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Abstract: The restricted total least Squares (RTLS) problem is devised for solving over determined set of 
parametering sensitivities for discrete event dynamic BAx ≈  in which the date [A;B] are perturbed by errors 
of the form . These consider nonlinear system that can be described by differential polynomials with 
the sense of max-algebra D and C are known E is arbitrary but bounded. In this contribution all 
parameterization of such nonlinear system, can be transformed to linear regression. The method of proof gives 
an algorithm that can transform the original equation to get linear regression relationship explicitly, in a finite 
number of steps. This algorithm also gives an excitation for the system.  

DECE =*
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Introduction in model set parameterization. 
 
Consider a dynamical system with input u(n) (an 
r – dimensional vector function of time), and 
output y(n) (m - dimensional). The dynamics of 
the systems is not known to the user, but it is 
supposed – that it belongs to a set of candidate 
description or models. If each is described in 
state space form we have [1,2,3]: 
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( ) ( ) ( )( ) ( ) ;0,,;1 0xxnunxfnx ==+ θ          (1) 
( ) ( ) ( )( )θ,, nunxhny = .              (2) 

Here θ  is a d – dimensional parameter vector.  
For each given value of θ  gives a conventional 
state space description of the dynamics between 
the input u(n) and the output y(n). 
The sate variation or internal variables are thus 
x(n+1). The parameterization interns of θ  may 
be of “black box” character, in which case θ  is 
just a vehicle to describe a sufficiently broad set 
of models in (1),(2). More often in the nonlinear 
case, corresponds to parameters with physical 
significance whose numerical values and need to 
be estimated. 

For each given value of θ , and for the given 
input sequence ( )nu , , where Tt ≤≤0

tNTtnt Δ=Δ−= , , the state equation (1) is 
solved giving the states ( )θ,nx . These are 
inserted into (2) giving [4]: 

( ) ( ) ( )( )θθθ ,,,//ˆ nunxhny = , ……. (3) 
then 

( ) ( ) ( )θθε /ˆ, nynyn −=                (4) 
is formed, where ( )ny  is actually measured 
output, Tt ≤≤0 and  

( ) ( )∑
=

=
n

k
kV

1

2 ,θεθ                  (5) 

is minimized with respect to θ . 
 
Problem formulation and main results 
 
The parameters θ  are assumed to be constant so 
that the equations ( ) 01 =+kθ  are included 

( ) ( ) ( )( ) nknxnunygk ,1,0,,, ==θ . 
This means that time varying parameters have to 
be modeled as x - variables. 
Let  

ξη === wyru ,,                    (6) 



be a generic solution. The inputs ( ) ( )nrnu kk = , 
form a differential transcendence basis for 
( )ξη,,rF  [5,6], i.e. the inputs are independent 

and suffice to determine the internal variables 
and the output, is prime and denote ∏ w ( )x,θ . 
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Definition 1. The variable  is globally 
identifiable with excitation polynomial P, if P is 
a nonzero differential polynomial in u and y, not 
belonging to , such that for any two 
solution

kw

∏
;,, ξη ′=== wyru

;,, ξη ′′=== wyru ( ) 0, =⇒′′≠′ ηξξ rP . 
 
Theorem 1. Let the parameter kθ  fee globally 
identifiable with some excitation polynomial P. 
Then there exist differential polynomials p and q 
in u, y with , such that . ∏∉p ∏∈− qpQx

 
Prof. Use a ranking of the variables such that  

( ) ( ) ( ) ( ) ...<<<< kkkyku ji θθ &         (7) 
The characteristic set then has the form [1]  

( ) ( ) ( ),...,,,,,...,,1 θyuByuAyuA m  
The differential polynomial B contains 
( )kθ effectively but no derivatives of ( )kθ . Now 

suppose that B has degree r >1 in ( )kθ . Let (6) 
be a generic solution in some extension . 
Let B be the differential polynomial in 

FofF̂
( )( )kF θ  

obtained by substituting Binyandru η== . 
Since the coefficient of kθ ′ is not in ∏ , B also 
has degree r in ( )kθ . Now take one of the 
irreducible factors of B and construct a generic 
solutionξ . Since P can not vanish for a generic 
solution ( )  and ∏∉P ( )kξξ = . 
It follows that B must be of the form 

. ( ) ( )( )rkkaB ρθ −=

Letting b denote the coefficient of  we 
have the relationship 

( )( ) 1−rkθ
( ) 0=+ krab ξ . 

