A5

78 International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
Suceava Romania May 27-29, 2004

OBTAINING STATE EQUATIONS FOR NONDEGENERATE LECS USING NA-VCSS

G. E. CHATZARAKIS !, P. B. MALATESTAS?, P. E. SINIOROS ?
) Department of Electrical Engineering, School of Pedagogical and Technological Education (ASPETE),

Athens, Greece,
geaxatz@otenet.gr, gea.xatz@aspete.gr

%) Department of Electrical Technology, Technological Educational Institute of Piraeus (TEI), Greece

Abstract. This paper presents a systematic method for obtaining the state equations for Nondegenerate Linear
Electric Circuits (NDLECs), based on Nodal Analysis with Virtual Current Sources (NA-VCSs). Obtaining the
state equations using NA-VCS is extremely systematic and straightforward since most of the work is done by
inspection and the required matrix manipulations are easily implemented. To apply the proposed method, all
circuit energy-storage elements are replaced by ideal independent sources, while the nonconvertible voltage
sources are replaced by virtual current sources. As a result, all NDLECs (planar or nonplanar) are treated in a
similar way, regardless of the circuit complexity. Since the proposed method is well algorithmized, it can be

used in most modern simulators of analog networks.
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l. Introduction

State equations describe in the time domain
many types of systems such as linear and
nonlinear systems, time invariable and time
variable systems, etc.
If n state variables x,(t), 1=1,2,...,n
required to completely describe the dynamic
behavior of a linear system having m inputs

u;(t), 1=1,2,...,m, the state equations compose
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a linear system of n first order differential
equations and are written in matrix form as [1]:

dx (1)

5 A-x(t)+B-u(t)

where A is the system matrix of order nxn, B
the input matrix of order nxm, X(t) the state
vector of order nx1, and u(t) the input vector
of order mx1.

Linear electric circuits can also be described by
using the state equations formulation. The
necessary requirement for this description to be
valid is that the circuit should be nondegenerate
[2]-[4]. That is, it must not include loops
consisting only of capacitances and possibly
ideal voltage sources; neither must it contain
nodes consisting only of inductances and
possibly ideal current sources.
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Therefore, in a Nondegenerate Linear Electric
Circuit (NDLEC), the state variables are always
the capacitor voltages (charges) and/or the
inductor currents (magnetic fluxes). Thus, the
number of the state variables, and,
consequently, the number of the differential
equations is equal to the total number of
inductors and capacitors existing in the circuit.

The advantages of using state equations
representation for a circuit are well known [5]-
[8] and many relevant methods have been
developed based on different approaches [3] -
[71, [91 - [15].

This paper presents a systematic method for
obtaining state equations using Nodal Analysis
with Virtual Current Sources (NA-VCS) that
replace the nonconvertible voltage sources,
independent or dependent [16]. As a result any
planar or non-planar NDLEC can be treated in a
similar way, regardless of the circuit
complexity. This method eliminates the work
needed to obtain the state equations, since most
of the required matrices are found by inspection
and only towards the last steps matrix
manipulations are needed. However, this is
easily done because of the existence of
calculators capable of handling and inverting



large matrices and the availability of
inexpensive math programs for personal
computers.

I1. Method Description

The building elements of a NDLEC are given in
Table 1.

To find the state equations by NA-VCS all
inductances are replaced by Independent
Current Sources (ICS) being state variables
Xy, X, , and all capacitances by Independent

Voltage Sources (IVS) being state variables

Xy i1s e Xy -
Table 1. Building elements of a NDLEC
SOURCES

Kind No. Notation
ICS I (ics)y, ..., (ic8),
DCS S (des),, ..., (des)
NCIVS I, (ncivs)y, ..., (ncivs),
NCDVS S, (ncdvs), ..., (nedvs)
ENERGY - STORAGE ELEMENTS
Inductances n, L,.., Lnl
Capacitances n, Cess an
OTHER ELEMENTS
Resistances

OTHER DETAILS
e 1 =1 +T1,: Total number of indepen-
dent sources (inputs)
e S=s5, +8,: Total number of depen-dent

sources

e m =r +s: Total number of sources
n =n, +n,: Total number of state va-
riables

e k: Number of nodes (besides the
reference node)

Next, in order to apply Nodal Analysis, where
the necessary condition is that all sources must
be current sources, the concept of the Virtual
Current Source (VCS) is introduced. That is, in
the place of either Nonconvertible Independent
Voltage Sources (NCIVS) or Nonconvertible
Dependent Voltage Sources (NCDVS), VCSs
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are considered with current values equal to the
currents through these voltage sources.

