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Abstract. This paper presents a systematic method for obtaining the state equations for Nondegenerate Linear 
Electric Circuits (NDLECs), based on Nodal Analysis with Virtual Current Sources (NA-VCSs). Obtaining the 
state equations using NA-VCS is extremely systematic and straightforward since most of the work is done by 
inspection and the required matrix manipulations are easily implemented. To apply the proposed method, all 
circuit energy-storage elements are replaced by ideal independent sources, while the nonconvertible voltage 
sources are replaced by virtual current sources. As a result, all NDLECs (planar or nonplanar) are treated in a 
similar way, regardless of the circuit complexity. Since the proposed method is well algorithmized, it can be 
used in most modern simulators of analog networks. 
Keywords: inspection, nodal analysis, nondegene-rate linear electric circuit, state equations, virtual current 
source. 
  
 
I. Introduction 
 
State equations describe in the time domain 
many types of systems such as linear and 
nonlinear systems, time invariable and time 
variable systems, etc. 
If n state variables  are 
required to completely describe the dynamic 
behavior of a linear system having m inputs 

, the state equations compose 
a linear system of n first order differential 
equations and are written in matrix form as [1]: 

n1,2,...,i  , (t)xi =

m1,2,...,i  , (t)ui =

)t()t(
dt
d uBxAx

⋅+⋅=                    (1) 

where A is the system matrix of order nn × , B 
the input matrix of order mn × , x(t) the state 
vector of order , and u(t) the input vector 
of order 

1n ×
1m × .  

Linear electric circuits can also be described by 
using the state equations formulation. The 
necessary requirement for this description to be 
valid is that the circuit should be nondegenerate 
[2]-[4]. That is, it must not include loops 
consisting only of capacitances and possibly 
ideal voltage sources; neither must it contain 
nodes consisting only of inductances and 
possibly ideal current sources. 

Therefore, in a Nondegenerate Linear Electric 
Circuit (NDLEC), the state variables are always 
the capacitor voltages (charges) and/or the 
inductor currents (magnetic fluxes). Thus, the 
number of the state variables, and, 
consequently, the number of the differential 
equations is equal to the total number of 
inductors and capacitors existing in the circuit. 
The advantages of using state equations 
representation for a circuit are well known [5]-
[8] and many relevant methods have been 
developed based on different approaches [3] - 
[7], [9] - [15]. 
This paper presents a systematic method for 
obtaining state equations using Nodal Analysis 
with Virtual Current Sources (NA-VCS) that 
replace the nonconvertible voltage sources, 
independent or dependent [16]. As a result any 
planar or non-planar NDLEC can be treated in a 
similar way, regardless of the circuit 
complexity. This method eliminates the work 
needed to obtain the state equations, since most 
of the required matrices are found by inspection 
and only towards the last steps matrix 
manipulations are needed. However, this is 
easily done because of the existence of 
calculators capable of handling and inverting 
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large matrices and the availability of 
inexpensive math programs for personal 
computers. 
 
II. Method Description 
 
The building elements of a ΝDLEC are given in 
Table 1.  
To find the state equations by NA-VCS all 
inductances are replaced by Independent 
Current Sources (ICS) being state variables 

, and all capacitances by Independent 
Voltage Sources (IVS) being state variables 

. 

1n1 x ..., ,x

n1n x ..., ,x
1+

 

Table 1. Building elements of a NDLEC 
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SOURCES 

Kind No. Notation 

ICS 1r  
1r1 )ics( ..., ,)ics(  

DCS 1s  
1s1 )dcs( ..., ,)dcs(  

NCIVS 2r  
2r1 )ncivs( ..., ,)ncivs(  

NCDVS 2s  
2s1 )ncdvs( ..., ,)ncdvs(  

ENERGY – STORAGE ELEMENTS 
Inductances 1n  

1n1 L ..., ,L  

Capacitances 2n  
2n1 C ..., ,C  

OTHER ELEMENTS 
Resistances 

OTHER DETAILS 
• : Total number of indepen-

dent sources (inputs) 
21 rrr +=

• : Total number of depen-dent  
sources 

21 sss +=

• srm += : Total number of sources 
: Total number of state va-

riables 
21 nnn +=

• : Number of nodes (besides the 
reference node) 
k

 

