{(j)*}(t)R^{(j)}(t) + Q_{1}^{(j)}(t), (9)$$

$$R^{(j)}(t_{j} -) = C_{11}^{(j+1)}R^{(j+1)}(t_{j})C_{11}^{(j+1)},$$

$$j = N - 1, N - 2, ..., 1,$$

$$R^{(N)}(t_{N}) = -Q_{3}^{(N)}.$$
(10)

The proof. Assume that $x_2^{(j)}(t)$, $t \in \tau_j$, $j = \overline{1, N}$ are control functions for the system (1) with the conditions (3), examine the next functions:

$$H(x_{1}^{(1)}(t),...,x_{1}^{(N)}(t),x_{2}^{(1)}(t),...,x_{2}^{(N)}(t),\psi^{(1)}(t),...,\psi^{(N)}(t),t) =$$

$$= -\frac{1}{2} \sum_{j=1}^{N} (x_{1}^{(j)*}(t)Q_{1}^{(j)}(t)x_{1}^{(j)}(t) + x_{2}^{(j)*}Q_{2}^{(j)}(t)x_{2}^{(j)}(t)) +$$

$$+ \sum_{j=1}^{N} \psi^{(j)*}(t)(A_{11}^{(j)}(t)x_{1}^{(j)}(t) + A_{12}^{(j)}(t)x_{2}^{(j)}(t)), \qquad (11)$$

$$H(x_1^{(j)}, x_2^{(j)}, \psi^{(j+1)}) = \psi^{(j+1)*}(t_j)(C_{11}^{(j+1)}x_1^{(j)}(t_j -) + C_{12}^{(j+1)}x_2^{(j)}(t_j -)), \tag{12}$$

where $\psi^{(j)}(t)$ is the solution of adjoint system

$$\frac{d\psi^{(j)}(t)}{dt} = -grad_{x_{1}^{(j)}} H(x_{1}^{(1)}(t),...,x_{1}^{(N)}(t),x_{2}^{(1)}(t),$$

$$...,x_{2}^{(N)}(t),\psi^{(1)}(t),...,\psi^{(N)}(t),t),$$

$$\psi^{(j)}(t_{j}-)=$$

$$= grad_{x_{1}^{(j)}} H(x_{1}^{(j)}(t_{j}-),x_{2}^{(j)}(t_{j}-),\psi^{(j+1)}(t_{j})),$$

$$j = N-1, N-2,...,1,$$

$$\psi^{(N)}(t_{N}) = -O_{2}^{(N)}x_{1}^{(N)}(t_{N}).$$

Apply the Pontriagin maximum principle, $x_2^{(j)o}(t)$ finding as the solution of the equation

$$-Q_{2}^{(j)}(t)x_{2}^{(j)o}(t) + A_{12}^{(j)}(t)\psi^{(j)}(t) = 0,$$
or
$$x_{2}^{(j)o}(t) = (Q_{2}^{(j)}(t))^{-1}A_{12}^{(j)}(t)\psi^{(j)}(t), \ t \in \tau_{j},$$

$$j = \overline{1, N}. \tag{13}$$

Calculating

$$grad_{x^{(j)}}H(x_1^{(1)}(t),...,x_2^{(N)}(t),\psi^{(1)}(t),...,\psi^{(N)}(t),t)$$

finding the systems of equations for find the adjoint variables $\psi^{(j)}(t)$

$$\frac{d\psi^{(j)}(t)}{dt} = -A_{11}^{(j)*}\psi^{(j)}(t) + Q_{1}^{(j)}(t)x_{1}^{(j)}(t), \quad (14)$$

$$\psi^{(j)}(t_{j} -) = C_{11}^{(j+1)*}\psi^{(j+1)}(t_{j}),$$

$$\psi^{(N)}(t_{N}) = -Q_{3}^{(N)}x_{1}^{(N)}(t_{N}).$$
(15)

Finding $\psi^{(j)}(t)$ as

$$\psi^{(j)}(t) = R^{(j)}(t)x_1^{(j)}(t). \tag{16}$$

where $R^{(j)}(t)$ – unknown matrix with size $n_1^j \times n_1^j$.

By substituting (16) in (14), finding equation (9) and conditions of the over patching structures (10) for finding matrixes $R^{(j)}(t)$ with $t \in \tau_j$, $j = \overline{1, N}$.

The formulas (13), (16) and conditions (4) completely defined functions $x_2^{(j)o}(t)$, substituting that in (7), finding $x_1^{(j)}(t)$ with $t \in \tau_j$ for all $j = \overline{1, N}$.

