

303

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

SOME CONSIDERATIIONS ON 8-LEVEL HDL STACK IMPLEMENTATION

Iuliana PATENTARIU
Alin Dan POTORAC
“Stefan cel Mare” University of Suceava
str.Universitatii nr.13, RO-720225 Suceava
iuliap@eed.usv.ro, alinp@eed.usv.ro

Abstract. This paper presents an 8-level stack implementation in hardware description language. Applied to 8-
level stack design, Verilog is used for logic synthesis, for test analysis, for timing analysis and for verification
through simulation. The stack design is described using the concept of a ‘module’ in behavioral specification.
The operations that we performed on the stack, in this implementation, are: stack push, stack pop and stack
reset. The stack module it was tested by using the idea of the stimulus module and the results was monitored to
verify the design.
Keywords: Verilog, stack, push, pop, test vectors, results analysis.

1. Introduction

Verilog Hardware Description Language

There are now two industry standard hardware
description languages, VHDL and Verilog. The
complexity of ASIC and FPGA designs has
meant an increase in the number of specialist
design consultants with specific tools and with
their own libraries of macro and mega cells
written in either VHDL or Verilog. As a result,
it is important that designers know both VHDL
and Verilog and that EDA tools vendors provide
tools that provide an environment allowing both
languages to be used in unison [1].
The Verilog HDL is an IEEE standard - number
1364. The standard document is known as the
Language Reference Manual, or LRM. This is
the complete authoritative definition of the
Verilog HDL. IEEE Std 1364 also defines the
Programming Language Interface, or PLI. This
is a collection of software routines which permit
a bidirectional interface between Verilog and
other languages (usually C).
In the mid-80's, Gateway Design Automation
developed a logic simulator, Verilog-XL, to
simulate designs described using their
proprietary Verilog HDL. Cadence have since
bought Gateway and retained the Verilog-XL
simulator, but the language, Verilog HDL, is

now maintained by Open Verilog International
(OVI) [5].

Evolution of HDL Concepts

The history of the Verilog HDL goes back to the
1980s, when a company called Gateway Design
Automation developed a logic simulator,
Verilog-XL, and with it a hardware description
language [5].
Cadence Design Systems acquired Gateway in
1989, and with it the rights to the language and
the simulator. In 1990, Cadence put the
language (but not the simulator) into the public
domain, with the intention that it should become
a standard, non-proprietary language [4].
Cadence was motivated to open the language to
the Public Domain with the expectation that the
market for Verilog HDL-related software
products would grow more rapidly with broader
acceptance of the language. Cadence realized
that Verilog HDL users wanted other software
and service companies to embrace the language
and develop Verilog-supported design tools [2].
The Verilog HDL is now maintained by a non
profit making organization, Open Verilog
International (OVI). OVI had the task of taking
the language through the IEEE standardization
procedure. In december 1995 Verilog HDL
became IEEE Std. 1364 -1995 [5].

2. Stack Implementation

The Verilog language describes a digital system
as a set of modules. Modules can represent bits
of hardware ranging from simple gates to
complete systems, e. g. a microprocessor.
Modules can either be specified behaviorally or
structurally (or a combination of the two). A
behavioral specification defines the behavior of
a digital system (module) using traditional
programming language constructs, e. g., if
assignment statements. A structural
specification expresses the behavior of a digital
system (module) as a hierarchical
interconnection of submodules. At the bottom of
the hierarchy the components must be primitives
or specified behaviorally. Verilog primitives
include gates, e.g., nand, as well as pass
transistors (switches) [2].
In this section we will design a 8-level stack in
Verilog language and we describe it in
behavioral specification. Stack is a simple data
structure that may be implemented in hardware
description languages, as Verilog.
Below is a logic diagram for an 8-level stack.

Figure 1. The diagram for 8-level stack

The design is described using the concept of a
module. The module is conceptualized as
consisting of two parts, the port declarations and
the module body. The port declarations
represent the external interface to the module –
Push, Pop, Reset, DataIO, SP, Full, Empty, Err.