The NCIVSs, the NCDVSs and the voltage
sources replacing the capacitances, are then
replaced by the VCSs with the notations

(ncivs);, i=1,...,1,, (ncdvs);, i=1,...,s,and

X;, i=n; +1,...,n, respectively.
Next, by inspection, nodal analysis gives:

. 1
Gk Vit = liod = Wig(nim) 'S, (2)

(n+m)x1
where G, is the conductance matrix andVv,,

the node voltage vector. Matrix W, and

x(n+m)

vector S

(nsmpa e given in Appendix A.
However, all the voltage sources replaced by
VCSs can be expressed as a linear combination

of the node voltages through the matrix equation

Fny a5 )0k * Vid = Zn,4n, 45, )x(nm) 'Sgrzl-)%—m)xl 3)
where each row of the F matrix describes one of
the voltage sources as a function of the node
voltages. Therefore, the F matrix elements are -
I, 1 or 0. Matrix Z and vector

SR

(n+m)x1

(n,+1,+s, )x(n+m)
are given in Appendix A.

Combining equations (2) and (3), a new matrix
equation comes up, where the first n, +1, +s,
equations are the equations given by (3) and the
rest k—(n, +1, +s,) equations are obtained
from (2). These equations are
following one of the next two cases:
e case a) unchanged, if all the VCS
coefficients in matrix W are zero, or
e case b) after appropriate additions or
subtractions of the equations of (2) aiming
to the elimination of all the VCSs, if the
conditions of case a) are not valid.
Thus, an equivalent set of equations of the
following form is obtained

obtained

@ 0

Dkxk : Vk><1 = Tkx(n+1n) 'S(n+m)><1

where D,, and T, are matrices given in

x(n+m)
Appendix A.
However, since the dependent sources are
expressed as functions of the node voltages, one
may write

SIRED SR (5)

sxl —

where X_, is a matrix whose elements describe

the values of the dependent sources as functions



of the node voltages. Vector SU) is given in

Appendix A
Based on (5), the matrix equation (4) is
rearranged as follows:

4

DDkxk Vi = TTkx(n+r) : Sgni—r)xl (6)

Vector Sg)ﬂ)xl and matrices DD, , and
TT,.n.r) are given in Appendix A.

The voltages across the inductances (passive
sign convention) are expressed as linear
combinations of the node voltages of the circuit
by inspection. Thus,

L L0, )=PO, vy, (7)

i n,x1

i1,..n, dt

where each row of the P matrix describes the

voltages across the relevant inductance as a
function of the node voltages of the whole

circuit. Therefore, the P" matrix elements are -
1, 10r0,and x = [X1 anr is that part

of the state vector concerning the inductances.
Based on (6), (7) is written as

d (o ) ) 1 4
L; 'd_(xn,xl = Pnlxk DD TTinin) *Stnrpa =
i=1,..n t
—_0Om (4) _
- Qn]x(n+r) : S(n+r)><1 -
MO - matrix } N@ - matrix
I
qn qQin ! Qiwsny 7 Qi+n
— : : : | : : : 4) _
o R S S TNV
qnll qn]n } qnl(nﬂ) qnl(n+r)
— M @
- Mnlxn ’ Xn><1 + anxr ) urxl (8)
Thus,
d 1
7(XE‘11)><1): : Mill)xn ! anl +
TR T
i=l,..n;
1 N(l) — A(l) B(l) 9
L : nyxr 'urxl - n;xn .an] + nyxr .urxl ( )
i=1,..lAnl
where
u= [(ics)1 (ics), 1 (ncivs), (ncivs)rz]T(lo)
X=X o Xy 1 X xn]r (11)

are the input and the state vector, respectively.

Finally, with the node voltages already known
as functions of the state variables and the inputs,
the currents through the capacitances (passive
sign convention), which are —x;, i=n,+1,..n
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are calculated from the proper set of equations

contained in (2). These equations are obtained

following one of the next two cases:

e case 1) unchanged, if the coefficients
Witnin +s,4j) j=l..1, and Wilnsn+s+5,4)) 2 J=1,..s,

for 1 =const. are all zero and only one of the
coefficients w, j=1,..n, for the same i

i(n;+j) >
is different from zero
e case 1i) after appropriate additions or
subtractions of the equations of (2) aiming to
the elimination of all the VCSs except one of

the x;, i=n,+1,..,n if the conditions of
case 1) are not valid.