Substituting back to ( )kyu θ,,  to be get a 
deferential polynomial ( ) ∏∉+ RkQθ  with Q  
nonzero. This contradicts B is belonging to the 
characteristic set and must be of first order in 
( )kθ . Furthermore, p, being the coefficient of 

( )kθ  can not belong to ∏ , since it is reduced 
with respect to the  [8]. iA
Corollary 1. A characteristic set of ∏  for the 
ordering given by (7) has the form  

( ) ( ) ( ) ( )...,,,,...,,1 yuqyyuAyuA km −, up  (8) θ
i.e. the linear regression relationship can be 
found by forming the characteristic set. Also the 
excitation condition is found from ( )yup , . The 
importance of this corollary lies in the fact that 
characteristic sets can be computed explicitly. 
The first differential polynomials of the 
characteristic sets (8) are input output 
relationships that are independent of the 
parameters and interval variables. In principally 
they could be used to test the variability of the 
model structure, since they should be satisfied 
by the measured inputs and outputs, no matter 
what the parameters are. 
 
The restricted total least squares (rtls) 
problem in system identification 
 
Every linear parameter estimation problem 
arising in signal processing, system 
identification, automatic converter, statistics, 
medicine, [9÷15] gives rise to an over 
determined set of linear equations 

BAX ≈ which are usually solved with the 
ordinary Least Squares method. Let 

BAX ≈ with  
nmRA ×∈ , dmRB ×∈ and nnRX ×∈         (9) 

Is given where [ ] [ ] *
00 ;; EBABA += . - 

are error – free and 
00 ; BA

*E is a matrix of the form 
 with  DECE =*

( ) qpdnqpm RERCRD ×++× ∈∈∈ ,,           (10) 
D,C are known, E is in known and arbitrary but 
bounded. The RTLS of (9) (10) is any solution 
of the set 

( ) BBXAA ˆˆ Δ−=Δ−                  (11) 
where [ ]BA ˆ,ˆ ΔΔ  is a matrix on the form 

[ ] ∧

=ΔΔ DECBA ˆ,ˆ ; 
( ) ( )AARangeBBRange ˆˆ Δ−≤Δ−          (12) 

and  
minˆ =FE .                       (13) 



The problem of finding [ ]BA ˆ,ˆ ΔΔ  satisfying (12), 
(13) is called the RTLS problem [8,9]. 
Theorem 2. The RTLS problem dmnm BXA +× ≈  
with given  is solvable and ( dnqpm CD +×+ , )

)[ ]( ) [ ]( CDBACDBA nn ,,;,,; 1+> σσ , then the 
restricted singular value decomposition (RSVD) 
of the RTLS approximation 
[ ] [ ]( )CDBABA ,,ˆ,ˆ, ΔΔ−  is given by the RVSD of 

 in which the  smallest restricted 
singular values are equal to zero. 
[ ]( CDBA ,,,
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) d

Where 
( ) ( ){ }1min,, −≤+==

×∈
iDECTrankECDT

qpRE
iσ , 

 , ,...1,,...,2,1 += nni nmRT ×∈ , [ ]dmnm BAT ××= ; ; 
, as defined in the RTLS 

formulation. The algorithm RTLS is given.  
( dnqpm CD +×× , )

dnqpm CD +×× ,

 
 

Fig1. Block diagram of a simple reconfigurable 
adaptive flight control system. A – desired pole 

locations 
 
Let  ) , as defined 
in the RTLS formulation; nonsingular weighting 
matrices  and ( ) such, in case of 
nonuniqueness, the RTLS solution 

[ ]dmnm BAT ××= ; , (

( ) nnF ×1 ddF ×2

X̂ with 
minimal 

F
FXF 21

ˆ  is singlet out. 

1. Reduced by orthogonal transformation  
DECT −  to  

[ ]

[ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
=−

3113322332

22

3112211211

ˆˆˆˆˆˆ0;ˆˆ0
0ˆ0

0;ˆˆˆˆˆˆˆˆˆ
ˆˆˆˆ

CEDTCEDT
T

CEDTCEDTT
CEDT

T

 

such that sub triplet ( )3333
ˆ,ˆ,ˆ CDT  and  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≠∞<=

0
0,,,ˆ,ˆ,ˆ

3333 iii CDTCDT σσσ  

2. Compute the implicit singular value 
decomposition  

( )s
T diagVCTDU σσσ ˆ...ˆˆˆˆˆ

21
1

3333
1

3 =−− . 

3. Compute , 
then such that rank 

( ) nDECTCEDTrfrank ≤−− 311333
ˆˆˆˆ

( ) T
sr VUdiagE σσ ,...,,0,...,0 111 += . 

4. Compute a basis of 3Ẑ ( )CEDTNull ˆˆˆˆ
11333 − . 

5. Compute a basis Ẑ  of ( ),DECTNull −  

. ⎥
⎦

⎤
⎢
⎣

⎡
=

00
0ˆ

11EE

6. Compute a basis of 
n

dZ
Z

Z ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1 ( )CEDTnull ˆ− . 

