

294

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

COMPLEX CIRCUITS DESIGN. FINITE AUTOMATA DECOMPOSITION

Codrin PRUTEANU
"Gheorghe Asachi" Technical University Iasi
Bld. Mangeron no. 53A, RO-6600 Iasi
codrinp2001@yahoo.com

Abstract. In order to simplify a synthesis process for certain complex structures it is sometimes inevitable to
decompose the function in a pre-processing step. By using the general decomposition method of finite state
automata on the basis of a specified states partition we may synthesize functions that are unable to be processed
with standard tools which will fail otherwise.
Keywords: logic synthesis, finite automata, decomposition.

1. Introduction

Today’s technology has reached such a level
that the high level synthesis is integrated with
logic synthesis. The problem of complex
circuits’ decomposition date back to the very
early days of computer aided design of digital
circuits. By studying the properties of the
complex functions it is possible to represent
them by means of several simpler functions.
By using these functional properties we may
decompose large and complex circuits into a
system of smaller circuits which may be readily
available and easily maintained. In the case of
multi level logic synthesis programs, like
MVSIS, we may deal with specific problems as
generating low performance circuits when
facing with complex functions. By decomposing
the circuit into several sub circuits the synthesis
procedure may be simplified. The
decomposition of a sequential machine implies
the obtaining of two or more partitions of the
original machine, every partition corresponding
to a submachine which operates concurrently
with the others in order to respect the initial
behavior of the circuit. The partitions resulted
through the decomposition process from
combining the states of the initial machine are
becoming states in the newly created machines.
The necessary decomposition algorithms are
specific for certain types of two way or multi
way, parallel, cascade, general or arbitrary
decomposition topologies.

2. Preliminaries

A finite state machine M can be described by a
five-tuple M = (S, I, O, δ, λ), where S is a set of
state symbols, I is a set of primary inputs, O is a
set of primary outputs, δ : I x S → S is the next
state function, and λ : I x S → O is the output
function (Mealy machine). A FSM can be
represented by its State Transition Graph (STG)
or equivalently, by its State Transition Table
(STT).
Definition: A partition П on a set of states S is
a collection of disjoint subsets of S, called
blocks, whose set union is S. A partition П on
the set of states S of a machine M is said to be a
closed partition if and only if for any two states
s and t which are in the same block of П, and
for any input i ∈ I, the next states δ(s,i) and
δ(t,i) are in a common block of П. A partition is
a general partition if it is not closed. The
original machine is called the prototype
machine and the individual machines that make
up the overall realization are called the sub
machines. The machine obtained as a result of
the decomposition is called the decomposed
machine and is implemented as a network of
interconnected sub machines. The general
structure of such a network is shown in Fig.1.
Zero partition П(0) denote a partition with |S|
blocks such that each block contains exactly one
state. It can be shown that a machine M can be
decomposed into a set of n interacting machines

that perform the same function as M if and only
if there exists a set of nontrivial partitions:
 П1, П2,..., Пn such that П1 . П2 … Пn = П(0)
Definition: A legal decomposition of a machine
M exists if for a given set of partitions П1, П2,...,
Пn, their product is equal to П(0).

Figure 1. General sequential circuit and general

decomposition topology

3. Previous work

The decomposition of sequential machines was
first treated in a formal way by Hartmanis and
Stearns [5]. They proposed two types of
decomposition, parallel and cascade, based on
the topology of the decomposed machine. One
of the simplest ways in which a machine can be
broken up into sub machines is the parallel
decomposition. The structure of the sub
machines is that they are supplied with the same
input sequence but operate independently. There
is no interaction or exchange of information
between the sub machines. This method has
limited use in the design of modern finite state
machines because practical designs do not
usually have good parallel decompositions.
Another type of decomposition is the cascade or

serial decomposition, where again each
submachine is driven by the same input
sequence, but the two machines do not operate
independently. A submachine is supplied by
means of auxiliary inputs with information
about the current internal states of the other sub
machines. The possibility of passing state
information from a submachine to the next
submachine makes cascade decomposition more
powerful than parallel decomposition. The
transmission of state information is serial and a
submachine requires state information of its own
state and about the states of its predecessors. It
passes its own state information to its successor
machines only. Another form of decomposition
was presented by Devadas and Newton [14].
Here both components of the decomposed
machine interact with each other. This form of
decomposition involves identifying subroutines
of factors in the original machine, extracting
these factors and representing them as a separate
factoring machine. The occurrences of these
factors become calls to the factoring machine
from the factored machine. The method does not
have a definite cost function to optimize and
does not guarantee anything about the quality of
the decomposition. Finally, the general
decomposition, or arbitrary decomposition, can
have various topologies and covers any type of
decomposition. The basic output constraint
remains that any pair of states of the prototype
machine should have distinct codes in the
decomposed machine which remains unchanged.
The remaining constraints are dependent on the
other sub machines that a particular submachine
receives present-state information from. The
type of constraints imposed are briefly
illustrated by means of the example topology in
Fig.1.