This procedure leads to a matrix equation
similar to (9), that is:

i(xm ): 1 M x

dt n,x1 Ci n,xn o T
i=(n;+1),..n
N = A B, (1)
i=(n,+1),..n
where x(z):[XHIJr1 Xp 12 xn]r is that

part of the state vector concerning the
capacitances. Finally, the state equations of the
NDLEC result by putting together (9) and (12),
that is

%(anl): Anxn “Xoxt T anr Uy (13)

where

X AD BY

anl = 7(112&)(7 An n = - B =| 5
x 2) nxr (2)

anxl An2><n anxr

» Example

As an example, we proceed to determine the
state equations for the NDLEC shown in Fig. 1.
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Fig. 1. NDLEC for the example

Applying NA-VCS, we replace the inductances

L,L,,L; and the -capacitance C, by
independent sources

i,1,,1; and v,, re-

spectively. Then, we replace the nonconvertible
voltage sources v, ,v, ,3v, by virtual current
sources ij,1,,i;. The source that replaced the
capacitance is further replaced by a virtual
current source i,. Next, defining the reference

node and labelling the rest nodes a, b, ¢, d, e, f,
the equivalent circuit takes the form shown in
Fig. 2.

i
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i; o |he
) ()
) A A
v 10
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Fig.2. Equivalent circuit for the NDLEC of
Fig. 1

Since

n,=3,n,=1,r=2,1=2,s8=2,s,=1,k=6
and
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the following matrices are determined by
inspection

(2 -1 0 0 -1 0]
-1 2 -1 0 0
0 -1 1 0 0 0
G=
0 0 0 1 -10
-1 0 -1 2 0
0 0 0 0 1]
[0 11/0,0 —-1;,0 0.0 —1;-1]
o 0 0ololo 111 0l0o o0lo
wol 01 —1%—1%0 01—1 —1%0 oio
0—10;0;0 0;0 0;00;1
-1 0 01011 010 010 010
(0 0 011 =1 010 1il 00|
k%
*
sk k
0 0 -1 001
F:o 0 0 001
-10 0 00 0
-10 0 100
00 0/1/0 0;0 0(0 00
- - | e r—t-————=1"-
2:0003030 030 3 030
00 0!0/0 00 0!0 1!0
00 01010 010 010 011

Next, the matrices D and T involved in (4) are

obtained by inspection as follows:

e The first four rows of D and T are the rows
of F and Z respectively, and

e The last two rows of D and T are the 2" and
5™ rows of G and W respectively, because
the VCS coefficients in matrix W are zero
(Sec. II, case a), as indicated by ** sign in
matrix W.



[0 0 -1 0 0 1

000 0 01

5|10 0 0 0

10 100

12 -10 00

-1 0 0 -1 2 0]
[0 0 0{1/0 0/0 0/0 0/0]
0 0010/0 0001 000
0 0 01010 010 010 110
"0 0000010 010 011
0 0 03030 131 030 030
10 0101 010 0/0 0/0

Next, the matrices Xand P®"involved in (5)
and (7) respectively, are obtained by inspection
o 0 0 2 -2 0

X=[0 5 -50 0 0
30 0 0 3 0
000 010
PV=0 0 -1 1 0 0
10 1 000
Matrices DD and TT are obtained.
00 -1 0 0 1
0 0 0 0 1
oo_| 10 0 0 0
20 0 1 -30
-1 2 -1 =2 2 0
-1 0 0 -1 2 0
[0 0 0/1/0 0/0 0]
0 0010001 0
0 0 01010 010 1
TT= Lo 1
0 001010 0/00
0 003030 1300
-1 0 0/0i1 0/0 O

Next, by simp_le matrix manipulatio_ns (multi-
plication and inversion) the following matrices,
associated with eq. (8), (9), come up

M® ND

|
1 00 0%—1 0 0 -1
Q=300 11-3 0 -1 —1
000 110 0 1 1
4 00 0 -4 0 0 -4
AD =175 0 0 25 BV={-75 0 -25 -25
0 00 -2 0 0 2 2
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Since the coefficients w,,,w;,,,w,,, are all
zero and only the coefficient w,, is different
from zero (Sec. 11, case 1), as indicated by * sign
in the W matrix of the example, the matrices
A B®involved in (12) are derived from the
3 row of G and W:
AP =04 -2 2 4] BP=[-24 4 -4 -4]

Finally, applying (13), the state equations of the

given NDLEC are:
i 4 0 0 0774
dli|_[75 0 0 25|10 |
dt| i, 0 0 0 -2]i
v, 24 -2 2 4] |v,]
-4 0 0 -4 [, ]
. -75 0 =25 =25 IR
0 0 2 2 ||V,
-24 4 -4 -4
I11. Conclusions