Next, in order to apply Nodal Analysis, where 
the necessary condition is that all sources must 
be current sources, the concept of the Virtual 
Current Source (VCS) is introduced. That is, in 
the place of either Nonconvertible Independent 
Voltage Sources (NCIVS) or Nonconvertible 
Dependent Voltage Sources (NCDVS), VCSs 

are considered with current values equal to the 
currents through these voltage sources. 
The NCIVSs, the NCDVSs and the voltage 
sources replacing the capacitances, are then 
replaced by the VCSs with the notations 

, and 
, respectively. 
2i r, ... 1,i  ,)ncivs( =∗

2i s, ... 1,i  ,)ncdvs( =∗

n, ... 1,ni  ,x 1i +=∗

Next, by inspection, nodal analysis gives: 
)1(

1)mn()mn(k1k1kkk ×++×××× ⋅==⋅ SWivG          (2) 
where is the conductance matrix and  
the node voltage vector. Matrix  and 

vector  are given in Appendix A. 

kk×G 1k×v
)mn(k +×W

)1(
1)mn( ×+S

However, all the voltage sources replaced by 
VCSs can be expressed as a linear combination 
of the node voltages through the matrix equation 

)2(
1)mn()mn()srn(1kk)srn( 222222 ×++×++××++ ⋅=⋅ SZvF     (3) 

where each row of the F matrix describes one of 
the voltage sources as a function of the node 
voltages. Therefore, the F matrix elements are -
1, 1 or 0. Matrix  and vector 

 are given in Appendix A. 
)mn()srn( 222 +×++Z

)2(
1)mn( ×+S

Combining equations (2) and (3), a new matrix 
equation comes up, where the first 222 srn ++  
equations are the equations given by (3) and the 
rest )srn(k 222 ++−  equations are obtained 
from (2). These equations are obtained 
following one of the next two cases: 
• case a) unchanged, if all the VCS 

coefficients in matrix W are zero, or 
• case b) after appropriate additions or 

subtractions of the equations of (2) aiming 
to the elimination of all the VCSs, if the 
conditions of case a) are not valid. 

Thus, an equivalent set of equations of the 
following form is obtained 

)2(
1)mn()mn(k1kkk ×++××× ⋅=⋅ STvD            (4) 

where  and  are matrices given in 
Appendix A. 

kk×D )mn(k +×T

However, since the dependent sources are 
expressed as functions of the node voltages, one 
may write 

1kks
)3(
1s ××× ⋅= vXS                       (5) 

where is a matrix whose elements describe 
the values of the dependent sources as functions 

ks×X



of the node voltages. Vector  is given in 
Appendix A 

)3(
1s×S

Based on (5), the matrix equation (4) is 
rearranged as follows: 

)4(
1)rn()rn(k1kkk ×++××× ⋅=⋅ STTvDD           (6) 

Vector  and matrices  and 
 are given in Appendix A. 

)4(
1)rn( ×+S kk×DD

)rn(k +×TT
 The voltages across the inductances (passive 
sign convention) are expressed as linear 
combinations of the node voltages of the circuit 
by inspection. Thus, 

( ) 1k
)1(
kn

)1(
1n

n,...1i
i 11

1
dt
dL ×××

=
⋅=⋅ vPx                (7) 

where each row of the  matrix describes the 
voltages across the relevant inductance as a 
function of the node voltages of the whole 
circuit. Therefore, the matrix elements are -
1, 1 or 0, and  is that part 
of the state vector concerning the inductances. 

)1(P

)1(P
[ T

n1
)1(

1
xx K=x
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]

Based on (6), (7) is written as 

( ) =⋅⋅⋅=⋅ ×++×
−
×××

=

)4(
1)rn()rn(k

1
kk

)1(
kn

)1(
1n

n,...1i
i 11

1
dt
dL STTDDPx  

=⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=⋅=

×+

++

++

×++×

)4(
1)rn(

matrix - 

r)(nn1)(nn

r)1(n1)1(n

matrix - 

nn1n

1n11

)4(
1)rn(

)1(
)rn(n

)1(

11

)1(

11

1

qq

qq

qq

qq
S

SQ
NM 444 8444 76

L

MMM

L
44 844 76

L

MMM

L  

1r
)1(

rn1n
)1(

nn 11 ×××× ⋅+⋅= uNxM                    (8) 
Thus, 

( ) +⋅⋅= ××

=

× 1n
)1(

nn

n,...1i
i

)1(
1n 1

1

1 L
1

dt
d xMx  

1r
)1(

rn1n
)1(

nn1r
)1(

rn

n,...1i
i

111

1

L
1

××××××

=

⋅+⋅=⋅⋅ uBxAuN      (9) 

where 
[ ]Tr1r1 21

)ncivs()ncivs()ics()ics( LL=u (10) 

