

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

PROTOCOL FOR COMMUNICATION BETWEEN TELEMETRY SYSTEM AND SENSORS
IN BOREHOLE MEASUREMENT INSTRUMENTS

Miloš SLANKAMENAC 1, Krešimir KNAPP 2, Miloš ŽIVANOV 1
1) University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia and Montenegro,
miloss@uns.ns.ac.yu
2) Hotwell Ges. m. b. H. Oedenburger Strasse 6, 7013 Klingenbach, Austria

Abstract. In this paper are presented an implementation and algorithm for communication protocol between
Telemetry system and sensors in borehole measurement instruments. This protocol is called SIPLOS
(Simultaneous Production Logging String) and it is used in Hotwell company as part of larger system for
borehole investigations. Protocol between Telemetry tool and Calliper-Fullbore Flowmeter tool is described in
details.
Keywords: protocol, Calliper-Fullbore Flowmeter tool, Telemetry tool, measurement, sensors .

Introduction

The SIPLOS (Simultaneous Production Logging
String) system consists of the Surface unit,
Telemetry tool and other tools in a logging
string. The Telemetry tool is the first and a
necessary tool in a string of production tools and
is connected on the top of the cablehead. It has
capability for logging of CCL, internal
temperature, external temperature, pressure,
fluid identifier and gamma ray. Also, there are
all necessary electronics (amplifiers, signal
conditioners, DC/DC converter and line driver)
inside the Telemetry tool. In the bottom of the
Telemetry tool there is a single connector with
line voltage where it is possible to connect other
tools in a string for simultaneous production
logging.

 235

Calliper-Fullbore Flowmeter tool (CFF)
combines a two axis (X-Y) calliper with a
fullbore flowmeter in a single device. X-Y
calliper is designed for downhole pipes diameter
measurements in two axes, X-Y. Measuring
range of pipe diameter is 41/2”-7”. The pipe
diameter that is sensed by the calliper arms is
magnetically transferred to a linear position
sensor. The position sensor is a part of an
electronics that converts linear position to the
output pulses.
Flowmeter performs bi-directional measurement
of the rotational speed and direction of a turbine
wheel (spinner or impeller), in relation to fluid

flow inside the well. The four-arm device is
designed to minimize the risk of jamming inside
pockets and other well fittings, and uniquely
allows the spinner to rotate whilst partially
closed. This enables a range of tubing/casing to
be logged using only a single cage assembly,
thereby minimizing inventory and capital cost.
Figure 1 depicts connection between Telemetry
Tool and CFF.

T
E
L
E
M
E
T
R
Y

T
O
O
L

C
F
F

T
O
O
L

Fig. 1. Connection between Telemetry Tool and

CFF

The goal of this project is to provide an accurate
and reliable communication between CFF tool
with Telemetry tool and the Surface unit in very
difficult conditions for measurement in

borehole. The main problem is high and variable
temperature (up to 180 ºC) causing significant
drop of frequency of oscillator in
microcontroller.

Transmission of data from CFF sensors to
CFF protocol device

The calliper arm position is measured by using a
transformer based position sensor. A metal rod
is moved within the transformer core that has
the effect of varying the coupling between
transformer’s primary and secondary. The
transformer primary is driven by a fixed
amplitude voltage pulse and the degree of
coupling is determined by measuring the
resultant signal in the transformer secondary.
Thus the amplitude of the detected secondary
signal is proportional to the arm position and
hence to the diameter of the well-bore. The
complete calliper system is controlled by a
microcontroller PIC 16F876. It controls timing
of the primary drive signals and uses an internal
A-D converter to sample the transformer
secondary signals. In operation, voltage pulses
are applied to the transformer primary. The
voltage across the transformer secondary will
rise sharply with the rising edge of the pulse and
then decay at a rate dependent on the inductance
of the transformer system. This inductance
depends on the position of the sensor rod within
the transformer core. If the decay waveform is
sampled at a precise time after the rising edge of
the primary pulse, the magnitude of the sampled
voltage will be linear proportional to the rod
position. This voltage is measured by the A-D
converter. The clock rate for microcontroller is
set at 16.384 MHz in order to achieve the
correct comms baud rate of 115.2 kbaud. The
processed data are transmitted by UART to the
CFF protocol device in standard RS232 format
with 1 start bit, 8 data bits and 1 stop bit (no
parity).
Figure 2 represents a CFF calliper block
diagram.