A systematic method for obtaining the state
equations for NDLECs is presented. This
method (NA-VCS) makes it possible to treat
any NDLEC (planar or nonplanar) in a similar
straightforward way, regardless of the circuit
complexity. The NA-VCS minimizes signi-
ficantly the work needed to obtain the state
equations, since most of the matrices involved
are found by inspection, based on the use of
virtual ~ current sources. Some  matrix
manipulations required are easily implemented
using calculators that can treat large matrices
and the availability of economically reasonable
math programs for personal computers. Finally,
the proposed method can be used in most
modern simulators of analog networks, because
it is well algorithmized.
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Appendix

SO =[x, x,

1

r s | P | P | P | s | s T
Wy, =10 Wi, +j) ,j=L..n, I Witn+j) ;=L Wit +j) sJ=1.8 D Winar +5,+)) sj=L.x, Wi s, 1, +) ,j=1..s;

P — I i — | i — | i | ;= | i —
sz 7J_1""n1 }WZ(nﬁj) ,_)71,...112 } W2(n+j) ,_]71,...1‘1 } WZ(n+r,+j) :.]717"'31 } WZ(n+r‘+s,+j) 5.171""1‘2 } W2(n+r‘+s,+r:+j) 7J71""SZ

. . . | . . .
| Wig J= Loty 1Wyn 4y 3= 1oy 1 Wiy s 3= Loy 1 Wi 4y s = 1o S0t Wininas oy 2 J = hooTy | Wi i 44y 2 J = eS|

i Xp 41 Xy i (ics); -+ (ics), i (des), --+(des), i (ncivs); ---(ncivs), i (ncdvs)f-~-(ncdvs);]T

s =[X1"'Xn, | Xp 410Xy | (ies) o+(ics), 1 (des),---(des)y 1 (ncivs);---(ncivs), | (ncdvs)ln-(ncdvs)sl]r

s® = [(des),

4 .
S()z[x1 e X }xnlﬂ xn}(lcs)1

n,
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(des), 1 (nedvs),

(ncdvs)Sz ]r

(ics), | (ncivs), (ncivs),, ]T



n, - colums : n, - colums : 1, - colums : s, - colums : r, - colums : s, - colums
0 oi 0 oio oio 0500 oioo 0
0 010 1 010 010 010 0 010 0 0
n, rowsy . ::;; :; ::: Z:II :::1 .
: SR K E BRI SR :
0 010 0 110 010 010 0 010 0 0
""" 0 - 010 0 - 010 - 0]0 - 011 0 -~ 010 0 - 0
| | | | |
~ 0 00 0 0!0 0!0 00 1 0/0 0 0
= rrowsy . Sl e e Sl P .
: S s s P i :
0 010 O 010 010 010 O 1170 0 0
o 010 0 010 010 010 0 0/1 0 0
| | | | |
0 00 0 0'0 0'!0 00 0 010 1 0
WYL S A AR SRR :
: S s s S P
0 010 0 010 010 010 0 010 0 1
f1 f1 £y
f5) fy £y
n2+r2+52 TOWS . . .
D=
__________________fS“_zi&i%ll__f(l‘z_trz_tsz)_z______f(_“_ztrzts_z)_k_
from the G matrix, either as they are
k—(n, +1, +s,) rows . X
or by row additions or subtractions

Zy Zp Z(n+m)
Z) Zy Z)(n+m)
n2+r2 +S2 Trows . . .
T=
Z(112+r2 +s,)1 Z(112+r2 +5,)2 Z(nz-%—r2+sz)(n+m)
from the W matrix, either as they are
k—(n, +r1, +s,) rows .. .
or by row additions or subtractions

S Sy
dy - ztl(n+r,+j)le - Ztl(n+r1+s1+r2+j)x(sl+j)1

j=l =1
DD =
dy _Ztk(n+rl+j)le - Ztk(n+r,+s,+r2+j)x(sl+j)1
=l J=1
I I
t tlnl :tl(n,+1) tn ! t1(n+1)
TT= t%l '[2.11l §t2(11:1+1) toy §t2(1'1+1)
l l
Lt ten, 1 Ti(n,+1) LS S
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S Sy
dy - Ztl(n+r1+j)xjk - ztl(n+r,+s,+r2+j)x(sl+j)k
j:] ]:1

S Sy
e = D tuan Xk~ 2 b s ) X 1)k

= = ]
|
t1(n+r,) : t1(n+r,+s,+1) t1(n+r,+s1+r2)
t2(n+r]) i t2(n+r] +s,+1) t2(r1+rl-¢—sl-¢—r2)
. | . .
l
tk(n+r1) : tk(n+r1+s1+1) tk(n-*—r]+s]+r2)
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