[ ]Tn1nn1 xxxx
11

LL +=x         (11) 
are the input and the state vector, respectively. 
Finally, with the node voltages already known 
as functions of the state variables and the inputs, 
the currents through the capacitances (passive 
sign convention), which are   

are calculated from the proper set of equations 
contained in (2). These equations are obtained 
following one of the next two cases: 

  ,x i
∗− n ... 1,ni 1 +=

• case i) unchanged, if the coefficients 
2)jsrn(i 1,...rj  , w

11
=+++ and 2)jrsrn(i 1,...sj  , w

211
=++++  

for .consti =  are all zero and only one of the 
coefficients  for the same i 
is different from zero 

2)jn(i 1,...nj  , w
1

=+

• case ii) after appropriate additions or 
subtractions of the equations of (2) aiming to 
the elimination of all the VCSs except one of 
the   if the conditions of 
case i) are not valid. 

n, ... 1,ni  ,x 1i +=∗

 This procedure leads to a matrix equation 
similar to (9), that is: 

( ) +⋅⋅= ××

+=

× 1n
)2(

nn

n),...1n(i
i

)2(
1n 2

1

2 C
1

dt
d xMx  

1r
)2(

rn1n
)2(

nn1r
)2(

rn

n),...1n(i
i

222

1

C
1

××××××

+=

⋅+⋅=⋅⋅ uBxAuN    (12) 

where [ ]Tn2n1n
)2( xxx

11
L++=x  is that 

part of the state vector concerning the 
capacitances. Finally, the state equations of the 
ΝDLEC result by putting together (9) and (12), 
that is 

( ) 1rrn1nnn1ndt
d

××××× ⋅+⋅= uBxAx      (13) 

where 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×
× )2(

1n

)1(
1n

1n
2

1

x
x

x    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×
× )2(

nn

)1(
nn

nn
2

1

A
A

A    ⎥
⎦

⎤
⎢
⎣

⎡
=

×

×
× )2(

rn

)1(
rn

rn
2

1

B
B

B  

 
 

  Example 
 
As an example, we proceed to determine the 
state equations for the NDLEC shown in Fig. 1. 



+
-

+

+
-

-

ϕi5

F5,0C4=

1si Δi H4,0L2=

ϕv3

H5,0L3=

Ω1Ω1Ω1

Ω1

3sv

4sv
Ω1

2si
ϕi

Δi2

H25,0L1=

+

-
ϕv
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Fig. 1. NDLEC for the example 
 
Applying NA-VCS, we replace the inductances 

 and the capacitance  by 
independent sources  and , re-
spectively. Then, we replace the nonconvertible 
voltage sources  by virtual current 

sources . The source that replaced the 
capacitance is further replaced by a virtual 
current source . Next, defining the reference 
node and labelling the rest nodes a, b, c, d, e, f, 
the equivalent circuit takes the form shown in 
Fig. 2. 

321 L,L,L 4C

321 i,i,i 4v

ϕv3,v,v
43 ss

∗∗∗
321 i,i,i

∗
4i

+
-

+
-

ϕi5

1si Δi

ϕv3
Ω1

Ω1Ω1

Ω1

3sv

4sv
Ω1

2si
ϕi

Δi2
+

-
ϕv

+

-

+

-

4v

∗
4i

f e d c

ba

∗
1i

∗
2i

1i
∗
3i

2i

3i

 
Fig.2. Equivalent circuit for the NDLEC of  

Fig. 1 
 
Since   

6k  , 1s  , 2s  , 2r  , 2r  , 1n  , 3n 212121 =======  
and 

[ ]T321ss4321
)1( iiii5i2iiiiii

21

∗∗∗
ϕΔ

∗=S  
[ ]Tssss4321

)2( v3vvi5i2iiviii
43ϕ21 ϕΔ=S

[ ]T)3( v3i5i2 ϕϕΔ=S                     
[ ]Tssss4321

)4(
4321

vviiviii=S  
 
the following matrices are determined by 
inspection 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
−−

−−

=

100000
021001
011000
000110
000121
010012

G
   

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−−

−−−

=

00110011000
0001001

10000000010
1100110

0110000
11000100100

0000

0001
0000

W

∗∗

∗
∗∗  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

001001
000001
100000
100100

F
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10000000000
01000000000
00100000000
00000001000

Z
 

 
Next, the matrices D and T involved in (4) are 
obtained by inspection as follows: 
• The first four rows of D and T are the rows 

of F and Z respectively, and 
• The last two rows of D and T are the 2nd and 

5th rows of G and W respectively, because 
the VCS coefficients in matrix W are zero 
(Sec. II, case a), as indicated by ** sign in 
matrix W. 



