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Abstract. In order to simplify a synthesis process for certain complex structures it is sometimes inevitable to 
decompose the function in a pre-processing step. By using the general decomposition method of finite state 
automata on the basis of a specified states partition we may synthesize functions that are unable to be processed 
with standard tools which will fail otherwise. 
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1. Introduction 
 
Today’s technology has reached such a level 
that the high level synthesis is integrated with 
logic synthesis. The problem of complex 
circuits’ decomposition date back to the very 
early days of computer aided design of digital 
circuits. By studying the properties of the 
complex functions it is possible to represent 
them by means of several simpler functions. 
By using these functional properties we may 
decompose large and complex circuits into a 
system of smaller circuits which may be readily 
available and easily maintained. In the case of 
multi level logic synthesis programs, like 
MVSIS, we may deal with specific problems as 
generating low performance circuits when 
facing with complex functions. By decomposing 
the circuit into several sub circuits the synthesis 
procedure may be simplified. The 
decomposition of a sequential machine implies 
the obtaining of two or more partitions of the 
original machine, every partition corresponding 
to a submachine which operates concurrently 
with the others in order to respect the initial 
behavior of the circuit. The partitions resulted 
through the decomposition process from 
combining the states of the initial machine are 
becoming states in the newly created machines. 
The necessary decomposition algorithms are 
specific for certain types of two way or multi 
way, parallel, cascade, general or arbitrary 
decomposition topologies. 

2. Preliminaries 
 
A finite state machine M can be described by a 
five-tuple M = (S, I, O, δ, λ), where S is a set of 
state symbols, I is a set of primary inputs, O is a 
set of primary outputs, δ : I x S → S is the next 
state function, and λ : I x S → O is the output 
function (Mealy machine). A FSM can be 
represented by its State Transition Graph (STG) 
or equivalently, by its State Transition Table 
(STT). 
Definition: A partition П on a set of states S is 
a collection of disjoint subsets of S, called 
blocks, whose set union is S. A partition П on 
the set of states S of a machine M is said to be a 
closed partition if and only if for any two states 
s and t which are in the same block of  П, and 
for any input  i ∈ I, the next states δ(s,i) and 
δ(t,i) are in a common block of  П. A partition is 
a general partition if it is not closed. The 
original machine is called the prototype 
machine and the individual machines that make 
up the overall realization are called the sub 
machines. The machine obtained as a result of 
the decomposition is called the decomposed 
machine and is implemented as a network of 
interconnected sub machines. The general 
structure of such a network is shown in Fig.1. 
Zero partition П(0) denote a partition with |S| 
blocks such that each block contains exactly one 
state. It can be shown that a machine M can be 
decomposed into a set of  n interacting machines 



that perform the same function as M if and only 
if there exists a set of nontrivial partitions: 
 П1, П2,..., Пn  such that П1 . П2 … Пn = П(0) 
Definition: A legal decomposition of a machine 
M exists if for a given set of partitions П1, П2,..., 
Пn, their product is equal to П(0). 

 

 
Figure 1. General sequential circuit and general   

decomposition topology 
 
3. Previous work 
 
The decomposition of sequential machines was 
first treated in a formal way by Hartmanis and 
Stearns [5]. They proposed two types of 
decomposition, parallel and cascade, based on 
the topology of the decomposed machine. One 
of the simplest ways in which a machine can be 
broken up into sub machines is the parallel 
decomposition. The structure of the sub 
machines is that they are supplied with the same 
input sequence but operate independently. There 
is no interaction or exchange of information 
between the sub machines. This method has 
limited use in the design of modern finite state 
machines because practical designs do not 
usually have good parallel decompositions. 
Another type of decomposition is the cascade or 

serial decomposition, where again each 
submachine is driven by the same input 
sequence, but the two machines do not operate 
independently. A submachine is supplied by 
means of auxiliary inputs with information 
about the current internal states of the other sub 
machines. The possibility of passing state 
information from a submachine to the next 
submachine makes cascade decomposition more 
powerful than parallel decomposition. The 
transmission of state information is serial and a 
submachine requires state information of its own 
state and about the states of its predecessors. It 
passes its own state information to its successor 
machines only. Another form of decomposition 
was presented by Devadas and Newton [14]. 
Here both components of the decomposed 
machine interact with each other. This form of 
decomposition involves identifying subroutines 
of factors in the original machine, extracting 
these factors and representing them as a separate 
factoring machine. The occurrences of these 
factors become calls to the factoring machine 
from the factored machine. The method does not 
have a definite cost function to optimize and 
does not guarantee anything about the quality of 
the decomposition. Finally, the general 
decomposition, or arbitrary decomposition, can 
have various topologies and covers any type of 
decomposition. The basic output constraint 
remains that any pair of states of the prototype 
machine should have distinct codes in the 
decomposed machine which remains unchanged. 
The remaining constraints are dependent on the 
other sub machines that a particular submachine 
receives present-state information from. The 
type of constraints imposed are briefly 
illustrated by means of the example topology in 
Fig.1. 
 