'X' CALLIPER
SENSOR

CURRENT
PULSE

'Y' CALLIPER
SENSOR

CURRENT
PULSE

SAMPLE
& HOLD

SAMPLE
& HOLD

A/D

A/D

µC
CALL_OUT

TIMING
CONTROL

Fig. 2. CFF calliper block diagram

The flowmeter uses an array of 5 fixed Hall
effect sensors operated by a rotating magnet
assembly containing two outward facing poles.
This results in 10 sensor operations per
revolution of the impeller. The sensors are
scanned at a high sample rate by a
microcontroller. The sequence of sensor
operations indicates the direction of rotation.
The rate of sensor operations is proportional to
the flow rate. The flow rate and direction signals
are input to the CFF protocol device as logic
voltage levels. The microcontroller is able to
detect the absence of a sensor signal due to
failure and can compensate it so that the
operator will see no change in flow rate on a log,
only a reduction in resolution. A fault indication
signal is available from the microcontroller to
aid in servicing and fault finding.
Figure 3 represents a CFF flowmeter block
diagram.

SPINNER

HALL-EFFECT
SENSOR

MAGNET

PULSE,SUM
AND

DIRECTION
DETECT

PULSE
OUTPUT
CONTROL

DIR_FLOW

FLOW

µC

Fig. 3. CFF flowmeter block diagram

 236

Data flow of SIPLOS protocol

The tool string sends a package of all sensors
data to the outside measurement system in each
200 ms. Block of 200ms is divided into two
parts:
• first part is a pause that lasts 16.667 ms

(50ms/3), and for that time there is no voltage
change on LINE.

• second part that lasts 183.333 ms (550ms/3)
during which data are sent (there are negative
pulses on LINE).

Data are sent in blocks of 8-bit words and there
are 20 words in each package. An 8-bit word
that lasts 9.167 ms (55ms/6) consists of a start
bit, 8 data bits and two stop bits. Each bit lasts
833.333 μs (5ms/6). It can be said that the whole
package of 200 ms that lasts 240 bits is divided
into two parts: a pause of 20 bits and 20 words
of data that last 220 bits. This can be seen in the
following figures:

PAUSE 1st
word

2nd
word

3rd

word
4th

word
5th

word
6th

word
7th

word 14th
word

15th
word

16th
word

17th
word

18th
word

19th
word

20th
word

20bits=50ms/3
16.667ms

220bits=(55ms/6)*20
183.333ms
200 ms

Fig. 4. One whole package of data

START
BIT

1st BIT
(LSB) 2nd BIT 3rd BIT 4th BIT 5th BIT 6th BIT 7th BIT 8th BIT

(MSB)
STOP 1

BIT
STOP 2

BIT
5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6 5ms/6

833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs 833.333μs
(5ms/6)*11=55ms/6

9.167 ms
Fig. 5. One data word

Start bit and data bits are represented on LINE
with negative pulses. Each of them has a SYNC
pulse that lasts 52.083 μs (1/16 of the whole bit,
exactly: 5ms/96) at the beginning of the bit. If
DATA BIT=1 (logical HIGH) there is also the
same type of negative pulse in the middle of the
bit. START BIT is presented the same as DATA

BIT=1. If DATA BIT=0 (logical LOW) there is
no negative pulse in the middle of the bit. 2
STOP BITS are presented as pause that lasts
2*833.333 μs and during that time there are no
pulses on LINE. The first data bit after START
BIT is a LSB, the eight bit is a MSB. This is
presented in the following figures.

SYNC "1"

52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs
5ms/12=416.667μs 5ms/12=416.667μs

5ms/6=833.333μs
Fig. 6. DATA BIT=1

SYNC "0"

52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs 52μs
5ms/12=416.667μs 5ms/12=416.667μs

5ms/6=833.333μs
Fig. 7. DATA BIT=0

 237

 238

Figure 8 shows signal on LINE when decade
number 43275 is sent as 16-bit binary data.
Decade number 43275 equals binary number

1010100100001011, but sending order on LINE
is reversed: 1101000010010101.

PAUSE 1st BYTE 2nd BYTE

 START
BIT 1 1 0 1 0 0 0 0 STOP

BIT STOP
BIT START

BIT 1 0 0 1 0 1 0 1 STOP
BIT STOP

BIT
LINE

Fig. 8. Sending decade number 43275

START BIT is presented as DATA BIT=1, and
2 STOP BITS as a pause that lasts 2 bits, so it is
possible to convert pulses from LINE into
standard RS232 signal with BAUD RATE=1200
(1 START BIT + 8 DATA BIT + 2 STOP BIT).
It can be seen that after a long pause that lasts
16.667ms there is a START BIT of the first
word (SYNC pulse on LINE). but because the
last word of previous package finished with two
STOP BITS there is no voltage change on LINE
for the time: 16.667 ms (pause) + 1.667 ms
(2*STOP BIT) + 7(or 15)*(833.333μs/16) =
18.722 ms (or 19.114 ms).The last number in
this expression depends on the value of the last
data bit of previous block of data (for "0" is
longer then for "1").
All time periods are generated from the same
clock oscillator in the tool, so any change in
frequency of system clock generates linear
changes in all time periods. For example, if
frequency of clock is lower for 10% than
duration of pulses is 57.2 μs (52+5.2) μs, a
whole package lasts 220 ms etc. Surface
electronics and software make necessary
corrections in order to get correct data.

