
 

218 

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS 
S u c e a v a,  R o m a n i a,  M a y  27 – 29,  2 0 0 4  

 
 
AN EMBEDDED REAL-TIME SYSTEM  FOR DATA PROCESSING, BASED ON BACnet 
DATA COMMUNICATION PROTOCOL 
 
 
Iurie GUZUN, Viaceslav GUZUN 

Amann GmbH Regelungstechnik,Unteranger Str. 6, 82041 Muenchen, Oberhaching, Germany 
SiemensVDO Automotive 
Calea Martirilor Str. 1, 300724 Timisoara, Romania 
i.guzun@amann-net.de  
 
 
Abstract. The purpose of this paper is to present a part of a project, which was developed at AMANN GmbH 
Muenchen, Oberhahing, Germany. This is an embedded software, which is included in the new device EWMS 
View BACnet Touch Screen. The software development was done in ANSI C++, and Borland C++ 5.02 
compiler was used. This project is based on services provided by BACnet. Embedded system is controlled by 
SMX real-time multitasking operating system, and as a hardware platform a 16-bit AMD 80C186EM 
microcontroller is used. The Touch Screen is a black/white one with a resolution of 320 by 240 pixels . 
BACnet is a data communication protocol for building automation and control networks. Developed under the 
auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineer (ASHRAE), its 
purpose is to standardize communication between building automation devices and systems from different 
manufacturers.   BACnet affords facility owners and managers maximum flexibility and cost-effectiveness by 
allowing control products made by different manufacturers to be integrated into a single, uniform system. 
BACnet is designed to allow  lighting, life safety, access, security, power, vertical transportation and other 
building system control devices to interoperate. BACnet allows intelligent systems from various industries and 
manufacturers to exchange information, such as temperatures, setpoints, schedules, trend logs and alarms, and 
coordinate equipment operation to achieve optimum building performance. It saves facility owners/managers 
the costs of purchasing, engineering and maintaining custom interfaces for supervising equipment, as well as 
integrating diverse building systems such as lighting, fire, elevators, electrical services, etc. 
 BACnet is based on a four-layer collapsed architecture for Local Area Networks, that corresponds to the 
physical, data link, network, and application layers of the OSI model.  
Keywords:  embedded systems, BACnet protocol, data acquisition, building automation control, multitasking.   
 
 
Introduction 

 
We will begin the presentation of our paper by 
introducing some theoretical aspects of the 
BACnet protocol.  
BACnet provides mechanisms by which 
computerized equipment of arbitrary function 
may exchange information, regardless of the 
particular building service it performs. Each 
network device is modeled as a collection of 
network-accessible, named entities called 
“objects”. Each object is characterized by a set 
of attributes or “properties”.  
Communication is accomplished by reading and 
writing the properties of particular objects and 
by the mutually acceptable execution of the 
protocol “services”.  The sophistication of a 

specific device, in terms of its ability to carry 
out particular service requests or to understand 
the nature of particular object types, is reflected 
in the device’s “conformance class”. Each class 
specifies a minimum set of services, objects, and 
properties the device must support in order to 
claim membership in a particular class. Because 
of the Standard’s adherence to the ISO concept 
of “layered” communication architecture, the 
same message may be exchanged using various 
network access methods and physical media. 
This standard was specifically tailored for 
heating, ventilating, air-conditioning, and 
refrigerating control equipment, but it is also 
intended to provide a basis for integrating other 
kinds of building control systems, such as 
lighting, security, and fire detection systems. [1] 
 



 219

Scope of the BACnet protocol 
 
This protocol provides a comprehensive set of 
messages for conveying encoded binary, 
analogue, and alphanumeric data between 
devices including, but not limited to: 
hardware binary input and output values, 
hardware analogue input and output values, 
software binary and analogue values,  text string 
values, scheduler information, trends, alarm and 
event notification, and control logic. 
This protocol models each building automation 
and control computer as a collection of data 
structures – “objects”, the properties of which 
represent various aspects of the hardware, 
software, and operation of the device. These 
objects provide a means of identifying and 
accessing information without requiring 
knowledge of the details of the device’s internal 
design and configuration. [1] 
 
Modelling Control devices as a collection of 
objects. 
 