4. Implementation 
 

The main objectives in the present paper are to 
apply general decomposition method to a 
sequential machine in order to reduce each 
submachine complexity while attempting to 
keep a small total number of sub machines. The 
obtained sub machines during the decomposition 
procedure are then verified if they respect the 
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general decomposition properties. The first step 
is the state partitioning of the prototype machine 
using a specified mask of states so that it may 
satisfy the decomposition requirements. The 
partitioning masks applied to the initial set of 
states can be manually specified or 
automatically generated by using random sets of 
states, grouped in blocks belonging to each 
partition. If the decomposition mask is manually 
specified by using predefined partition sets, the 
standard methods of general decomposition can 
be applied in order to obtain the results. If a  
random number of masks for decomposition are 
automatically generated, there are performed a 
set of successive steps in which an initial 
partition is generated first; this will be the first 
submachine. Then in a series of successive steps 
are generated the remaining set of partitions that 
will be the other concurrent sub machines which 
must respect the decomposition rules. The 
partitions are generated while their product is 
not equal to zero partition П(0), which means 
there are still blocks of states which are not 
uniquely identified, or which intersection of 
states is not equal to ∅. In parallel, the 
validation procedure is testing the partitions that 
are not simplifying the set of current states and 
deletes them by generating a new partition 
instead.  
 

0  st0 st0  0 
1  st0 st4  0 
0  st1 st0  1 
1  st1 st4  1 
0  st2 st1  0 
1  st2 st5  0 
0  st3 st1  1 
1  st3 st5  1 
0  st4 st2  0 
1  st4 st6  0 
0  st5 st2  1 
1  st5 st6  1 
0  st6 st3  0 
1  st6 st7  0 
0  st7 st3  1 
1  st7 st7  1 

 

Fig. 2. STT for Prototype Machine 
 

This partition will be tested then if it reduces the 
current set of states. The cycle is repeated until 
there have been uniquely identified all blocks of 
states that will be the new set of states of the 
resulting sub machines. 
For example we will use a FSM which has the 
behavior of a shift register. The internal 

description is represented by its state transition 
table, in standard kiss format in Fig. 2. 
Suppose we have a set of partitions manually 
specified as follows: 

{ ( st0 st2 st3 ) , ( st1 st4 st6 ) , ( st5 st7 ) } 
{ ( st0 st4 st7 ) , ( st1 st2 st5 ) , ( st3 st6 ) } 

We obtain two sub machines that satisfy the 
general decomposition rules of the prototype 
machine as we can see in Fig. 3  
 

 
000  (st0 st0)  0 
100  (st0 st1)  0 
001  (st1 st0)  1 
101  (st1 st1)  1 
001  (st0 st1)  0 
101  (st0 st2)  0 
010  (st0 st1)  1 
110  (st0 st2)  1 
000  (st1 st0)  0 
100  (st1 st1)  0 
001  (st2 st0)  1 
101  (st2 st1)  1 
010  (st1 st0)  0 
110  (st1 st2)  0 
000  (st2 st0)  1 
100  (st2 st2)  1 

 
000  (st0 st0)  0 
100  (st0 st0)  0 
001  (st1 st0)  1 
101  (st1 st0)  1 
000  (st1 st1)  0 
100  (st1 st1)  0 
000  (st2 st1)  1 
100  (st2 st1)  1 
001  (st0 st1)  0 
101  (st0 st2)  0 
010  (st1 st1)  1 
110  (st1 st2)  1 
001  (st2 st2)  0 
101  (st2 st0)  0 
010  (st0 st2)  1 
110  (st0 st0)  1 

Fig. 3. STT for first and second submachine 

5. Results 
 
For a given machine taken as example and for a 
specified set of partitions, we may obtain 
various types of decompositions. The resulting 
equivalent sub machines have been synthesized 
on standard tools like Leonardo Spectrum where 
have been obtained different results that are 
important from the point of view of 
technological implementation on various family 
of circuits and for certain requirements of 
optimum area and delay. The obtained results 
are from standard sets of examples implemented 
on different technological libraries. As we can 
see there are situations when the area and the 
propagation time are smaller than in the 
prototype machine, but also there are situations 
when they surmount the initial properties of the 
machine. In the case of running the automatic 
generation of partitions, the obtained partition 
number is dynamically reduced to the most 
efficient possible number. During the 
decomposition flow we needed some tools like: 
genfsm used to automatically generate FSM’s, 
vl2mv used to convert the examples from 
verilog level to kiss format, fsmtool used to 
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generate the partitioning sets of states and for 
decomposition, and kiss2vl. 
6. Conclusions and future work 
 