4. Implementation

The main objectives in the present paper are to
apply general decomposition method to a
sequential machine in order to reduce each
submachine complexity while attempting to
keep a small total number of sub machines. The
obtained sub machines during the decomposition
procedure are then verified if they respect the

295

296

general decomposition properties. The first step
is the state partitioning of the prototype machine
using a specified mask of states so that it may
satisfy the decomposition requirements. The
partitioning masks applied to the initial set of
states can be manually specified or
automatically generated by using random sets of
states, grouped in blocks belonging to each
partition. If the decomposition mask is manually
specified by using predefined partition sets, the
standard methods of general decomposition can
be applied in order to obtain the results. If a
random number of masks for decomposition are
automatically generated, there are performed a
set of successive steps in which an initial
partition is generated first; this will be the first
submachine. Then in a series of successive steps
are generated the remaining set of partitions that
will be the other concurrent sub machines which
must respect the decomposition rules. The
partitions are generated while their product is
not equal to zero partition П(0), which means
there are still blocks of states which are not
uniquely identified, or which intersection of
states is not equal to ∅. In parallel, the
validation procedure is testing the partitions that
are not simplifying the set of current states and
deletes them by generating a new partition
instead.

0 st0 st0 0
1 st0 st4 0
0 st1 st0 1
1 st1 st4 1
0 st2 st1 0
1 st2 st5 0
0 st3 st1 1
1 st3 st5 1
0 st4 st2 0
1 st4 st6 0
0 st5 st2 1
1 st5 st6 1
0 st6 st3 0
1 st6 st7 0
0 st7 st3 1
1 st7 st7 1

Fig. 2. STT for Prototype Machine

This partition will be tested then if it reduces the
current set of states. The cycle is repeated until
there have been uniquely identified all blocks of
states that will be the new set of states of the
resulting sub machines.
For example we will use a FSM which has the
behavior of a shift register. The internal

description is represented by its state transition
table, in standard kiss format in Fig. 2.
Suppose we have a set of partitions manually
specified as follows:

{ (st0 st2 st3) , (st1 st4 st6) , (st5 st7) }
{ (st0 st4 st7) , (st1 st2 st5) , (st3 st6) }

We obtain two sub machines that satisfy the
general decomposition rules of the prototype
machine as we can see in Fig. 3

000 (st0 st0) 0
100 (st0 st1) 0
001 (st1 st0) 1
101 (st1 st1) 1
001 (st0 st1) 0
101 (st0 st2) 0
010 (st0 st1) 1
110 (st0 st2) 1
000 (st1 st0) 0
100 (st1 st1) 0
001 (st2 st0) 1
101 (st2 st1) 1
010 (st1 st0) 0
110 (st1 st2) 0
000 (st2 st0) 1
100 (st2 st2) 1

000 (st0 st0) 0
100 (st0 st0) 0
001 (st1 st0) 1
101 (st1 st0) 1
000 (st1 st1) 0
100 (st1 st1) 0
000 (st2 st1) 1
100 (st2 st1) 1
001 (st0 st1) 0
101 (st0 st2) 0
010 (st1 st1) 1
110 (st1 st2) 1
001 (st2 st2) 0
101 (st2 st0) 0
010 (st0 st2) 1
110 (st0 st0) 1

Fig. 3. STT for first and second submachine

5. Results

For a given machine taken as example and for a
specified set of partitions, we may obtain
various types of decompositions. The resulting
equivalent sub machines have been synthesized
on standard tools like Leonardo Spectrum where
have been obtained different results that are
important from the point of view of
technological implementation on various family
of circuits and for certain requirements of
optimum area and delay. The obtained results
are from standard sets of examples implemented
on different technological libraries. As we can
see there are situations when the area and the
propagation time are smaller than in the
prototype machine, but also there are situations
when they surmount the initial properties of the
machine. In the case of running the automatic
generation of partitions, the obtained partition
number is dynamically reduced to the most
efficient possible number. During the
decomposition flow we needed some tools like:
genfsm used to automatically generate FSM’s,
vl2mv used to convert the examples from
verilog level to kiss format, fsmtool used to