Data flow in Telemetry tool

The Telemetry Tool takes for all its sensors ten
8-bit words so for running other tools there are
still free ten 8-bit words. After long pause the
first 8-bit word is reserved for internal
temperature data. The second and third 8-bit
words are reserved for CCL. The fourth and fifth
words are reserved for external temperature
data. The sixth and seventh words are reserved
for pressure data. The eighth and ninth words
are reserved for fluid identifier data. The tenth
word is reserved for gamma ray data. All this is
presented in the following figure.
The Telemetry Tool sends:
• all data from its six sensors to LINE
• START BITS for all twenty words to LINE
• SYNC PULSES of all DATA BITS for all

twenty words to LINE

If a sensor is not present in string or if there is a
failure in its position then all data would be
zeros.

1st word 2nd word 3rd word 4th word 5th word 6th word 7th word 8th word

LSB**
Select 15-bit CCL/T-int 16-bit T-ext 16-bit pressure 8-bit FI 8-bit GR

Fig. 9. One Whole Package of Data from the Telemetry Tool

Data flow in CFF tool

Figure 10 depicts block diagram of hardware
realization of CFF tool part, for communication
between sensors and surface system, that is
called CFF protocol device. In this project are
chosen PIC 16F876 as μC1 and PIC 14000 as
μC2, because tested on higher temperature they
worked very reliably [1].

LINE is bi-directional signal from Telemetry
tool that consists of a line voltage (70V) and
negative pulses (START, STOP, SYNC and
DATA bits). Line voltage is transmitted by
surface unit to all tools. Telemetry tool transmits
START, STOP and SYNC pulses to all other
tools. DATA bits are transmitted by all
measuring tools to surface unit in
determined

µC1 µC2

8

DATA

LINE_IN

HANDSHAKING

LINE DRIVER

LINE_OUT

LINE

FLOW

DIR_FLOW

CALL_OUT

ADDR1
ADDR2

3

CONTROL_OUT

Fig. 10. Block diagram of CFF protocol device

interval of time. LINE DRIVER is a device that
converts line voltage into CMOS voltage level,
discriminates pulses from LINE signal and
makes LINE_IN signal. LINE_IN signal
contains START, STOP and SYNC pulses that
determine timing for sending DATA from CFF
to surface unit. LINE DRIVER receives
LINE_OUT signal from μC2 that is converted
into corresponding pulses, positioned in the
middle of a data-bit frame, whose duration is
50μs ± 10% and sends it to surface unit.
CONTROL_OUT are signals for verification
purpose which contain an error signal and two
signals for synchronization verification. μC1
receives signals CALL_OUT, DIR_FLOW and
FLOW from sensors. CALL_OUT contains
information about pipe diameter from calliper in
RS232 protocol form [2]. DIR_FLOW and
FLOW contain information about flowmeter
impeller direction and frequency given in a
pulse form. Algorithms for programming both
microcontrollers have to work reliably for both
high and variable temperature conditions.
Oscillator’s frequency (internal or RC) can be
decreased even for 30%. Fig. 11 shows
algorithm for software in μC1. There is one main
part, after the initialization and catching
sinhronization pause, which is always repeated.
RECEIVING DATA means receiving two bytes
data from CALL_OUT signal, whilst counting
of pulses from FLOW signal is performed
continually during the entire algorithm. When
impeller is changed a direction, a new direction
will be indicated and counting pulses in
previous direction will be summed. When
request for sending DATA is received from μC2,
all data is summed and transferred to the second
microcontroller every 200 ms.

NA<-NA+NAnew NBnew<-0
OR

NB<-NB+NBnew NAnew<-0

START

INITIALIZATION

NO

YES

RECEIVING
DATA

CHANGE
DIRECTION
OF IMPELLER

?

DIR<-!DIR

REQUEST FOR
DATA FROM µC2

?

YES

NO

NA<-NA+NAnew
NB<-NB+NBnew

CALX<-CALX+CALXnew
CALY<-CALY+CALYnew

SENDING
DATA TO µC2

YES

END

NO

SINHR.
PAUSE
?