Solve of the task

$$\frac{dx_1^{(j)}(t)}{dt} = \left(A_{11}^{(j)}(t) + A_{12}^{(j)}(t)(Q_2^{(j)}(t))^{-1}A_{12}^{(j)*}(t)R^{(j)}(t)\right) \times$$

$$\times x_1^{(j)}(t), \tag{17}$$

$$x_1^{(j)}(t_{j-1}) = \left(C_{11}^{(j)} + C_{12}^{(j)}(Q_2^{(j)}(t_{j-1})^{-1}A_{12}^{(j)*}(t_{j-1})\right) \times$$

$$\times R^{(j)}(t_{j-1} -)x_1^{(j-1)}(t_{j-1} -)$$
 (18)

finding the solve (1) $x_1^{(j)}(t)$ that satisfy the starting condition $x_1^{(1)}(t_0) = x_{10}^{(1)}$ on the assumption of functional (5) obtain minimum valuation when $x_2^{(j)}(t) = x_2^{(j)o}(t)$, $t \in \tau_j$, $j = \overline{1, N}$.

Now in the system (2) make substitute

$$x_1^{(j)}(t) = x_1^{(j)}(t),$$
 (19)

$$x_2^{(j)}(t) = x_2^{(j)o}(t) + z^{(j)}(t),$$
 (20)

where $z^{(j)}(t)$ – unknown vector-functions corresponding dimension.

So far as

$$\frac{dx_{2}^{(j)o}(t)}{dt} = (Q_{2}^{(j)}(t))^{-1} \left(-\frac{dQ_{2}^{(j)}(t)}{dt} (Q_{2}^{(j)}(t))^{-1} A_{12}^{(j)*}(t) R^{(j)}(t) + \frac{dA_{12}^{(j)*}(t)}{dt} R^{(j)}(t) - A_{12}^{(j)*}(t) A_{11}^{(j)*}(t) R^{(j)}(t) + A_{12}^{(j)*}(t) Q_{1}^{(j)}(t) + A_{12}^{(j)*}(t) R^{(j)}(t) A_{11}^{(j)}(t) + A_{12}^{(j)*}(t) R^{(j)}(t) A_{12}^{(j)}(t) A_{12}^{(j)}(t) A_{12}^{(j)}(t) A_{12}^{(j)*}(t) A_{12}^{($$

than, designation

$$\frac{dQ_2^{(j)}(t)}{dt} = \overline{Q}_2^{(j)}(t), \ \frac{dA_{12}^{(j)*}(t)}{dt} = \overline{A}_{12}^{(j)*}(t),$$

get the next task for the finding $z^{(j)}(t)$:

$$\varepsilon_{j} \frac{dz^{(j)}(t)}{dt} = A_{22}^{(j)}(t)z^{(j)}(t) +$$

$$+ \left(A_{21}^{(j)}(t) - A_{22}^{(j)}(t) (Q_{2}^{(j)}(t))^{-1} A_{12}^{(j)*}(t) R^{(j)}(t) \right) x_{1}^{(j)}(t) -$$

$$- \varepsilon_{j} \left(Q_{2}^{(j)}(t)\right)^{-1} \left(- \overline{Q}_{2}^{(j)}(t) (Q_{2}^{(j)}(t))^{-1} A_{12}^{(j)*}(t) R^{(j)}(t) +$$

$$+ \overline{A}_{12}^{(j)*}(t) R^{(j)}(t) - A_{12}^{(j)*}(t) A_{11}^{(j)*}(t) R^{(j)}(t) +$$

$$+ A_{12}^{(j)*}(t) Q_{1}^{(j)}(t) + A_{12}^{(j)*}(t) R^{(j)}(t) A_{11}^{(j)}(t) +$$

$$+ A_{12}^{(j)*}(t)R^{(j)}(t)A_{12}^{(j)}(t)(Q_{2}^{(j)}(t))^{-1}A_{12}^{(j)*}(t)R^{(j)}(t)\times \times x_{1}^{(j)}(t), \qquad (22)$$

with the conditions of phase space range change

$$z^{(1)}(t_0) = x_{20}^{(1)} - (Q_2^{(1)}(t_0))^{-1} A_{12}^{(1)*}(t_0) R^{(1)}(t_0) x_{10}^{(1)},$$

when j = 1, and

$$z^{(j)}(t_{j-1}) = C_{21}^{(j)} x_1^{(j-1)}(t_{j-1}) +$$

$$+ C_{22}^{(j)}(z^{(j-1)}(t_{i-1}) + x_2^{(j-1)}(t_{i-1}),$$

when j = 2,3,...,N.

References

- [1] Сопронюк Ф.О. (1995) Моделювання та оптиці-зація систем управління з розгалуженням структур. Чернівці: Рута.
- [2] Kirichenko M., Soproniuk F. (1996) Structured Methods for Control Systems Research // Development and Application Systems. Numb.6. Suceava (Rom).
- [3] Моисеев Н.Н. (1981) Математические задачи системного анализа. М.: Наука.
- [4] Soproniuk Ye. (2002) Investigation of Properties of Singularly Perturbed Control Systems with Varying Structure // ISBN 973 98670 9 X . Proceedings of the 6th International Conference on Development and Application Systems DAS 2002, 23 25 May. Suceava, Romania.