304

// Verilog code for stack
module Stack (DataIO, Reset, Push,
Pop, SP, Full, Empty, Err);
/* declare input, output and inout
ports */
inout [3:0] DataIO;

input Push,Pop,Reset;
output Empty,Err; Full,
output [2:0] SP;
// declare registers
reg Empty,Err; Full,
reg [2:0] SP;
reg [3:0] Stack[7:0];
reg [3:0] DataR;
/* continuous assignment of DataIO to
DataR register, with delay 0 */
wire [3:0] #(0) DataIO = DataR;
...
endmodule

The module body represents the internal
description of the module - its behavior, in this
case. The name of the module is just an arbitrary
label invented by the user – Stack, and it does
not correspond to a name pre-defined in a
Verilog component library.
The ports may correspond to a pin on an IC, an
edge connector on a board, or any logical
channel of communication with a block of
hardware.
Each port declaration includes the name of one
or more ports and the direction that information
is allowed to flow through the ports:

- input - Push, Pop, Reset;
- output - SP, Empty, Full, Err;
- inout - DataIO.

The module definition is terminated by the
keyword endmodule.

Stack Description

At any given instant in time, only the item on
the top of the stack is accessible. Any other item
in the stack is blocked from convenient access
by all of the items above it. To access items
below the item on the top of the stack, we must
sequentially remove items from the top until we
reach the item we want to access.
In this implementation the stack needs to be
eight entries deep and four bits wide. That
means we will need a collection of 8 registers.
There are two operations we can perform on the
stack, push and pop. One way to implement a
stack is to actually move data between
“adjacent” registers and another way to do it, as
shown in this implementation, is to keep the data
stationary and adjust a pointer (Stack Pointer -
SP).

305

There are three commands:
- Push – this input should cause the

four-bit binary input to be pushed
onto the stack;

- Pop – this input should cause the top
item on the stack to be popped and
stored in DataR register;

- Reset – this input should initialize
the entire stack to a known state;

The statements from the inside of the stack will
be made by two blocks always that contains
statements which are only executed when any of
the variables in the list of variables change:
- the first always is controlled by positive edge
of Push, Pop and Reset; in this block will be
initialize the stack and will be push and pop
data;

always @ (posedge Push or posedge Pop
or posedge Reset)
begin
...
end

- the second always is controlled by negative
edge of Pop; in this block the DataR register
goes in High Impedance and the stack will be
able to receive data in case of push instruction.

always @ (negedge Pop)
begin
 DataR = 4'bzzzz;
end

The list of variables is called the sensitivity list,
because this construct is sensitive to their
change. The block always will loop until
simulation is over.

Stack PUSH

A push instruction will cause the 4-bit input
(DataIO) to be pushed onto the stack and the
stack pointer SP will be incremented.
After a depth of 7 is reached, the stack is full
and the Full output goes HIGH. If further pushes
are attempted when the stack is full, the Error
output goes HIGH, and the stack information at
the top of the stack (7) will be over-written.

if (Push==1) begin
 when the stack is empty //
 if (Empty==1)
 begin
 Stack[SP] = DataIO;
 Empty = 0;
 if (Err==1)
 Err=0;
 end
 else // when the stack is full
 if ll==1) (Fu
 begin
 Stack[SP] = DataIO;
 r = 1; Er
 end
 else
 begin
 SP = SP +1;
 Stack [SP] = DataIO;
 if (SP == 3'b111)
 Full = 1;
 end
end

Stack POP

A pop instruction will cause the top item on the
stack to be popped and the stack pointer SP will
be decremented. Further pops from a not empty
stack will place the bottom data on the DataR
register. If further pops are attempted when the
stack is empty, the Error and Empty output goes
HIGH.

