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Abstract. This paper addresses the space-time coding for Rayleigh–fading using modulation with memory. 
GSM’ modulation format, GMSK with BT = 0.3, is a constant envelope modulation which allows transmission 
with a greater bandwidth efficiency and using an inexpensive Class C amplifiers. GSM’ new EDGE modulation 
promises to increase data rates by up to 3 times and is also viewed as a migration path from existing IS–136 
systems to 3G systems. The 83π -shifted 8–PSK modulation scheme triple the on-air data rate while meeting 
the same bandwidth occupancy of the original 0.3–GMSK signal. Both of these modulation format have memory 
and demonstrates compelling advantages for wireless aplications. This paper presents how we can use space-
time coding with this kind of modulation. 
Keywords: space-time codes, modulation with memory, quasi-static Rayleigh fading, Laurent decomposition. 
 
 
Introduction 
 
As the mobile communications market develops, 
interest is building for data applications and 
higher data rate operation. Modulation with 
memory have a beneficial effect on spectrum 
occupancy, highly desirabile for applications 
like wireless systems.  
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One of the major difficulties in wireless 
communications is the multipath fading. A very 
effective techniques to overcome the fading is 
diversity. An usual technique is interleaved 
coded modulation, where the interleaving 
separates the code symbols so that the fading 
statistics is independent on each of the codeword 
symbols. In a quasi-static fading, the interleaver 
depth must be very long, that affect dramatically 
the delay of decoding, undesirable effect with 
vocal or video wireless communications. We 
can solve this problem using multiple transmit 
antennas (and, if possible, multiple receive 
antennas) to provide transmission diversity. 
 
System model 
 
In fig. 1 is represented a model of the transmitter 
diversity system using a modulation with 
memory, and only one antenna at the receiver 

side (the case of multiple receiving antennas is 
straightforward) for simplicity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The received signal (the complex envelope) is 
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where ( )tw  is an independent zero-mean 
complex white Gaussian noise (AWGN) with 
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double-sided power spectral density 2N0  per 

dimension,  are the complex-valued 
fading coefficients between the ith transmitter 
antenna and the receiving antenna, modeled as 
independent zero-mean complex Gaussian 
random variables with variance  (we include 
here the energy of the emitted signal). 

{ }n 1ii =α

sE

Assume synchronism and negligible intersymbol 
interference, and { }  to be constant over the 
duration of one codeword (N complex symbols 
periods), but change independent from one 
codeword to another. 

n
1ii =α

Assume also the channel state information is 
known at the receiver side. 
 
Performance analysis 
 
The receiver is to estimate { }ξ  from the received 
signal ( )ξ;ty . The observation time of ( )ξ;ty  is 
supposed to be as long as an coded frame of 
NT length is transmitted ( - coded symbol 
period). 

T

The maximum-likelihood receiver determines as 
the best estimate of { }ξ , the sequence { }ξ̂  that 
maximize the likelihood function  

( ) { }[ ]n
1ii|;typ =αξ . 

We have the expresion1 [4] 
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where is the domain of integration and Γ
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and 
 

( ) ( )21021w ttNttR −=− δ   (4) 
 
                                                           
1 In the following, ,  and will denote the 
complex conjugate, transpose and Hermitian transpose of 
x. 
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The probability that the receiver decodes 
codeword e when c was actually transmitted 
(pairwise error event) is given by 
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      (6) 
 
where 
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is the metric of the decoding algorithm. 
The pairwise error event probability can be 
evaluated in the form 
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where 
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We denote 
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and we have the form of the paiwise error event 
probability as 
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We notice that the expresion  is a 
realisation of a random proccess with a Gaussian 
distribution, with mean 

( )tV

{ }( )n
1ii;t =αμ  and 

variance { }( )n
1ii;tvar =α  given by 
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We can claim that 
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Design criterion 
 
In the sequel we focus on the modulation format 
used in GSM systems: 0.3-GMSK and EDGE. 
Both of them have a very interesting property 
for our problem: they can be described as 
quadrature-amplitude modulation. 