7. If ( ) ( CDTCDT nn ,,,, 1+> )σσ and 
nonsingular, then  2Z

1
21

ˆ −−= ZZX  RTLS solution 
else begin  
if ( ) ( CDTCDT nn ,,,, 1+> )σσ then compute 
weighted minimum norm solution:  

FX
FXF 21ˆ

ˆminmin  

if is singular then compute nongeneric RTLS 
solution.  

2Z

Where Ê  satisfying minˆ =
F

E , 

( ) ( )AARangeBBRange ˆˆ Δ−≤Δ− can now be 
computed and also a basis of 

[ ]( )BBAANull ˆ;ˆ Δ−Δ− , the null space of 
[ ]BBAA ˆ;ˆ Δ−Δ− dimension at least d 
( )63÷step . If the RTLS solution is not unique, 
the solution X̂  with minimal 

F
FXF 21

ˆ  is 

singled out (step7). 
 
Stochastic complexity for parametric linear 
stochastic systems 
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( )
Let as consider a state space equation [10]: 

( ) ( ) ( )( ) ( ) neBnXAnx θθθθ +−= ,1,          (14) 
where the dimensionality of ( )θ,nx  and ( )ne  are 
s and m respectively, ( ) ( )θθ BA ,  are defined and 
smooth in an open domain . Moreover 
the matrix 

FRD ∈θ

( ) θθθ DA ∈,  are jointly stable in the 
sense that there exist a positive  matrix V 
such that for all , with 
some 

SS ×
( ) ( ) VVAAD T λθθθ θ ≤∈ ,

10 << λ . The  is a smooth 
function defined on 

( )( xQ )
SR  such that its first order 

partial derivatives grow at most linearly in X , 
and all other derivatives increase at most 
polynomials. If  quadratic then it is 
sufficient to assume that e(t) is a wide sense 
stationary process,  

( )xQ

( ) ( )( )[ ]θθ nn
XQMG ~lim

∞→
=                 (15) 

The recursive methods can be used to define an 
off-line estimation the empirical function 

( ) ( )(∑
=

=
N

m
N nXQF

1
,θθ )                  (16) 

Then the off-line estimation  of  can be 
defined as the solution of the equation 

Nθ̂
*θ

( ) 0=θNF                         (17) 

More exactly we define  as the solution (17) 
if it has a unique solution then  

Nθ̂

( ) ( ) ( )2/11 −=− NOGF
N

Sup MN θθ  

θθ D∈ˆ  

( )(∑
=

=
N

n
N nxQ

N 1
2/1 ,1 θη )                 (18) 

( ) ( 11*
2/1

* 1ˆ −−
+−=− NOG )

N MNN ηθθ θ . 

 
The model 
 
To illustrate the computational tasks involved in 
reconfigurable flight control it is examine a 
simplified model of a pitch displacement control 
loop (fig.1): 
( ) ( ) ( )21

2
21 / azazbzbzG +++−= . 

The digital controller will have the transfer 
function: ( ) ( ) ( ) (zRzSzEzU // −= ) , where 
( ) 21

2
0 SzSzSzS ++= ; ( ) ( )( )11 rzzzR +−= ; 

( )zE  is the z-transform of the error ( )te , and 
( ) ( ) ( )tytrte −= , where  is the desired 

reference value for the pitch angle. A damping 
ratio X, a frequency W, and a coefficient a can 
be chosen so that the closed-loop continuous 
system has two dominant poles corresponding to 
X, wand two real poles at-aw. The control 
design algorithms to find the controller 
parameters form the model parameters and the 
desired pole location is as follows: 

( )tr

( ) ( )2
1 1cosexp2 xwtxwTp −−−= ; 

( )xwTp 2exp2 −= ; ; ( )awTc −= exp
( −++−= 12

2
121 2 aaccppm  

( )( ))12/ 11
2

12 +−− capbb ; 
( )( )2

2122 /2 cbbcpm −−= ; ; 2
2

13 acpm +=
( )( )

( ) ;//
1/

221
2

12

112124

babbb
abbaam

++
++−+=

 

( ) 412321 / mmbmmr −+= ; 
( ) 11110 /12 brcapS −+−= ; 
( )( ) 1

2
121111 //1 mbbbarS +++−= ; 

( ) 212
2

12 / bracpS += . 
The implementation of this controller is in the 
form of a difference equation 
( ) ( ) ( )( ) ( )

( ) ( ) ( )21
211

210

11

−+−++
+−+−−=

keSkeSkeS
kurkurkU  

and the error calculation equation  
( ) ( ) ( )kukrke −= . 