if(Pop==1) begin
/* if SP indicates the last location
but the stack is not empty */
 if ((SP == 3'b000) && (Empty!=1)
 begin
 DataR = Stack[SP];
 Empty = 1;
 end
 else // if the stack is emtpy
 if(Empty==1)
 begin
 DataR = Stack[SP];
 Err = 1;
 end
 else
 begin
 DataR = Stack[SP];
 if (SP != 3'b000)
 SP = SP-1;
 // if the stack is full
 if (Err==1) Err = 0;
 if (Full==1) Full = 0;
 end
end

Stack RESET

The reset instruction will initialize the entire
stack to a known state: the DataR output goes in
High Impedance and the other outputs (Stack
Pointer, Full, Empty, Err) goes LOW.

if (Reset==1)
begin
 DataR = 4'bzzzz;
 SP = 3'b0;
 Full = 0;
 Empty = 0;
 Err = 0;
 end

The test bench

Once the stack module has been designed it can
be tested by applying test inputs. This is idea of
the stimulus module. It calls the design module
and uses its functionality then results can be
monitored to verify its design.
Below is the stimulus for the 8-level stack.

Figure 2. The stimulus for the stack

A. Test Vectors

In this code fragment, the stimulus and response
capture are going to be coded using a pair of
initial blocks used for monitoring, generating
wave forms (clock pulses) and processes which
are executed once in a simulation.
An initial block consists of a statement or a
group of statements which will be executed only
once at simulation time 0. The initial blocks
execute concurrently and independently.

306

module StackTest;
/* Nothing else calls it to use its
functionality, so it doesn't need a
port list */
...
initial
begin

// Stimulus
...
end

initial
begin
// Analysis
...
end
endmodule

The wires used in continuous assignments must
be declared. We want to be able to assign values
to the inputs and values to be driven into the
output. It follows that the inputs must be reg
data types and the output must be a wire.

reg [3:0] DataR;
reg Push, Pop, Reset;
wire Full, Empty, Err;
wire [2:0] SP;
/* continuous assignment of DataIO to
DataR register, with delay 0 */
wire [3:0] #(0) DataIO = DataR;

In a module instance, the ports defined in the
module interface are connected to wires in the
instantiating module through the use of port
mapping.
Each instance is an independent, concurrently
active copy of a module. Each module instance
consists of the name of the module being
instanced (e.g. Stack), an instance name (unique
to that instance within the current module -
StackTest) and a port connection list.
The module port connections can be given in
order (positional mapping), or the ports can be
explicitly named as they are connected (named
mapping). Named mapping is usually preferred
for long connection lists as it makes errors less
likely.

Stack StackTest (DataIO, Reset, Push,
Pop, SP, Full, Empty, Err);

In the stimulus initial block, we need to generate
waveform on the Push, Pop, Reset inputs and
initialize DataR register.

initial begin
// initialize registers
 NrIter = 8;
 # 0 Reset = 1;
/* #2 means do after two unit of
simulation time */

307

 # 2 Reset = 0;
// after reset the stack is empty
 Pop = 1;
 # 1 Pop = 0;
// initialize register DataR
 DataR = 4'b0000;
//
 for (i=0; i<=NrIter; i=i+1)

push data onto the stack

 begin
 # 2 Push = 1;
 # 1 Push = 0;
 DataR = DataR +1;
 end
// getting data from the stack
 # 1 DataR = 4'bzzzz;
/* pops the stack and stores the
contents in DataR register */
 for (i=0; i<=NrIter; i=i+1)
 begin
 # 2 Pop = 1;
 # 1 Pop = 0;
 end
end

B. Results Analysis

The Response initial block can be described
very easily in Verilog as we can benefit from a
built-in Verilog system tasks.

initial // Response
begin
$display("Push Pop Reset DataIO

u rror SP"); Empty F ll E
$monitor($time, ,Push, ,Pop, ,Reset,
, ,DataIO, ,Empty, ,Full, ,Err,