The data structures used in a device to store 
information are a local matter.  In order to 
exchange that information with another device 
using this protocol, there must be a “network-
visible“ representation. This clause defines a set 
of standard objects types. These object types 
define an abstract data structure that provides a 
framework for building the application layer 
services. All objects are referenced by their 
Object_Identifier property. Each object within a 
single BACnet Device shall have a unique value 
for the Object_Identifier property. When 
combined with the system-wide unique 
Object_Identifier of the BACnet Device, this 
provides a mechanism for referencing every 
object in the control system network. Our 
project uses the following collection of objects: 
Analogue Input, Analogue Output, and 
Analogue Value. 
Binary Input, Binary Output, and Binary Value 
Multi-state Input,  Multi-state Output, and 
Multi-state Value, Schedule, Device Object 
Type.  [1]     
The Analogue Input object type defines a 
standardized object whose properties represent 
the externally visible characteristics of an 

analogue input. Respectively, the Analogue 
Output or Analogue Value, is an object whose 
properties represent the externally visible 
characteristics of an analogue output. An 
“analogue value” is a control system parameter 
residing in the memory of the BACnet Device.  
The Binary Input object type defines a 
standardized object whose properties represent 
the externally visible characteristics of a binary 
input. A “binary input” is a physical device or 
hardware input that can be in only one of two 
distinct states. Those states are referred to as 
ACTIVE or INACTIVE. A typical use of a 
binary input is to indicate whether a particular 
piece of mechanical equipment is on or running, 
such as a fan or pump, is running or idle. The 
state ACTIVE corresponds to the situation when 
the equipment is running, and INACTIVE 
corresponds to the situation when the equipment 
is off or idle. In some applications, electronic 
circuits may reverse the relationship between the 
application-level logical ACTIVE and 
INACTIVE and the physical state of the 
underlying hardware. For example, a normally 
open relay contact may result in an ACTIVE 
state when the relay is energized. The Binary 
Input object provides for this possibility by 
including a Polarity property. Respectively, a 
Binary Output is a binary output, which is a 
physical device or hardware output that can be 
in only one of two distinct states, mentioned 
above. In case of an Binary Value, this is a 
control system parameter residing in the 
memory of the BACnet Device. This parameter 
may assume also only one of two distinct states, 
referred to as ACTIVE and INACTIVE.    
The Device object type defines a standardized 
object whose properties represent the externally 
visible characteristics of a BACnet Device. 
There shell be exactly one Device object in each 
BACnet Device. A Device object is referenced 
by its Object_Identifier property, which is not 
only unique to the BACnet Device that 
maintains this object but is also unique 
throughout the BACnet internetwork. 
Multi-state Input object type defines a 
standardized object whose Present_Value 
represents the result of an algorithmic process 
within the BACnet Device in which the object 



resides. For example, the Present_Value of the 
state Multi-state Input object may be the result 
of a logical combination of multiple binary 
inputs or the threshold of one or more analogue 
inputs or the result of a mathematical 
computation. The Present_Value property is an 
integer number representing the state. The 
State_Text property associates a description 
with each state. The Multi-state Output type is 
an object whose properties represent the desired 
state of one or more physical outputs or 
processes within the BACnet Device in which 
the object resides. For example, a particular state 
may represent the active/inactive condition of 
several physical outputs or perhaps the value of 
an analogue output. The Present_Value property 
is an unsigned integer number representing the 
state. The State_Text property associates a 
description with each state. And a Multi-state 
Value is a control system parameter residing in 
the memory of the BACnet Device. The 
Present_Value property is an unsigned integer 
number representing the state. The State_Text 
property associates a description with each state.  

 220

The Schedule object type is an object used to 
describe a periodic schedule that may recur 
during a range of dates, with optional exceptions 
on arbitrary dates. The Schedule object also 
serves as a biding between these scheduled 
times and the writing of specified “values” to 
specific objects at those times. Schedules are 
divided in days, of which there are of two types: 
normal days within a week and exception days. 
Every of object types mentioned above has a list 
of properties which describes the object.  [1].             
 
Alarm and event services 
 
This clause describes the conceptual approach 
and application services used in BACnet to 
manage communication related to events. In 
general, “events” are changes of value of certain 
properties of certain objects, or internal status 
changes, that meet predetermined criteria. There 
are three mechanisms provided in BACnet for 
managing events: change of value reporting, 
intrinsic reporting, and algorithmic change 
reporting. Here, we provide a short description 
only of first mechanism, because it is used in 
Alarm Control task.  

