

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

A VHDL BASED APPROACH TO MODEL FUZZY LOGIC SYSTEMS

Liviu ŢIGĂERU1

Ovidiu URSARU2

„Gh. Asachi” Technical University of Iasi,
Faculty of Electronics and Telecommunications
Bd. Carol I nr.11, Iasi, 6600 Romania
1) ltigaeru@etc.tuiasi.ro, 2) oursaru@etc.tuiasi.ro

Abstract. Our aim was to find a solution to reduce the gap between the specific simulation tools for fuzzy logic
systems and hardware design languages-based tools for electronic systems design. This paper presents a VHDL
based approach to model fuzzy logic systems. This solution allows designing and simulation of the fuzzy logic
systems in a standard hardware design environment, enabling the integration of the fuzzy models in complex
hardware systems.
Keywords: nonlinear systems models, fuzzy logic systems, VHDL

Introduction

The fuzzy logic is a computational paradigm
that provides a mathematical tool to deal with
the uncertainty and the imprecision. In the last
decades, a lot of fuzzy logic system (FLS) based
applications were reported in the literature.
There are several areas where the fuzzy logic
was successfully used: the automatic control,
signal processing, data classification or decision
making systems, computer vision, and so on. In
this work, our goal was to find a hardware
design language (HDL) based solution to model
various configurations of FLSs. The HDLs have
become an important factor in designing the
VLSI circuits. These languages have been used
to describe the circuits from the geometrical
level up through the architectural level. The
advantages of the HDL based FLS models
approach derive in that:
• it allows the integration of the FLS model in

a complex structure. As a result it can be
described and synthesized a VLSI circuit
with fuzzy computational features.

• the integration into a HDL based design
environment that allows the verifications of
the simulation results of a FLS configuration
from a high (behavioral) description level to
a structural synthesizable level (RTL or gate
level).

• the integration into a unique HDL based
design environment that allows the
description of all components of a particular
FLS based application. This approach lead to
accurate simulation results.

One of the most popular hardware design
language is VHDL (VHSIC Hardware
Description Language). In the last few years it
was investigated the possibility of using VHDL
as a support for the description of the FLSs
[1],[2]. In this work we propose a new VHDL
package to model the FLSs.

Description of the FLS

A FLS maps crisp inputs into crisp outputs. It
contains four components: fuzzifier, fuzzy
rulebase, the inference engine and the
defuzzifier. The structure of the FLS, as was
described in [3], is depicted in the Figure 1.

Figure 1 - The general structure of a FLS

287

The fuzzifier maps crisp numbers into fuzzy sets
that are subsequently used as inputs to the
inference engine. The fuzzy rulebase is a
collection of rules that may be provided by
experts or can be derived from numerical data.
These rules are expressed as IF-THEN
statements:

IF X1 is A1K AND…XN is ANK THEN Y is BK

where X1,…XN and Y are the inputs and the
output of the system, A1K…ANK and BK are the
linguistic labels (fuzzy sets). The Xi is AiK
statement defines a fuzzy proposition. The fuzzy
propositions are combined by means of the logic
connectives (AND, OR, NOT) into the premise of
the fuzzy rule. The inference engine maps the
input fuzzy sets into the output fuzzy set and
generates an overall output fuzzy set. Each fuzzy
rule provides a partial contribution - a local
output fuzzy set - to the overall output fuzzy set,
that is an aggregation of the partial
contributions. The defuzzifier maps the overall
output fuzzy set produced by the inference
engine into a crisp number.

The VHDL package

In this section it is proposed a VHDL package to
model various FLS configurations. First, it were
defined a set of basic data types that store the
fuzzy information. Figure 2 presents the data
structures.