297

generate the partitioning sets of states and for
decomposition, and kiss2vl.
6. Conclusions and future work

In this paper we built and tested a number of tools
like genfsm, fsmtool, and kill2vl in order to allow
us to implement the theoretical part and obtain
some practical results. We have shown the
potential and efficiency of our tools to generate a
finite state machine, to apply a general
decomposition method by a set of manually or
automatically generated partitions and the
possibility to obtain valid sub machines in order to
reduce each submachine complexity while
attempting to keep a small number of sub
machines.
This pre-synthesis step can be easily integrated
into a standard synthesis flow and by it’s general
approach it can be easily adapted to various
specific optimization problems like complex
function decomposition or optimum
implementation on specific target libraries with a
variable number of logic gates in their LUT’s with
different sizes and area of implementations.
This standard flow can be improved in the future
by finding an alternative way to test the optimal
results even from the generation step. The
necessity of using an external tool or standard
program for the evaluation of the results can be
replaced by a fitness function in a process of
improving the quality of the results. This
improvement will reduce the execution time and
the complexity of the optimization flow.

References

[1] BRZOZOWSKI J.A., LUBA T.,
Decomposition of Boolean Functions Specified by
Cubes, University of Waterloo, Canada, Warsaw
University of Technology, Poland.

[2] Carlos Llanos Quintero, Marius Strum,
GERPAR and GERTAB2. Two FSM
Decomposition Optimization Tools, Laboratorio de
Microelectronica LME-EPUSP, Brasil.

[3] Giovanni De Micheli, (1994) Synthesis and
Optimization of Digital Circuits, Stanford
University, McGraw-Hill.

[4] Haba C.G. , Contributions to synthesis of
digital circuits, PhD. Thesis, “Gh. Asachi “
Technical University, Iasi, Romania.

[5] Hartmanis J. and Stearns R.E., (1966)
Algebraic Structure Theory of Sequential
Machines, Prentice Hall.
[6] Hasan Zafar, Maciej J. Ciesielski ,
Decomposition and Functional Verification of
FSMs, University of Massachusetts, Amherst.
[7] Herbert Taub, (1982) Digital Circuits and
Microprocessors, International student edition.
[8] L. Józwiak, A. Chojnacki, (1998) Application
of Information Relationship Measures to Logic
Synthesis, Proc. CSSP98 - 9th Annual Workshop
on Circuits, Netherlands
[9] Michael Burns, Marek Perkowski, Lech
Jozwiak, and Stanislaw Grygiel, (1998) An
Efficient and Effective Approach to Column-Based
Input/Output Encoding in Functional
Decomposition, Proceedings of 3rd International
Workshop on Boolean Problems, pp. 19-29,
Freiberg Inst. of Comp. Science, Sept. 17-18.
[10] Muntean I., (1997) Finite Automata
Synthesis, Editura Tehnica, Bucuresti.
[11] MVSIS, (2001) Multi-level Logic Synthesis,
University of California, Berkeley, CA.
[12] Partha S. Roop, Sowmya A. , Functional
Decomposition of Composite Finite State
Machines, Univ.of New South Wales, Australia.
[13] Perkowski Marek, Digital design automation:
finite state machine design, dept. of electrical
engineering, Portland State University.
[14] Pranav Ashar, Srinivas Devdas, (1991)
Optimum and heuris-tic algorithms for an
approach to finite state machine decomposition,
IEEE Trans. on CAD , Vol. 10, No. 3, March
1991, pp. 296-310.
[15] Roche Emmanuel, (1995) Factorization of
Finite-State Tranducers, Cambridge.
[16] Rupesh S. Shelar, Madhav P. Desay, H.
Narayanan, Decomposition of Finite State
Machines for Area, Delay Minimization, Indian
Institute of Technology
[17] SIS, (1992) A system for sequential circuit
synthesis, Univ. of California, Berkeley, CA.
[18] Srinivas Devadas, A. R. Newton, (1989)
Decomposition and factorization of sequential
finite state machines, IEEE Trans. on CAD, Vol 8,
No. 11, pp. 1206-1217.

298

[19] Stefan Gheorghe, (2000) Digital systems and
Circuits, Editura Tehnica, Bucuresti.
[20] Zamfirescu A. , HDL Chip Design.