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−

−

=

021001
000121
001001
000001
100000
100100

D
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

00000010001
00001100000
10000000000
01000000000
00100000000
00000001000

T
 

Next, the matrices and involved in (5) 
and (7) respectively, are obtained by inspection 

X )1(P

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

030003
000550
022000

X  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

000101
001100
010000

)1(P  

 

Matrices DD and TT are obtained. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−
−

−

=

021001
022121
031002
000001
100000
100100

DD
  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

00010001
00100000
00000000
10000000
01000000
00001000

TT
 

Next, by simple matrix manipulations (multi-
plication and inversion) the following matrices, 
associated with eq. (8), (9), come up 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−
=

44 844 764484476
)1()1(

1100
1103
1001

1000
1003
0001

)1(

NM

Q
 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

2000
5,2005,7

0004
)1(A       

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−
−−

=
2200

5,25,205,7
4004

)1(B

 

Since the coefficients  are all 
zero and only the coefficient  is different 
from zero (Sec. II, case i), as indicated by * sign 
in the W matrix of the example, the matrices 

involved in (12) are derived from the 
3

3,113,109,3  w,  w, w

4,3w

)2()2(  , BA
rd row of G and W: 

[ ]42224)2( −=A       [ ]44424)2( −−−=B
Finally, applying (13), the state equations of the 
given NDLEC are: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−

+

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

s

s

s

s

4

3

2

1

4

3

2

1

v
v
i
i

44424
2200

5,25,205,7
4004

v
i
i
i

42224
2000
5,2005,7

0004

v
i
i
i

dt
d

 

 
III. Conclusions 
 
A systematic method for obtaining the state 
equations for NDLECs is presented. This 
method (NA-VCS) makes it possible to treat 
any NDLEC (planar or nonplanar) in a similar 
straightforward way, regardless of the circuit 
complexity. The NA-VCS minimizes signi-
ficantly the work needed to obtain the state 
equations, since most of the matrices involved 
are found by inspection, based on the use of 
virtual current sources. Some matrix 
manipulations required are easily implemented 
using calculators that can treat large matrices 
and the availability of economically reasonable 
math programs for personal computers. Finally, 
the proposed method can be used in most 
modern simulators of analog networks, because 
it is well algorithmized. 
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Appendix 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=====
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=====
=====

=
⋅
⋅
⋅
=
=

=

+++++++++++

+++++++++++

+++++++++++

2)jrsrn(k2)jsrn(k1)jrn(k1)jn(k2)jn(k

2)jrsrn(22)jsrn(21)jrn(21)jn(22)jn(2

2)jrsrn(12)jsrn(11)jrn(11)jn(12)jn(1

1kj

1j2

1j1

s,...1j , wr,...1j , ws,...1j , wr,...1j , wn,...1j , w

s,...1j , wr,...1j , ws,...1j , wr,...1j , wn,...1j , w
 s,...1j , wr,...1j , ws,...1j , wr,...1j , wn,...1j , w

n,...1j , w

n,...1j , w
n,...1j , w

2111111

2111111

2111111

W

  

 

[ ]Ts1r1s1r1n1nn1
)1(

221111
)ncdvs()ncdvs()ncivs()ncivs()dcs()dcs()ics()ics(xxxx ∗∗∗∗∗∗

+= LLLLLLS   
 

[ ]Ts1r1s1r1n1nn1
)2(

221111
)ncdvs()ncdvs()ncivs()ncivs()dcs()dcs()ics()ics(xxxx LLLLLL +=S  

 

[ ]Ts1s1
)3(

21
)ncdvs()ncdvs()dcs()dcs( LK=S  
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	Abstract. This paper presents a systematic method for obtaining the state equations for Nondegenerate Linear Electric Circuits (NDLECs), based on Nodal Analysis with Virtual Current Sources (NA-VCSs). Obtaining the state equations using NA-VCS is extremely systematic and straightforward since most of the work is done by inspection and the required matrix manipulations are easily implemented. To apply the proposed method, all circuit energy-storage elements are replaced by ideal independent sources, while the nonconvertible voltage sources are replaced by virtual current sources. As a result, all NDLECs (planar or nonplanar) are treated in a similar way, regardless of the circuit complexity. Since the proposed method is well algorithmized, it can be used in most modern simulators of analog networks.
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