In this paper we built and tested a number of tools 
like genfsm, fsmtool, and kill2vl in order to allow 
us to implement the theoretical part and obtain 
some practical results. We have shown the 
potential and efficiency of our tools to generate a 
finite state machine, to apply a general 
decomposition method by a set of manually or 
automatically generated partitions and the 
possibility to obtain valid sub machines in order to 
reduce each submachine complexity while 
attempting to keep a small number of sub 
machines. 
This pre-synthesis step can be easily integrated 
into a standard synthesis flow and by it’s general 
approach it can be easily adapted to various 
specific optimization problems like complex 
function decomposition or optimum 
implementation on specific target libraries with a 
variable number of logic gates in their LUT’s with 
different sizes and area of implementations. 
This standard flow can be improved in the future 
by finding an alternative way to test the optimal 
results even from the generation step. The 
necessity of using an external tool or standard 
program for the evaluation of the results can be 
replaced by a fitness function in a process of 
improving the quality of the results. This 
improvement will reduce the execution time and 
the complexity of the optimization flow. 
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Table 1: Experimental results from a complete decomposition and synthesis flow 
FILE TECHNOLOGY DFF PI PO AREA DELAY PORTS NETS GATES INST ARRIVAL 

Example-orig.v SPARTAN-XL 3 3 1 6 16 4 18 6 15 13.64 

Example-top1.v SPARTAN-XL 3 3 1 5 16 4 17 5 14 13.64 

Example-top2.v SPARTAN-XL 3 3 1 7 16 4 17 7 14 13.64 

Example-top3.v SPARTAN-XL 3 3 1 5 16 4 17 5 14 13.64 

Shiftreg-orig.v SPARTAN-XL 3 3 1 6 16 4 18 6 15 13.64 

Shiftreg-top1.v SPARTAN-XL 4 3 1 12 17 4 25 12 22 13.84 

Shiftreg-top2.v SPARTAN-XL 4 3 1 7 16 4 18 7 15 13.84 

Shiftreg-top3.v SPARTAN-XL 3 3 1 3 8 4 12 3 9 6.90 

Example-orig.v VIRTEX-II 3 3 1 6 7 4 16 6 13 6.73 

Example-top1.v VIRTEX-II 3 3 1 8 7 4 18 8 15 6.73 

Example-top2.v VIRTEX-II 3 3 1 7 7 4 17 7 14 6.79 

Example-top3.v VIRTEX-II 3 3 1 6 7 4 16 6 13 6.79 

Shiftreg-orig.v VIRTEX-II 3 3 1 5 6 4 15 5 12 6.08 

Shiftreg-top1.v VIRTEX-II 4 3 1 9 6 4 25 9 22 6.08 

Shiftreg-top2.v VIRTEX-II 4 3 1 9 6 4 20 9 17 6.03 

Shiftreg-top3.v VIRTEX-II 3 3 1 2 5 4 12 2 9 5.49 

Example-orig.v ALTERA-FLEX10k 3 3 1 9 8 4 18 9 15 8.50 

Example-top1.v ALTERA-FLEX10k 3 3 1 8 10 4 17 8 14 9.60 

Example-top2.v ALTERA-FLEX10k 3 3 1 8 8 4 16 8 13 8.50 

Example-top3.v ALTERA-FLEX10k 3 3 1 8 10 4 16 8 13 9.60 

Shiftreg-orig.v ALTERA-FLEX10k 3 3 1 8 8 4 17 8 14 8.50 

Shiftreg-top1.v ALTERA-FLEX10k 4 3 1 13 11 4 24 13 21 10.70 

Shiftreg-top2.v ALTERA-FLEX10k 4 3 1 7 4 4 15 7 12 4.40 

Shiftreg-top3.v ALTERA-FLEX10k 3 3 1 3 4 4 10 3 7 4.40 

Example-orig.v ASIC-SCL05u - - - 88 - 4 19 88 14 2.80 

Example-top1.v ASIC-SCL05u - - - 82 - 4 17 82 13 2.31 

Example-top2.v ASIC-SCL05u - - - 85 - 4 18 85 13 2.50 

Example-top3.v ASIC-SCL05u - - - 89 - 4 21 89 15 2.43 

Shiftreg-orig.v ASIC-SCL05u - - - 125 - 4 27 125 21 2.34 

Shiftreg-top1.v ASIC-SCL05u - - - 179 - 4 35 179 28 4.29 

Shiftreg-top2.v ASIC-SCL05u - - - 38 - 4 10 38 7 0.80 

Shiftreg-top3.v ASIC-SCL05u - - - 45 - 4 12 47 9 1.45 

[21] Wolfgang Thomas, (2003) Applied Automata 
Theory. 
 
Appendix A 
 
We show in the table 1 some examples using the 
general decomposition methods. They are obtained 
from a full synthesis flow, starting with a finite 
state machine automatically generated by 
GenFSM or specified from an examples set. The 
input FSMs are described in a standard kiss 
format, they are parsed and represented in memory 
and decomposed by the randomly generated or 
manually specified states masks in FSMtool. The 

results are represented either in kiss format or 
verilog output format for integration with standard 
synthesis tools. The output results depend on the 
quality of decomposition, the arrangement of 
internal states in the newly created sub machines 
and the target technology used for implementation. 
As we can see in each column, there are specific 
results for each technological implementation and 
the best solutions of the decomposition can be 
easily selected for each target library. These are 
standard examples and they are used to obtain 
experimental results for certain types of partitions 
applied to the prototype machine. The resulting 
sub machines obtained from the decomposition 
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with FSMtool are then synthesized with Leonardo 
Spectrum and the detailed resulting values are 

pointed in this table. 
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