Table 1: Experimental results from a complete decomposition and synthesis flow
FILE TECHNOLOGY DFF PI PO AREA DELAY PORTS NETS GATES INST ARRIVAL

Example-orig.v SPARTAN-XL 3 3 1 6 16 4 18 6 15 13.64

Example-top1.v SPARTAN-XL 3 3 1 5 16 4 17 5 14 13.64

Example-top2.v SPARTAN-XL 3 3 1 7 16 4 17 7 14 13.64

Example-top3.v SPARTAN-XL 3 3 1 5 16 4 17 5 14 13.64

Shiftreg-orig.v SPARTAN-XL 3 3 1 6 16 4 18 6 15 13.64

Shiftreg-top1.v SPARTAN-XL 4 3 1 12 17 4 25 12 22 13.84

Shiftreg-top2.v SPARTAN-XL 4 3 1 7 16 4 18 7 15 13.84

Shiftreg-top3.v SPARTAN-XL 3 3 1 3 8 4 12 3 9 6.90

Example-orig.v VIRTEX-II 3 3 1 6 7 4 16 6 13 6.73

Example-top1.v VIRTEX-II 3 3 1 8 7 4 18 8 15 6.73

Example-top2.v VIRTEX-II 3 3 1 7 7 4 17 7 14 6.79

Example-top3.v VIRTEX-II 3 3 1 6 7 4 16 6 13 6.79

Shiftreg-orig.v VIRTEX-II 3 3 1 5 6 4 15 5 12 6.08

Shiftreg-top1.v VIRTEX-II 4 3 1 9 6 4 25 9 22 6.08

Shiftreg-top2.v VIRTEX-II 4 3 1 9 6 4 20 9 17 6.03

Shiftreg-top3.v VIRTEX-II 3 3 1 2 5 4 12 2 9 5.49

Example-orig.v ALTERA-FLEX10k 3 3 1 9 8 4 18 9 15 8.50

Example-top1.v ALTERA-FLEX10k 3 3 1 8 10 4 17 8 14 9.60

Example-top2.v ALTERA-FLEX10k 3 3 1 8 8 4 16 8 13 8.50

Example-top3.v ALTERA-FLEX10k 3 3 1 8 10 4 16 8 13 9.60

Shiftreg-orig.v ALTERA-FLEX10k 3 3 1 8 8 4 17 8 14 8.50

Shiftreg-top1.v ALTERA-FLEX10k 4 3 1 13 11 4 24 13 21 10.70

Shiftreg-top2.v ALTERA-FLEX10k 4 3 1 7 4 4 15 7 12 4.40

Shiftreg-top3.v ALTERA-FLEX10k 3 3 1 3 4 4 10 3 7 4.40

Example-orig.v ASIC-SCL05u - - - 88 - 4 19 88 14 2.80

Example-top1.v ASIC-SCL05u - - - 82 - 4 17 82 13 2.31

Example-top2.v ASIC-SCL05u - - - 85 - 4 18 85 13 2.50

Example-top3.v ASIC-SCL05u - - - 89 - 4 21 89 15 2.43

Shiftreg-orig.v ASIC-SCL05u - - - 125 - 4 27 125 21 2.34

Shiftreg-top1.v ASIC-SCL05u - - - 179 - 4 35 179 28 4.29

Shiftreg-top2.v ASIC-SCL05u - - - 38 - 4 10 38 7 0.80

Shiftreg-top3.v ASIC-SCL05u - - - 45 - 4 12 47 9 1.45

[21] Wolfgang Thomas, (2003) Applied Automata
Theory.

Appendix A

We show in the table 1 some examples using the
general decomposition methods. They are obtained
from a full synthesis flow, starting with a finite
state machine automatically generated by
GenFSM or specified from an examples set. The
input FSMs are described in a standard kiss
format, they are parsed and represented in memory
and decomposed by the randomly generated or
manually specified states masks in FSMtool. The

results are represented either in kiss format or
verilog output format for integration with standard
synthesis tools. The output results depend on the
quality of decomposition, the arrangement of
internal states in the newly created sub machines
and the target technology used for implementation.
As we can see in each column, there are specific
results for each technological implementation and
the best solutions of the decomposition can be
easily selected for each target library. These are
standard examples and they are used to obtain
experimental results for certain types of partitions
applied to the prototype machine. The resulting
sub machines obtained from the decomposition

299

with FSMtool are then synthesized with Leonardo
Spectrum and the detailed resulting values are

pointed in this table.

	Fig. 2. STT for Prototype Machine
	Fig. 3. STT for first and second submachine