Change of value (COV) reporting allows  a 
COV-client to subscribe with a COV-server, on 
a permanent or temporary basis, to receive 
reports of some changes of value of some 
referenced property based on fixed criteria. If a 
standard object provides COV reporting, then 
changes of value of specific properties of the 
object, in some cases based on programmable 
increments, trigger COV notifications to be sent 
to one or more subscriber clients. Typically, 
COV notifications are sent to supervisory 
programs in COV-clients devices or to operators 
or logging devices. [1] 
A COV notification is sent to a BACnet client 
every time when current value of a particular 
object was changed by a value of a so called 
COV-increment.  
 
OUT_OF_RANGE Algorithm 
 
To detect when Present_Value of any object is 
in alarm the OUT_OF_RANGE algorithm is 
used (see figure 1).  
 

      Normal  
 
 
 
   
 
 
 
 
 
 
 
                                                         
 

Figure 1. OUT_OF_RANGE Algorithm 
 
This algorithm is used in case of all objects of 
any “Analogue” or “Binary” kind. 
OUT_OF_RANGE occurs if the referenced 
property leaves a range of values defined by the 
High_Limit and Low_Limit of the alarm data 
point and remains there for Time_Delay 
seconds. These two limits are specified doing 
the configuration of the Alarm data point. If the 
transition is to a value above the High_Limit or 
below the Low_Limit, a TO-OFFNORMAL 
transition is generated. In this case alarm beeper 
will start to beep.  

High_Limit Low_Limit 

Presen
> H

t_Value 
igh_Limit 

Present_Value 
< Low_Limit 

Present_Value 
> Low_Limit Present_Value 

< High_Limit 



 221

The beeper will stop beep only in case when the 
User touched the screen. This will be an 
acknowledge to the raised Alarm event. 
 
Object access services 
 
This clause defines nine application services that 
collectively provide the means to access and 
manipulate the properties of BACnet objects. A 
BACnet object is any object whose properties 
are accessible through this protocol regardless of 
its particular function within the device in which 
it resides. We will describe only the services 
which are used by processes of the project.  
ReadProperty Service – is used by a BACnet- 
client to request the value of the property of one 
BACnet Object. This service allows read access 
to any property of any object, whether a 
BACnet-defined object or not. 
WriteProperty Service – is used by a BACnet- 
client to modify the value of a single specified 
property of a BACnet object. This service 
potentially allows write access to any object, 
whether a BACnet-defined object or not.  
 
Remote device management services 
 
The Who-Is service is used by sending BACnet-
client to determine the device object identifier, 
the network address, or both, of other BACnet 
devices that share the same internetwork. The 
Who-Is service is an unconfirmed service. It 
means that the receiving device should not send 
an acknowledge (confirmation) to the sending 
device on receiving of this service. The Who-Is 
service may be used (1) to determine the device 
object identifier and network addresses of all 
devices on the network or (2) to determine the 
network address of the specific device whose 
device object identifier is known but whose 
address is not. [1]  By address we understand the 
Media Access Address (MAC) of the device on 
the internetwork.    
 
The statement of the problem 
 
The main problem of this project was to 
implement the software, which shell run in an 
embedded system. It should also allow to 
support the BACnet data communication 

protocol. The touch-screen is a direct BACnet-
user as a BACnet-Client.  From this point of 
view, the software development was divided in a 
few steps. The services from the BACnet 
protocol side were already available so this is 
not the concern of this paper.  
Every step had as a purpose the implementation 
of all abstract data structures which control 
separated parts of the functionality of the device. 
In first part were included methods needed for 
controlling the device at the lower hardware 
level, like processing screen touches, serial 
communication through the serial 
communication protocol, saving data in the flash 
memory, etc. As a next step was the 
development of methods which allow to extract 
users defined data points, in order to display 
them on-screen. All data points are implemented 
as good defined screen elements, as for example, 
static text or different kind of controls. Some of 
these controls have BACnet references. From 
other side, here were included all methods need 
for implementing interaction between the system 
and the user, by means of touching the screen. 
All these methods composing  User Interface 
class. User Interface constructs and draws all 
current screen elements. Also it is necessary to 
say that all parts of the project which we will 
introduce step-by-step later are also organized as 
classes.  These classes running in system as 
separated processes or tasks and controlled by 
the operating system mentioned above. Next 
part is concerned about updating all current 
screen graphical elements in order to have every 
time on-screen Present_Values of all these 
screen elements. These methods are included in 
Update Remote task. Update Remote reads from 
network and updates the currents screen data 
points. The next implemented part represents 
Alarming Control. This task checks data points, 
defined also by the user as alarms, to be inside 
of some defined by user boundaries.  When the 
Present_Value of a data point is outside of these 
domains, an alarm event is generated. It will 
notify the user starting an Alarm Beeper task.  
The last parts represents the task which executes 
managing of all defined trend logs. This means 
data acquisition, filtering and drawing on screen 
of data for every trend once it is displayed on-



screen. One trend graphical view element 
manages in real-time up to four processes.   
 