The model structure is assumed know and a 
simple recursive least squares on line 
identification scheme with variable forgetting 
factor is used. The algorithm requires values of 
the input ( )ku , ( )1−ku ,  and the output ( 2−ku )
( )ky , ( )1−ky , ( )2−ky , where k refers to the 

most recent sampling interval. Let the vector 
[ ]2121 bbaaZ =  contain the unknown model 

parameters, and ( )kZ be the estimate of Z at 
time .  k
Define 
( ) ( ) ( ) ( ) ( )[ ]2121 −−−−−−= kukukykykH , 



then , and the identification 
algorithm consists of interactive computation of 

.  

( ) ( )zkHky =

( )kZ
The following statements are based on a Matlab 
simulation of the identification algorithm:  
( ) ( ) ( )kk αλλαλ +−= 11 ; 
( ) ( ) ( )
( ) ( ) ( ) ( )( ) ;1*

*1
1−++

−=
kkHkpkH

kHkpkK
λ

 

( ) ( ) ( ) ( )( )kZkHyke −= 1 ; 
( ) ( ) ( ) ( )kekKkZkZ +−= 1 ; 
( ) ( ) ( ) ( ) ( ) ( )(
( ) ( );/1*

*2
kkp

kHkKnkekykekp
λ−

−=
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)  

( ) ( ) ( ) ( ),1,1 kzkzkpkp =−=−  
 

where ( )kλ  is a time – varying forgetting factor, 

1λ is the steady state value of the forgetting 
factor, α controls the speed,  is a gain 
matrix,  and  are matrices, 
where n is the order of the process,  is the 
current output value.  

( )kK
( )kp ( 1−kp ) nn 22 ×

( )1y

 

Hawing described the different algorithmic 
components of the adaptive control system, 
shows in block diagram form in Fig.1. 
The control consists of repetitive execution of 
the following cycles [15÷17]: 
1. In the beginning of each cycle, the processor 

associated with each control loop reads the 
log reference input ( )kr , which describes 
desired output as well as sensor 
measurement of the actual process output 

 and controller input . ( )ky ( )kU
2. The processor reads the output of the 

reconfiguration supervisor to determine 
which control law implementation algorithm 
should be used. It also reads the output of the 
identification monitor to determine whether 
the identification is turned on or off. 

3. Is the identification is on then an 
identification iteration is executed. This 
results in updated values for the model 
parameters. A controller design step is also 
executed. Otherwise, if the identification is 
off then old parameter values are used. 

4. Values of the current estimated of model 
parameters are fed into the control law 
implementation algorithm to produce a new 
controller output value . ( )ku

5. The controller output is applied as input to 
the object process and to the fault detection 
predictor filters. 

6. The fault detection filters operate 
concurrently with the control loop. They use 
the most recent readings of  and stored 
previous values of y and u to produce 
estimates for the new output 

( )ku

( )ky  under 
different failure / fault assumptions. 

7. The outputs of the predictors are compared 
with actual output as described above. 

8. A decision making procedure uses the 
distance between actual output and predictor 
outputs, as well as other available 
information to conclude whether a change in 
object process model due to a failure has 
taken place. 

9. If it has been determined that a change took 
place then the identification monitor is 
signaled to turn identification on and to 
initialize it with values based on the 
conclusion reached.  

10. An identification system monitor runs 
concurrently with the control loop. It the 
identification is on the monitor compares 
new and old estimates of the model 
parameters to determine if convergence took 
place and hence to turn identification off. It 
also monitors the matrix P(k) to detect if it is 
getting to be too large. If the identification is 
off then the monitor looks for a signal from 
the fault detector to determine when to turn 
it an again. It also obtains initial values for 
the identification from the fault detector. 

11. There may be several control law algorithm. 
For example a minimum variance controller 
may be used for some missions instead of 
the PID. An a some points perhaps only a PI 
would be used, and soon. To avoid sudden 
jumps in controller output when a new 
controller is switched in some techniques for 
bump less transfer are typically used. In this 
case the decoupled control can presented 



119 

above may be replaced by a multivariable 
control law combining two loops. 

 
Conclusion 
 
We have shown that globally identifiable 
parameters can be written as linear regression 
relationships. Also we have demonstrated that 
the actual computation can be done by forming 
certain characteristic sets. These computations 
also give the excitation conditions. The RTLS 
algorithm, which solves the RTLS problem is 
based on the restricted singular value 
decomposition (SVD), a generalization of the 
SVD for triple matrix products. It is presented 
an algorithm for a reconfigurable adaptive flight 
control system. The use more robust schemes is 
explored and a more accurate estimate of the 
computational requirement is being evaluated. 
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