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Abstract. Our aim was to find a solution to reduce the gap between the specific simulation tools for fuzzy logic 
systems and hardware design languages-based tools for electronic systems design. This paper presents a VHDL 
based approach to model fuzzy logic systems. This solution allows designing and simulation of the fuzzy logic 
systems in a standard hardware design environment, enabling the integration of the fuzzy models in complex 
hardware systems. 
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Introduction 
 
The fuzzy logic is a computational paradigm 
that provides a mathematical tool to deal with 
the uncertainty and the imprecision. In the last 
decades, a lot of fuzzy logic system (FLS) based 
applications were reported in the literature. 
There are several areas where the fuzzy logic 
was successfully used: the automatic control, 
signal processing, data classification or decision 
making systems, computer vision, and so on. In 
this work, our goal was to find a hardware 
design language (HDL) based solution to model 
various configurations of FLSs. The HDLs have 
become an important factor in designing the 
VLSI circuits. These languages have been used 
to describe the circuits from the geometrical 
level up through the architectural level. The 
advantages of the HDL based FLS models 
approach derive in that: 
• it allows the integration of the FLS model in 

a complex structure. As a result it can be 
described and synthesized a VLSI circuit 
with fuzzy computational features.  

• the integration into a HDL based design 
environment that allows the verifications of 
the simulation results of a FLS configuration 
from a high (behavioral) description level to 
a structural synthesizable level (RTL or gate 
level). 

• the integration into a unique HDL based 
design environment that allows the 
description of all components of a particular 
FLS based application. This approach lead to 
accurate simulation results.   

One of the most popular hardware design 
language is VHDL (VHSIC Hardware 
Description Language). In the last few years it 
was investigated the possibility of using VHDL 
as a support for the description of the FLSs 
[1],[2]. In this work we propose a new VHDL 
package to model the FLSs.  
 

Description of the FLS 
 
A FLS maps crisp inputs into crisp outputs. It 
contains four components: fuzzifier, fuzzy 
rulebase, the inference engine and the 
defuzzifier. The structure of the FLS, as was 
described in [3], is depicted in the Figure 1.  

 

 
 

Figure 1 - The general structure of a FLS 
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The fuzzifier maps crisp numbers into fuzzy sets 
that are subsequently used as inputs to the 
inference engine. The fuzzy rulebase is a 
collection of rules that may be provided by 
experts or can be derived from numerical data. 
These rules are expressed as IF-THEN 
statements: 

IF X1 is A1K AND…XN is ANK THEN Y is BK 

where X1,…XN and Y are the inputs and the 
output of the system, A1K…ANK and BK are the 
linguistic labels (fuzzy sets). The Xi is AiK 
statement defines a fuzzy proposition. The fuzzy 
propositions are combined by means of the logic 
connectives (AND, OR, NOT) into the premise of 
the fuzzy rule. The inference engine maps the 
input fuzzy sets into the output fuzzy set and 
generates an overall output fuzzy set. Each fuzzy 
rule provides a partial contribution - a local 
output fuzzy set - to the overall output fuzzy set, 
that is an aggregation of the partial 
contributions. The defuzzifier maps the overall 
output fuzzy set produced by the inference 
engine into a crisp number. 
 
The VHDL  package 
 
In this section it is proposed a VHDL package to 
model various FLS configurations. First, it were 
defined a set of basic data types that store the 
fuzzy information. Figure 2 presents the data 
structures.  

 

Figure 2 - The data structures of the package 
A fuzzy set is described by the record data type 
called FS, formed by six fields: name, shape, a, 
b, c, and d. The first field stores the linguistic 
label that identifies the fuzzy set. The second 
field defines the shape of the membership 
function of the fuzzy set. It can be defined five 
membership functions: trapezoidal, triangular, 
S-shaped, Z-shaped and singleton. The last four 
fields represent the parameters of the 
membership function. The fuzzy sets defined for 
the same fuzzy variable can be grouped into a 
vector of FS data type denoted FSs. A fuzzy 
input variable is described by means of the 
record data type INPUT, formed by five fields: 
name, N, fuzz_sets, min and max. The first field 
identifies the input variable, the second 
represents the number of the defined fuzzy sets, 
the third assigns the defined fuzzy sets to the 
concerned input variable and the last two fields 
define the universe of discourse of the input 
variable. The same manner is used to describe 
the output fuzzy variable of the system. This is 
stored in the record data type OTUPUT that is 
formed by six fields: name, N, fuzzy_sets, 
min, max and sample. The last field of the 
record represents the number of the samples 
used to represent in a discret form the output 
fuzzy sets of the system. The other fields 
preserve the same meaning as the fields that 
form the record INPUT. The FZOUT data type is a 
vector that keeps the samples of the partial 
contribution generated by the inference engine. 
The RULEBASE data type is a vector of FZOUT. It 
is used as a data support in the aggregation stage 
of the local output fuzzy sets. 
The fuzzy algorithm is described by a set of 
functions that handle the introduced data types. 
It were developed several functions that can be 
divided into three distinct groups. First group 
contains the initialization functions. The 
function init_FS initializes the fuzzy sets of the 
system. The init_INP and init_OUT functions 
initialize the input and output fuzzy variables. 
Next group of functions are used to describe the 
fuzzy rules and inference mechanism of the 
system. The FUZZ function performs the 
fuzzification of the data input. It computes the 
membership degrees of the input values to the 
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input fuzzy sets. The logic connectives, used in 
the fuzzy rules, are defined by means of three 
functions: fzAND, fzOR and fzNOT. Table 1 
presents the mathematical operators provided by 
the VHDL package to implement the and/or 
logic connectives. 
 