Concept of the touch-screen  

 
The touch-screen is designed for handling 500 
data points. A data point means one Property of 
an BACnet Object. The data points are 
organized in linked lists and are stored in the 
systems data memory flash. Later the contents of 
these pages will be read one bye one in systems 
RAM and put on-screen beginning with the 
default screen. The memory of the system is 
used dynamically, so the number of data points 
may differ in depends of how many 
pages(screens) user has described. In addition, 
user can describe alarm data points, data trend 
logs and schedules. One touch-screen can 
contain data points from more than one BACnet-
Server. Here exists only one restriction, all 
devices must be connected to the same physical 
and logical network. [2]    

 222

The touch-screen is a simple BACnet-Client. It 
polls one or more BACnet Servers when it is 
active (the backlight of the screen is on) and the 
values are shown on-screen. In other words, as 
long as touch-screen in on, the Present_Value of 
all data points from current page (screen) are 
displayed. If there are trends configured (screen 
elements which allow to display in real-time the 
evolution of up to four processes per screen), the 
touch-screen is using COV mechanism, if it is 
available from the Server to update on-screen 
data. Otherwise it will poll in time-step of one 
second the Objects which have been set in the 
trends. The same mechanism of COV is used for 
Alarms monitoring in case if they were also 
configured. [2] 
The hardware Configuration of the touch-screen 
is presented on figure 2. Used abbreviations 
standing for as following: 
NV RAM – non volatile RAM; 
RAM – is a SRAM with an 256Kx16 
organisation; 
FLASH- represents the program-memory 512K 
x16. Another Flash memory with the same 
organisation represents the Data Flash.  
80C186 – AMD-Embedded processor 186EM; 
RS232 Service – service port used for 
downloading to the device of the firmware, 

configuration files; 
Ethernet 10 MBit – AMD AM79C961 chip; 
LCD – LCD Display + Touch Screen of a 
resistive type;  
 
Software Architecture 
 
In the following we will introduce one by one 
the most important software components which 
were developed for this project. We will begin 
with the UserInterface task 
 
 
  
 
 
 
 

     NV 
   RAM 

FLASH 
x 2 

   RAM 

 
 
 
 
 
 
                ISA 96 

80C186 
20 MHz 

 
 RS232  

Service 
Ethernet 
10 MBit 

 
     LCD 

 
 
 
 

Figure 2. Hardware of the system 
 

 
User Interface Task 
 
The UserInterface is first task which is started 
and runs in system at device power-up. This task 
initializes and calibrates touch screen. At first 
run of the device the calibration constants are 
written in systems Data-Flash memory. This 
memory is divided in eight data banks as 64 
Kbytes each. Because the access to the device is 
password protected, next is checked the user’s 
Identification Number, up to five digits. 
Password protection is optional, if the user sets a 
0 password, this means no password is used. 
Also, the user can change the password at every 
time. Every new choused password is  saved in 
the flash memory. After this operation 
UserInterface task starts the rest of the tasks 
which are running in the system, like 
UpdateRemote, AlarmBeeper, UpdateAlarmList, 
and UpdateTraceList. Finally the configuration 



 223

of the first screen is read from Flash memory 
and is plotted on-screen. Inside of the endless 
loop part of the task, each thirty milliseconds 
UserInterface checks and processes screens 
touch buttons and controls touching. Once a 
button or a control is touched, and this screen 
element has a BACnet reference, a 
WritePropertyRequest is generated. According 
with this request a response from network server 
is generated, and the contents of the respected 
control is updated. Screen elements management 
like activation, deactivation, button press 
checking, and value updating is done by 
ScreenManager class methods. Each next screen 
configuration is read from Flash memory and  is 
constructed in RAM as a list of screen elements. 
Configuration of each screen can be done by 
Hardware Configuration tool, implemented 
using Borland C++ Builder 4.0. This tool 
generates a binary file which is downloaded 
directly into the device Flash memory. Every 
configuration consists from a list of screens. 
Every screen has a link to the next one and to 
the previous screen, except the first which has 
no a link to the previous screen and the last 
which has no link to the next one. Every screen 
is built from a list of interconnected elements, 
exactly as it is done in case of the screens. This 
list will be read in the RAM  each time when the 
current screen is changed by a press of 
ChangeScreen button. If the touch-screen is not 
activated, by a press of a button or a control for 
a period of time, then screen goes in “sleep” 
mode to assure power sawing. By default this 
interval of time is set to 60 seconds.  
 