Using Laurent decomposition to the GMSK 
waveform, in [1] the GMSK signal is 
represented as 
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, ( )lξ  is the binary information in the bipolar 
format, { }1± , and ( )tg  is the principal pulse in 
the Laurent decomposition of the 0.3-GMSK 
modulation, 
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It can be made some simplifications. In [2] it 
was shown that an aproximation to the pulse 
( )tg  that is significantly less complicated to 

define, is 
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Now assume the data has been differentially 
encoded, so that 
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Substituting this into expression (17) gives 
 

( ) ( )lbjlI l=           (25) 
 
In the case of EDGE modulation, the signal can 
be described as 
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with ( ) { }7,,0l K∈ξ  and 
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defined below. 
With these observations, we are able to simplify 
the pairwise error event probability in this case 
(see Apendix) 
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where we can apply the Chernoff bound and  
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We can make some remarks. The matrix  
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is a Hermitian matrix, so we can write this 
matrix like 
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where V is a unitary complex matrix with 
dimensions [ ]nn ×  (the number of transmitter 
antennas) having as columns the eigenvectors of 
M, and Λ a diagonal matrix with elements on 
the principal diagonals be the nonzero 
eigenvalues { }r 1ii =λ  of the matrix M. The 
number of nonzero eigenvalues of the matrix M, 
denoted with r, is also the rank of the matrix M. 
We can write 
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For a signal-to-noise ratio high enough, we can 
aproximate  
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For high SNR (35) has the asymptotic form 
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In the sequel we can apply the criterions for 
space-time codes design derived in [5], [6] or 
[7], with only difference that the rank criterion 
and determinant criterion [5], or the “equal 
eigenvalues” criterion [7] are applied on the 
matrix   and not on the matrix 

. 
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In [5] Tarokh et al. presented the space-time 
coding criteria and which can be transformed for 
this case in: 

 Rank criterion: Maximize the rank, r, of the 
matrix , for all possible 
codewords c and e. Note that 

ce
H
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nr ≤  (the 
number of the transmitter antennas). 

 Determinant criterion: Maximize the 
minimum of the products of all the non-zero 
eigenvalues of  taken over all 
the distinct codewords c and e. 

ce
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The “equal eigenvalues criterion” found by 
Ionescu [7] can be put, in this case, into the 
form: 

 ESV criterion: Codes designed over N  time 
epochs and n transmitter antennas, must 
satisfy the property that all the eigenvalues 
of  are equal for every pair of 
codewords in the code set. 
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We notice that R is a real, square (dimensions 
[ ]NN × ) and symetric matrix, and the matrix 
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in the case of EDGE, are also square, symetric 
and complex matrix. Any of the two resulting 
matrix can be write in the form 
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where L is a complex lower triangular matrix 
which is inversable in this case. 
We can say, under these observations, that 
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So, we can apply the rank criterion directly to 

, and we must take into account the effect of 
the autocorrelation matrix R over the 
eigenvalues of the matrix M relative at the 
coding gain. 

1
ceΔ
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Simulation results 
 
The simplest form of space-time coding is delay 
diversity coding. In this kind of coding the 
coded symbols are repeated, in succesive 
complex symbols periods, on succesive 
antennas. We can see the combination of the 
encoder and the mapper like in fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
For delay diversity, the dominant error event has 
a single error, so that we have 
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where ( ) nrank ce =Δ , the number of transmiter 
antennas (maximum rank). 
This sort of coding agree only with the rank 
criterion, and not with the determinant criterion 
or ESV criterion. For the other two criterions, 
one must pay attention to the effect of the matrix 
R over the eigenvalues of the matrix M. 
In the delay diversity coding case, the BER is 
upper-bounded by 
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where it is taken into account the relation 

 (in this case all 
matrices are square [ ), so that 

)CAdet()Bdet()ABCdet( ×=
]NN ×

 

( ) ( ) (RdetRdetRdet EDGEGMSK = )=         (48) 
 
and the fact that EDGE’ 8-PSK symbols are 
Gray coded. 
The simulated performance are presented in fig. 
no.3 and no. 4. We have considered the cases 
with the 2, 3 and 4 antennas at the transmitter 
side and only one antenna at the receiver side. 
 

T  T  T  

Fig. 2. Delay diversity transmitter 

Fig. 3 - BER 0.3-GMSK 

Fig. 4 - BER EDGE 
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We can put this expression into the form 
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with i – the complex symbol time period, 
Ni1 ≤≤ , and j – the jth transmitter antena. For 

0.3-GMSK differentially encoded we have 
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and for EDGE case we have 
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