Table 1. The mathematical operators used to 
implement the logic connectives 

 AND OR 
Zadeh ),min( BA  ),max( BA  
Probabilistic BA ⋅  BABA ⋅−+

 
Lukasiewicz )0,1max( −+ BA  )1,min( BA +  

 

Subsequently, it was introduced the function 
IMPL that performs the fuzzy implication. We 
have implemented several implication functions. 
These are presented in Table 2. 
 

Table 2. The fuzzy implication functions 
implication function  definition 
Mamdami ),min( Cβ  
Larsen C⋅β  
Kleene-Dienes ),1max( Cβ−  
Goguen 

01,min

01
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⎛
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β
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β
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where β represents the firing degree and C the 
consequence of the fuzzy rule. The aggregation 
of the partial contributions is performed by the 
AGG function. Table 3 summarizes the 
mathematical operators used to implement this 
function. 
 

Table 3. The mathematical operators used to 
implement the aggregation 

mathematical operator definition 
maximum ),...,max( 1 KPCPC  

algebraic sum KPCPC ++ ...1  
bounded sum )1,,....min( 1 KPCPC

 

PCi represents the partial contribution of the i 
fuzzy rule. Finally, it was introduced the DEFF 
function that performs the defuzzification. There 
are provided the most popular defuzzification 
methods: Center of Gravity (COG), Mean of 

Maxima (MOM), First of Maxima (FOM) and 
Last of Maxima (LOM).  
A VHDL based Fuzzy Logic Controller 
model 
 
To validate the proposed VHDL package, it was 
described a Fuzzy Logic Controller (FLC) that is 
used to command a buck converter. The goal of 
the application is to keep the output voltage at a 
constant value (VOUT=5V) in the presence of 
various working perturbations (change of input 
voltage, change of load). Figure 3 presents the 
structure and the circuit parameters of the buck 
converter. 
  

 
Figure 3 - The buck converter 

 
 

To perform this task, VOUT is sampled with a 
sampling period TS=10us and compared to a 
reference voltage VREF=5V such that an error 
signal is generated: 

REFOUT VKVKE −= )()(                (1) 
where K is the sampling moment. The error 
signal and the change of error signal 

)1()()( −−= KEKEKCE              (2) 
are supplied to the FLC inputs, that outputs the 
duty cycle of the PWM signal, used to command 
the buck converter. Figure 4 presents the 
structure of the control application. With except 
of the FLC, the other blocks used in the 
application are modeled in VHDL-AMS, the 
analog extension of the VHDL language. The 
proposed VHDL package allows to model 
various configurations for the FLC.  

289 



 

Figure 4-The structure of the control application

 
Figure 5-The fuzzy sets of the controller: a-the 
input fuzzy sets; b-the output fuzzy sets; c-the 
output fuzzy sets (Takagi Sugeno FLC case) 

 
Table 4. The fuzzy rulebase 

 CE 
E  

NB NM ZE PM PB 

NB PH PB PM PS ZE 
NS PB PM PS ZE NS 
ZE PM PS ZE NS NM 
PS PS ZE NS NM NB 
PB ZE NS NM NB NH 

 
In this work we have considered the most used 
FLC configurations in control applications: 
Mamdami (min-max), Larsen (product-bounded 
sum) and zero order Takagi-Sugeno. For the 
Mamdami FLC we have chosen two different 
cases: one case with COG and another case with 
MOM defuzzification method. For Larsen FLC 
we have considered only COG defuzzification 

method. For all configurations, the input 
variables are defined over a [-1,1] universe of 
discourse and the output variable is defined over 
a [0,1] universe of discourse. Five and nine 
respectively fuzzy sets are defined for both input 
and output variable respectively. The fuzzy sets 
of the controller are shown in Figure 5. The 
rulebase of the controller is presented in Table 4. 
The VHDL based model of the Mamdami COG 
FLC is presented in Figure 6. The fuzzy 
algorithm of the controller is described in 
several stages: 
• the initialization of the controller’s fuzzy 

sets, inputs and output variable. 
• the fuzzy rulebase description 
• the aggregation of the local inferred output 

fuzzy sets 
• the defuzzification of the overall output 

fuzzy set and the assignation of the result to 
the output  

The model for the others FLC configurations 
can be described similarly. 
 