; ,SP)
end

$display system task allows the designer to print
a message.
$monitor is a system task that is part of the
Verilog language. Its mission is to print values
to the screen. The $monitor task is executed
whenever any one of its arguments changes.
$time is a system function and it returns the
current simulation time. In the above example,
$time is an argument to $monitor. However,
$time changing does not cause $monitor to
execute.
The space at position 2 in the argument list
ensures that a space is printed to the screen after
the value of $time each time $monitor is
executed.
This is the outputs created by $monitor in
StackTest testbench:

Time Push Pop Reset DataR DataIOEmpty Full Error SP
 0 x x 1 x x 0 0 0 0
 2 x 1 0 x x 1 0 0 0
 3 x 0 0 0 0 1 0 0 0
 5 1 0 0 0 0 0 0 0 0
 6 0 0 0 1 1 0 0 0 0
 8 1 0 0 1 1 0 0 0 1
 9 0 0 0 2 2 0 0 0 1
11 1 0 0 2 2 0 0 0 2
12 0 0 0 3 3 0 0 0 2
14 1 0 0 3 3 0 0 0 3
15 0 0 0 4 4 0 0 0 3
17 1 0 0 4 4 0 0 0 4
18 0 0 0 5 5 0 0 0 4
20 1 0 0 5 5 0 0 0 5
21 0 0 0 6 6 0 0 0 5
23 1 0 0 6 6 0 0 0 6
24 0 0 0 7 7 0 0 0 6
26 1 0 0 7 7 0 1 0 7
27 0 0 0 8 8 0 1 0 7
28 0 0 0 z z 0 1 0 7
30 0 1 0 z 7 0 0 0 6
31 0 0 0 z z 0 0 0 6
33 0 1 0 z 6 0 0 0 5
34 0 0 0 z z 0 0 0 5
36 0 1 0 z 5 0 0 0 4
37 0 0 0 z z 0 0 0 4
39 0 1 0 z 4 0 0 0 3
40 0 0 0 z z 0 0 0 3
42 0 1 0 z 3 0 0 0 2
43 0 0 0 z z 0 0 0 2
45 0 1 0 z 2 0 0 0 1
46 0 0 0 z z 0 0 0 1
48 0 1 0 z 1 0 0 0 0
49 0 0 0 z z 0 0 0 0
51 0 1 0 z 0 1 0 0 0
52 0 0 0 z z 1 0 0 0

Another system task is $stop and it puts the
simulator into a halt mode and passes control to
the user.

initial begin
/* Will stop the execution after
100 simulation units */
 #100 $stop;
end

The figures show how the initial block has
created a waveform sequence for the stack
signals, for push and pop instruction. The Push
instruction pushes the contents data onto the
stack and when the stack pointer (SP) is reached
7, the stack is full and the Full output goes
HIGH.

Figure 3. Stack Push

The Pop instruction pops the stack and stores
the contents in DataR register and when the

stack pointer (SP) is reached 0 the stack is
empty and the output Empty goes HIGH.

Figure 4. Stack Pop

3. Conclusion

Simulation of the Verilog source before
synthesis allows a direct form of testing the
design and finding simple run-time bugs before
being tested in hardware. To allow ease of
simulation, the stack was replaced with accurate
timing model and file to represent their behavior
and storage. Functionality could easily be tested
by writing programs in byte-code and saved as a
file to be automatically run by the simulation.

References

[1] Iuliana Patentariu, Alin Dan Potorac (2003)

Hardware Description Languages, A
Comparative Approach, Advances in Electrical
and Computer Engineering, Faculty of Electrical
Engineering, “Ştefan cel Mare” University of
Suceava, vol.3 (10), no.1 (19), ISSN 1582-7445
[2] Hyde, D.C. (1997) Handbook on Verilog
HDL, Bucknell University, Lewisburg, USA
[3] Pellerin D. (1998) An Introduction to HDLs
for Simulation and Synthesis, Protel Technology
Inc., Provo, USA
[4] Smith, M.J.S. (1997) Application-Specific
Integrated Circuits, ISBN: 0-201-50022-1,
Addison Wesley Longman
[5] www.doulos.com
[6] www.verilog.net

308