Figure 2 - The data structures of the package
A fuzzy set is described by the record data type
called FS, formed by six fields: name, shape, a,
b, c, and d. The first field stores the linguistic
label that identifies the fuzzy set. The second
field defines the shape of the membership
function of the fuzzy set. It can be defined five
membership functions: trapezoidal, triangular,
S-shaped, Z-shaped and singleton. The last four
fields represent the parameters of the
membership function. The fuzzy sets defined for
the same fuzzy variable can be grouped into a
vector of FS data type denoted FSs. A fuzzy
input variable is described by means of the
record data type INPUT, formed by five fields:
name, N, fuzz_sets, min and max. The first field
identifies the input variable, the second
represents the number of the defined fuzzy sets,
the third assigns the defined fuzzy sets to the
concerned input variable and the last two fields
define the universe of discourse of the input
variable. The same manner is used to describe
the output fuzzy variable of the system. This is
stored in the record data type OTUPUT that is
formed by six fields: name, N, fuzzy_sets,
min, max and sample. The last field of the
record represents the number of the samples
used to represent in a discret form the output
fuzzy sets of the system. The other fields
preserve the same meaning as the fields that
form the record INPUT. The FZOUT data type is a
vector that keeps the samples of the partial
contribution generated by the inference engine.
The RULEBASE data type is a vector of FZOUT. It
is used as a data support in the aggregation stage
of the local output fuzzy sets.
The fuzzy algorithm is described by a set of
functions that handle the introduced data types.
It were developed several functions that can be
divided into three distinct groups. First group
contains the initialization functions. The
function init_FS initializes the fuzzy sets of the
system. The init_INP and init_OUT functions
initialize the input and output fuzzy variables.
Next group of functions are used to describe the
fuzzy rules and inference mechanism of the
system. The FUZZ function performs the
fuzzification of the data input. It computes the
membership degrees of the input values to the

288

input fuzzy sets. The logic connectives, used in
the fuzzy rules, are defined by means of three
functions: fzAND, fzOR and fzNOT. Table 1
presents the mathematical operators provided by
the VHDL package to implement the and/or
logic connectives.

Table 1. The mathematical operators used to
implement the logic connectives

 AND OR
Zadeh),min(BA),max(BA
Probabilistic BA ⋅ BABA ⋅−+

Lukasiewicz)0,1max(−+ BA)1,min(BA +

Subsequently, it was introduced the function
IMPL that performs the fuzzy implication. We
have implemented several implication functions.
These are presented in Table 2.

Table 2. The fuzzy implication functions
implication function definition
Mamdami),min(Cβ
Larsen C⋅β
Kleene-Dienes),1max(Cβ−
Goguen

01,min

01

≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β
β

β
C

where β represents the firing degree and C the
consequence of the fuzzy rule. The aggregation
of the partial contributions is performed by the
AGG function. Table 3 summarizes the
mathematical operators used to implement this
function.

Table 3. The mathematical operators used to
implement the aggregation

mathematical operator definition
maximum),...,max(1 KPCPC

algebraic sum KPCPC ++ ...1
bounded sum)1,,....min(1 KPCPC

PCi represents the partial contribution of the i
fuzzy rule. Finally, it was introduced the DEFF
function that performs the defuzzification. There
are provided the most popular defuzzification
methods: Center of Gravity (COG), Mean of

Maxima (MOM), First of Maxima (FOM) and
Last of Maxima (LOM).
A VHDL based Fuzzy Logic Controller
model

To validate the proposed VHDL package, it was
described a Fuzzy Logic Controller (FLC) that is
used to command a buck converter. The goal of
the application is to keep the output voltage at a
constant value (VOUT=5V) in the presence of
various working perturbations (change of input
voltage, change of load). Figure 3 presents the
structure and the circuit parameters of the buck
converter.

Figure 3 - The buck converter

To perform this task, VOUT is sampled with a
sampling period TS=10us and compared to a
reference voltage VREF=5V such that an error
signal is generated:

REFOUT VKVKE −=)()((1)
where K is the sampling moment. The error
signal and the change of error signal

)1()()(−−= KEKEKCE (2)
are supplied to the FLC inputs, that outputs the
duty cycle of the PWM signal, used to command
the buck converter. Figure 4 presents the
structure of the control application. With except
of the FLC, the other blocks used in the
application are modeled in VHDL-AMS, the
analog extension of the VHDL language. The
proposed VHDL package allows to model
various configurations for the FLC.