Update Remote Task 
 
Next started task is UpdateRemote. The main 
goal of this task is continuous updating the 
contents of each current screen elements when 
the touch-screen is on. This is done every 25 
milliseconds when a  ReadPropertyRequest is 
generating in case of devices which are not 
supporting the COV mechanism. If was received 
an errorless response to this Request, then 
notifyValue method of UserInterface task 
updates current screen element. Periodically are 
updated only screen elements with BACnet 
reference. To reduce the network traffic, once 

the screen goes in “sleep” mode, this task is 
suspended until the touch-screen is not touched 
again. Also, UpdateScreenObjects method of 
UpdateRemote class updates each screen 
elements to unknown state before touch-screen 
goes to sleep. This is done because the state of 
each element starting from this moment of time 
is unknown. When the screen is touched the 
LCD wakes-up, and the task is resumed. Then 
via periodically generated 
ReadPropertyRequests elements from current 
screen are updated with new values, which were 
read from the local network. To assure a good 
work of the device, on power-up, this task 
generates Who-Is requests, as was mentioned 
above, to determine the device object identifier, 
the network address, or both, of other BACnet 
devices that share the same internetwork.     
 
Update Alarm List Task 
 
This is a complex task which provides alarming 
notifications when user specified data points go 
out of  selected range. The Alarm notification is 
generated according to the OUT_OF_RANGE 
algorithm which was mentioned above. There 
are two kind of alarm data points. In case of 
“Analogue Values”, like for example, outside 
temperature, an alarm point has two limits the 
Lower Limit (LL) and the High Limit (HL). The 
second type of alarm points are “Digital Values” 
or binary values with two states On and Off, for 
example a switch. For this kind of alarms the 
“Activation Condition” (AC) is defined for each 
alarm. In this case LL = HL = AC  In addition, 
each alarm point has a BACnet Object Identifier 
of the data point on BACnet to which it belongs 
and a small description of the alarm.   
Configuration of each alarm data point can be 
done by user via the same Hardware 
Configuration tool. All selected alarm items are 
organized as a list which is stored also in Flash 
memory. On power-up of the device this data 
are read from Flash memory and are constructed 
as a sorted Alarm Data Points List in systems 
RAM memory. This task never gets suspended 
or stopped. Checking of each Alarm data point 
is done through Change of value (COV) 
reporting. For this purpose the task provides a 
covHandler method. To assure COV reporting 



continuously the task generates periodically a 
SubscribeCOVRequest at the end of a 300 
second interval. If the device does not support 
this kind of subscription, then Polling 
mechanism is used. Should be mentioned that 
updating of Alarm List is implemented as a state 
machine with four states. This state machine 
allows the correct updating of all data points 
from the Alarm List. It uses Data Polling as well 
as the COV mechanism to acquire new values 
for Alarm Data points. On the same state 
machine algorithm is based data acquisition for 
Data Trends which were mentioned above.  
 
4.3.1. State Machine 
 
In the following will be shortly described the 
state machine used for updating data points. See 
the figure 3. 
At the power-up every data point is in s_known 
state. In this state a “Subscribe COV Request” 
and “Read Property Request” are generated. If 
SubscribeCOVRequest succeeded than a 
“Subscribe COV_Response” is generated and 
the state of the data point is changed to s_coved. 
The data point will stay in this state until 
Resubscribe Interval expires when a new 
“Subscribe COV Request” will be generated and 
so on. If “Subscribe COV Request” fails than it 
means that device does not support COV 
Reporting and Polling Data will be used instead. 
In this case after “Read Property Request” the 
state of the data point will be changed to 
s_covpending and after a Resubscribe interval in 
order to become “coved” a “Subscribe COV 
Request” will be sent and state of the data point 
will be changed to s_poll. 
This means that is time for a new Poll cycle and 
a new data sample will be acquired. This 
scenario is endless used as long as the touch-
screen is on-line and allows a correct updating 
of each data point. In addition, it allows to 
reduce network traffic, because in case of 
Polling Data every new sample is sampled when 
the period of time defined in state machine 
algorithm expires. 
Correct timing is done by using timer-counters, 
provided by the operating system, which reside 
inside of every Alarm List element. The same 

procedure of updating is also used for each data 
point from inside the trends list.    
When a new value is sampled its Present_Value 
is checked if it is inside of allowed limits, 
respectively if it is not equal to activation 
condition for binary values. If Present_Value is 
outside of the allowed limits the Alarm is raised. 
In this case the current screen is changed to the 
one were is placed the data point currently in 
alarm, and the Alarm Beeper is started. Also, the 
time, date and the description of the alarm is 
registered in a special list for keeping the alarm 
history. When is needed the user can visualize 