Simulation results 
 
The VHDL based FLC models were verified by 
time domain simulations. The control 
application was described and simulated in a 
unique design environment that allows to run 
both VHDL and VHDL-AMS models. For each 
FLC configuration it was considered the same 
control algorithm. The performance of the FLC 
was verified by simulating the line regulation 
and load regulation of the buck converter. For 
the first situation, the input voltage (line voltage) 
has suddenly changed from 10V to 20V and 
back to 10V. For the load regulation, the load 
has suddenly changed from 5Ω to 10Ω and back 
to 5Ω. Figure 7(a)-(d) shows the line regulation 
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and Figure 8(a)-(d) shows the load regulation. 
Figure 9(a)-(d) shows the control surface 
generated by each considered FLC 
configuration. These results confirm the ability 
of the proposed models for the FLCs in 
controlling the buck converter and validate the 
VHDL package developed in this work.  
 
Conclusion 
 
Our aim was to find a solution to reduce the gap 
between the specific simulation tools for fuzzy 
systems and HDL-based tools for hardware 
design. Thus, it was developed a VHDL package 

to model various configurations of FLS that 
were validated by simulation. As a final 
consequence, these models can be integrated in 
complex structures to describe very large 
systems that exhibit fuzzy computational 
features.  
 
 
 
 
 
 
 
 

 
library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use work.fuzzy.all; 

entity controller is 

       port( 

 e_val  : in  data :=0.0; 

 ce_val : in  data :=0.0; 

 dc_val : out real :=0.0); 

end controller; 

architecture model of controller is  

 constant opAND :string(1 to 4):="ZADH"; 

 constant f_imp :string(1 to 4):="MAMD"; 

 constant opAGG :string(1 to 3):="MAX"; 

 constant method:string(1 to 3):="COG"; 

begin   

algorithm: process(e_val,ce_val)   
  variable LE,LCE,LDC : FSs; 
  variable ER,CE: INPUT; 
  variable DC: OUTPUT; 
  variable R: RULEBASE(1 to 25); 
  variable Total_contribution: FZOUT; 

  variable Result:real:=0.0; 

begin   

LE:= ( 
init_FS("NB","ZRMP",-1.0,-0.5,0.0,0.0), 
init_FS("NS","TRNG",-1.0,-0.5,0.0,0.0), 
init_FS("ZE","TRNG",-0.5,0.0,0.5,0.0), 
init_FS("PS","TRNG",0.0,0.5,1.0,0.0), 
init_FS("PB","SRMP",0.5,1.0,0.0,0.0), 

others=>Undefined); 

LCE:=( 
 init_FS("NB","ZRMP",-1.0,-0.5,0.0,0.0), 

LDC:=( 

init_FS("NH","ZRMP",0.00,0.15,0.00,0.0), 
init_FS("NB","TRNG",0.00,0.15,0.30,0.0), 
init_FS("NM","TRNG",0.15,0.30,0.40,0.0), 
init_FS("NS","TRNG",0.30,0.40,0.50,0.0), 
init_FS("ZE","TRNG",0.40,0.50,0.60,0.0), 
init_FS("PS","TRNG",0.50,0.60,0.70,0.0), 
init_FS("PM","TRNG",0.60,0.70,0.85,0.0), 
init_FS("PB","TRNG",0.70,0.85,1.00,0.0), 
init_FS("PH","SRMP",0.85,1.00,0.10,0.0), 

others=>Undefined); 

 

ER:=init_INP("ER",5,LE,-1.0,1.0);      

CE:=init_INP("CE",5,LCE,-1.0,1.0);   
DC:=init_OUT("DC",9,LDC,0.0,1.0,10);  

   
R(1):=IMPL( 
fzAND(FUZZ("PB",ER,e_val), 
FUZZ("NB",CE,ce_val),opAND), 

"ZE",DC,f_imp);  

   

R(2):=IMPL( 
fzAND(FUZZ("PB",ER,e_val), 
FUZZ("NS",CE,ce_val),opAND), 

"NS",DC, f_imp); 

………………………………………………………………………………………………  

R(25):=IMPL( 
fzAND(FUZZ("NB",ER,e_val), 
FUZZ("PB",CE,ce_val),opAND), 

"ZE",DC, f_imp); 

 
Total_contribution:=AGG(R,DC,opAGG);  
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 init_FS("NS","TRNG",-1.0,-0.5,0.0,0.0), 
 init_FS("ZE","TRNG",-0.5,0.0,0.5,0.0), 
 init_FS("PS","TRNG",0.0,0.5,1.0,0.0), 
 init_FS("PB","SRMP",0.5,1.0,0.0,0.0), 

 others=>Undefined); 

 

Result:= 

DEFUZZ(Total_contribution,DC,deffm);  

dc_val<=Result;   

end process algorithm; 

end model; 

 

Figure 6- The VHDL based model of a Mamdami Fuzzy Logic Controller 
 
 

 
Figure 7 - Simulation results-line regulation: a-Mamdami FLC with COG defuzzification; b- 
Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi Sugeno FLC 
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Figure 8 - Simulation results-load regulation: a-Mamdami FLC with COG defuzzification; b- 
Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi Sugeno FLC 

 

 
 
 

Figure 9 - The control surface generated by each FLC configuration: a-Mamdami FLC with COG 
defuzzification; b- Mamdami FLC with MOM defuzzification; c-Larsen FLC; d- zero order Takagi 

Sugeno FLC 
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