289

Figure 4-The structure of the control application

Figure 5-The fuzzy sets of the controller: a-the
input fuzzy sets; b-the output fuzzy sets; c-the
output fuzzy sets (Takagi Sugeno FLC case)

Table 4. The fuzzy rulebase

 CE
E

NB NM ZE PM PB

NB PH PB PM PS ZE
NS PB PM PS ZE NS
ZE PM PS ZE NS NM
PS PS ZE NS NM NB
PB ZE NS NM NB NH

In this work we have considered the most used
FLC configurations in control applications:
Mamdami (min-max), Larsen (product-bounded
sum) and zero order Takagi-Sugeno. For the
Mamdami FLC we have chosen two different
cases: one case with COG and another case with
MOM defuzzification method. For Larsen FLC
we have considered only COG defuzzification

method. For all configurations, the input
variables are defined over a [-1,1] universe of
discourse and the output variable is defined over
a [0,1] universe of discourse. Five and nine
respectively fuzzy sets are defined for both input
and output variable respectively. The fuzzy sets
of the controller are shown in Figure 5. The
rulebase of the controller is presented in Table 4.
The VHDL based model of the Mamdami COG
FLC is presented in Figure 6. The fuzzy
algorithm of the controller is described in
several stages:
• the initialization of the controller’s fuzzy

sets, inputs and output variable.
• the fuzzy rulebase description
• the aggregation of the local inferred output

fuzzy sets
• the defuzzification of the overall output

fuzzy set and the assignation of the result to
the output

The model for the others FLC configurations
can be described similarly.

Simulation results

The VHDL based FLC models were verified by
time domain simulations. The control
application was described and simulated in a
unique design environment that allows to run
both VHDL and VHDL-AMS models. For each
FLC configuration it was considered the same
control algorithm. The performance of the FLC
was verified by simulating the line regulation
and load regulation of the buck converter. For
the first situation, the input voltage (line voltage)
has suddenly changed from 10V to 20V and
back to 10V. For the load regulation, the load
has suddenly changed from 5Ω to 10Ω and back
to 5Ω. Figure 7(a)-(d) shows the line regulation

290

and Figure 8(a)-(d) shows the load regulation.
Figure 9(a)-(d) shows the control surface
generated by each considered FLC
configuration. These results confirm the ability
of the proposed models for the FLCs in
controlling the buck converter and validate the
VHDL package developed in this work.

Conclusion

Our aim was to find a solution to reduce the gap
between the specific simulation tools for fuzzy
systems and HDL-based tools for hardware
design. Thus, it was developed a VHDL package

to model various configurations of FLS that
were validated by simulation. As a final
consequence, these models can be integrated in
complex structures to describe very large
systems that exhibit fuzzy computational
features.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use work.fuzzy.all;

entity controller is

 port(

 e_val : in data :=0.0;

 ce_val : in data :=0.0;

 dc_val : out real :=0.0);

end controller;

architecture model of controller is

 constant opAND :string(1 to 4):="ZADH";

 constant f_imp :string(1 to 4):="MAMD";

 constant opAGG :string(1 to 3):="MAX";

 constant method:string(1 to 3):="COG";

begin

algorithm: process(e_val,ce_val)
 variable LE,LCE,LDC : FSs;
 variable ER,CE: INPUT;
 variable DC: OUTPUT;
 variable R: RULEBASE(1 to 25);
 variable Total_contribution: FZOUT;

 variable Result:real:=0.0;

begin

LE:= (
init_FS("NB","ZRMP",-1.0,-0.5,0.0,0.0),
init_FS("NS","TRNG",-1.0,-0.5,0.0,0.0),
init_FS("ZE","TRNG",-0.5,0.0,0.5,0.0),
init_FS("PS","TRNG",0.0,0.5,1.0,0.0),
init_FS("PB","SRMP",0.5,1.0,0.0,0.0),

others=>Undefined);

LCE:=(
 init_FS("NB","ZRMP",-1.0,-0.5,0.0,0.0),

LDC:=(

init_FS("NH","ZRMP",0.00,0.15,0.00,0.0),
init_FS("NB","TRNG",0.00,0.15,0.30,0.0),
init_FS("NM","TRNG",0.15,0.30,0.40,0.0),
init_FS("NS","TRNG",0.30,0.40,0.50,0.0),
init_FS("ZE","TRNG",0.40,0.50,0.60,0.0),
init_FS("PS","TRNG",0.50,0.60,0.70,0.0),
init_FS("PM","TRNG",0.60,0.70,0.85,0.0),
init_FS("PB","TRNG",0.70,0.85,1.00,0.0),
init_FS("PH","SRMP",0.85,1.00,0.10,0.0),

others=>Undefined);