 
                 Figure 3. State Machine 
 
this history. The beeper will beep until the user 
will not touch the screen which represent in this 
case that alarm was acknowledged. Also, the 
beeper is started even in case when the touch-
screen is not activated (backlight is off).   
 
Buttons and graphical elements 
 
To draw on touch-screen all our graphical 
elements we used the C functions provided by 
GUI-Library [3]. The Simplify Technologies 
GUI-Library is a collection of programs and 
functions that can be used on drawing graphical 
elements on LCD’s and Touch displays.  
All graphical elements of the projects are 
implemented according to one pattern, 
ScreenRef, which is an abstract class. This class 

 224



 225

provides methods for activating, deactivating, 
cleaning up, processing presses of the screen 
element, and notification in case when the 
current contents of screen element is changed. 
The element is updated from network. Screen 
elements can be divided in two groups: those 
which requires press from the user, and without 
press. Elements from first group and from the 
second as well can be divided further in those 
with BACnet reference and without. Controls 
without touch usually are different kind of 
indicators, like show the inside room 
temperature, the state of  ventilation on or of and 
so on. As an example of a control which require 
a press is a button for switching on or of the 
light, etc. Also as graphical elements can be 
used bitmaps as backgrounds for each screen. As 
is well known that bitmap images are quite 
large, and require  a large space to be stored, a 
compression/decompression algorithm is used. 
This algorithm is the same one as algorithm used 
in ZIP files. The type of  bitmap images is 
black/white with a 640x480 pixels resolution.        
Next screen element, DataTrace, displays in 
real-time the evolution of room temperature, for 
example. For this purpose is used real-time data 
acquisition. To achieve a good accuracy two 
buffers are used . A small one for over sampling 
which is about 10 samples, and a large one, 
about 240 samples. When the over sampling 
buffer is full, an average value of all samples is 
calculated and the result is stored in second 
buffer. Then this buffer is displayed on-screen. 
The screen can be scrolled horizontally, so it 
shows all the time only last screen-width 
number of samples.    
 
Conclusions and future development 
 
This project was successfully implemented at 
Amann GmbH and for one year runs in the 
touch-screen mentioned above.   
In time it was enlarged because new futures 
were required.  
 
 
 
 
 

 One of this future, which is currently under 
development is to support Schedule Object type. 
One of the main problem of the project was the 
implementation of the decoding and then 
encoding of the data which coming from the 
network. In last case of the schedule this is quite 
a large amount of data, which is required from 
the network in real-time at the moment when the 
User begins to work with the schedule. Because 
the User can modify data after this it should be 
encoded and sent back to the network.   
Also soon should be added the support for the IP 
stack. It means a possibility to use the IP 
transport protocol. 
 
Acknowledgments 
 
This paper is a part of EWMS View Touch 
Screen project, which was developed at 
AMMAN GmbH, Oberhaching. We would like 
to thank to Mr. Claus Färber, the leader of the 
Development Department, for his help and 
support on working at the project.  
 
References 
 
 [1] ***, (2001), BACnet A Data 
Communication Protocol for Building 
Automation and Control Networks, ISSN 1041-
2336, American Society of Heating, 
Refrigerating and Air-Conditioning Engineers, 
INC,  pp. 1, 130, 135, 140, 148, 153, 159, 169, 
203, 207, 211, 216, 224, 265, 296 
[2] ***, (2002), BACnet EWMS-View Technical 
Description, AMANN GmbH, pp. 3-5, 7    
[3] ***, (2001), Simplify Technologies GUI-
Bibliotek, Programierung von 
Benutzeroberflächen für LDC- und Touch-
Displays in ANSI-C, Simplify Technologies 
GmbH 
[4] Ralph Moore, (1995), Simple Multitasking 
Executive, USER’S GUIDE, Micro Digital, Inc. 