Fig. 11. Algorithm for μC1

Figure 12 shows algorithm for software in μC2.
After initialization program waits a
sinhronization pause that last 16,667 ms.
Because of varying internal frequency of μC2
microcontroller clock, it’s not reliable to
calculate time intervals based on it. Calculating
of time intervals has to be performed based on
measuring timings on LINE_IN signal. In
INITIAL MODE measuring timings, counting
number of pulse and calculating initial
parameters are performed during 200 ms. Initial
parameters involve time intervals when START,
STOP and DATA bits appeared on LINE. If
there are too many or few pulses or their
duration isn’t proper, the microcontroller μC2 is
restarted by Watchdog Timer. In the FIRST
MODE the measuring duration of 12 bytes and
calculating parameters without modulation
(sending DATA according to SIPLOS protocol)
is performed. In the NORMAL MODE the
address where data should be transmitted via
LINE_OUT signal is determined by position of
jumpers ADDR1 and ADDR2 (Fig. 10). There
are two possibilities where data can be

 239

modulated in a package of data: to addresses 11
to 18 or 13 to 20. After that μC2 requests and
receives data from μC1. Modulation is
performed according to SIPLOS protocol based
on measured time intervals.

START

INITIALIZATION

NO

YES

INITIAL MODE:
MEASURING TIMING AND
COUNTING NUMBER OF

PULSES

END CYCLES
OF 20 BYTES

?

END

SINHR.
PAUSE

?

NO

YES

SINHR.
PAUSE

?

CALCULATING INITIAL
PARAMETERS

FAULT
?

START

FIRST MODE:
MEASURING TIMING

OF 12 BYTES

NORMAL MODE:
MEASURING TIMING OF
12 BYTES + MODULATION

RESET

NO

YES

FAULT
?

START

RESETNO

YES

AVERAGING
MEASURED 12
BYTES AND
CALCULATING
PARAMETERS

REQUEST AND
RECEIVING DATA

FROM µC1

NOSINHR.
PAUSE
?

YES

NO

Fig. 12. Algorithm for μC2

Simulation results

Simulations of work of microcontrollers PIC
16F876 and PIC 14000 were performed
successively by MPLAB IDE [3]. Simulator
Stimulus options were used to simulate input
signals. Both of microcontrollers were simulated
separately. DIR_FLOW, ADDR1, ADDR2 and
HANDSHAKING signals were simulated by
Asynchronous Stimulus option where it is
possible to change state of particular pin during
the simulation. CALL_OUT and LINE_IN
signals were simulated by Pin Stimulus option.
CALL_OUT was simulated by setting the
duration of sequence ‘0’ and ‘1’ in RS232 form
for 115,2 kbaud rate protocol. LINE_IN was
simulated by setting the duration of sequence ‘0’
and ‘1’ in SIPLOS protocol form. FLOW signal
was simulated by Clock Stimulus option, setting
the constant period of sequences ‘0’ and ‘1’.

Output signals, SFR registers and memory
content were observed during the simulation
step by step [3]. All of input signals were
simulated for ideal and the worst temperature
conditions [1] and expected output signals were
obtained.

Experimental results

CFF protocol device was tested by using
appropriate input signals from serial and parallel
port of PC whilst output signals were observed
by oscilloscope. These input and output signals
were similar to those obtained by software
simulation. This project hasn’t been finished yet.
When some mechanic parts of CFF tool are
finished, the whole string of tools should be
tested in borehole conditions.

Conclusion

SIPLOS protocol is used in digital system for
borehole investigations. Digital systems measure
more parameters at the same time than analogue
systems. Because of this advantage, process of
logging is much shorter and cheaper. Digital
logging string is smaller, reliable and more
effective than analogue logging string. Based on
software simulation and experimental results we
can conclude that CFF protocol device satisfies
SIPLOS protocol and works properly.

References

[1] Bilas, V., Vasić, D., Ambruš D. (2003)
SIPLOS Flowmeter – technical documentation
Hotwell Ges.m.b.H, Austria
[2] Matić, N. (2002) PIC mikrokontroleri
Beograd: MikroElektronika
[3] Microchip Technology Inc. (2001) MPLAB
IDE User’s Guide

Acknowledgement

Many thanks to Hotwell Ges. m. b. H. Austria
for supporting this work.

 240

	Fig. 1. Connection between Telemetry Tool and CFF
	 Data flow of SIPLOS protocol
	Data flow in Telemetry tool

	Fig. 9. One Whole Package of Data from the Telemetry Tool
	Data flow in CFF tool

	Fig. 11. Algorithm for μC1