ER:=init_INP("ER",5,LE,-1.0,1.0);

CE:=init_INP("CE",5,LCE,-1.0,1.0);
DC:=init_OUT("DC",9,LDC,0.0,1.0,10);

R(1):=IMPL(
fzAND(FUZZ("PB",ER,e_val),
FUZZ("NB",CE,ce_val),opAND),

"ZE",DC,f_imp);

R(2):=IMPL(
fzAND(FUZZ("PB",ER,e_val),
FUZZ("NS",CE,ce_val),opAND),

"NS",DC, f_imp);

………………………………………………………………………………………………

R(25):=IMPL(
fzAND(FUZZ("NB",ER,e_val),
FUZZ("PB",CE,ce_val),opAND),

"ZE",DC, f_imp);

Total_contribution:=AGG(R,DC,opAGG);

291

 init_FS("NS","TRNG",-1.0,-0.5,0.0,0.0),
 init_FS("ZE","TRNG",-0.5,0.0,0.5,0.0),
 init_FS("PS","TRNG",0.0,0.5,1.0,0.0),
 init_FS("PB","SRMP",0.5,1.0,0.0,0.0),

 others=>Undefined);

Result:=

DEFUZZ(Total_contribution,DC,deffm);

dc_val<=Result;

end process algorithm;

end model;

Figure 6- The VHDL based model of a Mamdami Fuzzy Logic Controller

Figure 7 - Simulation results-line regulation: a-Mamdami FLC with COG defuzzification; b-
Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi Sugeno FLC

292

Figure 8 - Simulation results-load regulation: a-Mamdami FLC with COG defuzzification; b-
Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi Sugeno FLC

Figure 9 - The control surface generated by each FLC configuration: a-Mamdami FLC with COG
defuzzification; b- Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi

Sugeno FLC

293

References [4] N.Mohan, T.Undeland and W.Robbins:

(1995) Power Electronics - Converters,
Applications and Design, John Wiley&Sons
inc..

 [1] Hollstein T., Halgamuge S.K., Glesner M.
(1996) Computer Aided Design of Fuzzy Systens
Based on Generic VHDL Specifications,IEEE
Trans.on Fuzzy Systems, no.4 pp. 403-417.

[5] W.C. So, C.K. Tse, Y.S. Lee, (1996)
Development of a Fuzzy Logic Controller for
DC/DC Converters: Design, Computer,
Simulation and Experimental Evaluation, IEEE
Trans. on Power Electronics, vol.11 no.1 pp. 24-
31.

[2] D. Galán, C. J. Jiménez, A. Barriga, S.
Sánchez Solano (1995) VHDL Package for
Description of Fuzzy Logic Controllers,
European Design Automation Conference
(EURO-VHDL’95), pp. 528-533, Brighton -
Great Britain.

[6] P.J. Ashenden, G.D. Peterson, D.Teegarden,
(2002) The System Designer’s GuideVHDL-
AMS, Morgan Kaufman Publishers. [3] Driankov D., Hellendorn H., Reinfrank M.,

(1993) An introduction to fuzzy control, Springer
Verlag.

[7] R. E. Harr and A. G. Stanculescu, ed. (1991)
Applications of VHDL to Circuit Design.
Kluwer Academic Publishers, Boston.

294

	A VHDL BASED APPROACH TO MODEL FUZZY LOGIC SYSTEMS
	Liviu ŢIGĂERU1
	Ovidiu URSARU2

	Faculty of Electronics and Telecommunications
	Abstract. Our aim was to find a solution to reduce the gap between the specific simulation tools for fuzzy logic systems and hardware design languages-based tools for electronic systems design. This paper presents a VHDL based approach to model fuzzy logic systems. This solution allows designing and simulation of the fuzzy logic systems in a standard hardware design environment, enabling the integration of the fuzzy models in complex hardware systems.
	Keywords: nonlinear systems models, fuzzy logic systems, VHDL
	Introduction
	Description of the FLS
	The VHDL package

	NB
	
	References

