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Abstract. This paper presents an 8-level stack implementation in hardware description language. Applied to 8-
level stack design, Verilog is used for logic synthesis, for test analysis, for timing analysis and for verification 
through simulation. The stack design is described using the concept of a ‘module’ in behavioral specification. 
The operations that we performed on the stack, in this implementation, are: stack push, stack pop and stack 
reset. The stack module it was tested by using the idea of the stimulus module and the results was monitored to 
verify the design. 
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1. Introduction 
 
Verilog Hardware Description Language 
 
There are now two industry standard hardware 
description languages, VHDL and Verilog. The 
complexity of ASIC and FPGA designs has 
meant an increase in the number of specialist 
design consultants with specific tools and with 
their own libraries of macro and mega cells 
written in either VHDL or Verilog. As a result, 
it is important that designers know both VHDL 
and Verilog and that EDA tools vendors provide 
tools that provide an environment allowing both 
languages to be used in unison [1]. 
The Verilog HDL is an IEEE standard - number 
1364. The standard document is known as the 
Language Reference Manual, or LRM. This is 
the complete authoritative definition of the 
Verilog HDL. IEEE Std 1364 also defines the 
Programming Language Interface, or PLI. This 
is a collection of software routines which permit 
a bidirectional interface between Verilog and 
other languages (usually C). 
In the mid-80's, Gateway Design Automation 
developed a logic simulator, Verilog-XL, to 
simulate designs described using their 
proprietary Verilog HDL. Cadence have since 
bought Gateway and retained the Verilog-XL 
simulator, but the language, Verilog HDL, is 

now maintained by Open Verilog International 
(OVI) [5]. 
 
Evolution of HDL Concepts  
 
The history of the Verilog HDL goes back to the 
1980s, when a company called Gateway Design 
Automation developed a logic simulator, 
Verilog-XL, and with it a hardware description 
language [5]. 
Cadence Design Systems acquired Gateway in 
1989, and with it the rights to the language and 
the simulator. In 1990, Cadence put the 
language (but not the simulator) into the public 
domain, with the intention that it should become 
a standard, non-proprietary language [4]. 
Cadence was motivated to open the language to 
the Public Domain with the expectation that the 
market for Verilog HDL-related software 
products would grow more rapidly with broader 
acceptance of the language. Cadence realized 
that Verilog HDL users wanted other software 
and service companies to embrace the language 
and develop Verilog-supported design tools [2]. 
The Verilog HDL is now maintained by a non 
profit making organization, Open Verilog 
International (OVI). OVI had the task of taking 
the language through the IEEE standardization 
procedure. In december 1995 Verilog HDL 
became IEEE Std. 1364 -1995 [5]. 
 



2. Stack Implementation 
 
The Verilog language describes a digital system 
as a set of modules. Modules can represent bits 
of hardware ranging from simple gates to 
complete systems, e. g. a microprocessor. 
Modules can either be specified behaviorally or 
structurally (or a combination of the two). A 
behavioral specification defines the behavior of 
a digital system (module) using traditional 
programming language constructs, e. g., if 
assignment statements. A structural 
specification expresses the behavior of a digital 
system (module) as a hierarchical 
interconnection of submodules. At the bottom of 
the hierarchy the components must be primitives 
or specified behaviorally. Verilog primitives 
include gates, e.g., nand, as well as pass 
transistors (switches) [2]. 
In this section we will design a 8-level stack in 
Verilog language and we describe it in 
behavioral specification. Stack is a simple data 
structure that may be implemented in hardware 
description languages, as Verilog.  
Below is a logic diagram for an 8-level stack. 

 
Figure 1. The diagram for 8-level stack 

 
The design is described using the concept of a 
module. The module is conceptualized as 
consisting of two parts, the port declarations and 
the module body. The port declarations 
represent the external interface to the module – 
Push, Pop, Reset, DataIO, SP, Full, Empty, Err. 
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// Verilog code for stack 
module Stack (DataIO, Reset, Push, 
Pop, SP, Full, Empty, Err); 
/* declare input, output and inout 
ports */ 
inout [3:0] DataIO; 

input Push,Pop,Reset; 
output  Empty,Err;  Full,
output [2:0] SP; 
// declare registers
reg Empty,Err;  Full,
reg [2:0] SP; 
reg [3:0] Stack[7:0];    
reg [3:0] DataR; 
/* continuous assignment of  DataIO to 
DataR register, with delay 0 */ 
wire [3:0]  #(0) DataIO = DataR; 
... 
endmodule 
 
The module body represents the internal 
description of the module - its behavior, in this 
case. The name of the module is just an arbitrary 
label invented by the user – Stack, and it does 
not correspond to a name pre-defined in a 
Verilog component library.  
The ports may correspond to a pin on an IC, an 
edge connector on a board, or any logical 
channel of communication with a block of 
hardware.  
Each port declaration includes the name of one 
or more ports and the direction that information 
is allowed to flow through the ports:  

- input - Push, Pop, Reset; 
- output - SP, Empty, Full, Err; 
- inout - DataIO.  

The module definition is terminated by the 
keyword endmodule. 
 
Stack Description 
 
At any given instant in time, only the item on 
the top of the stack is accessible. Any other item 
in the stack is blocked from convenient access 
by all of the items above it. To access items 
below the item on the top of the stack, we must 
sequentially remove items from the top until we 
reach the item we want to access. 
In this implementation the stack needs to be 
eight entries deep and four bits wide. That 
means we will need a collection of 8 registers. 
There are two operations we can perform on the 
stack, push and pop. One way to implement a 
stack is to actually move data between 
“adjacent” registers and another way to do it, as 
shown in this implementation, is to keep the data 
stationary and adjust a pointer (Stack Pointer - 
SP). 
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There are three commands: 
- Push –  this input should cause the 

four-bit binary input to be pushed 
onto the stack; 

- Pop – this input should cause the top 
item on the stack to be popped and 
stored in DataR register; 

- Reset – this input should initialize 
the entire stack to a known state; 

 
The statements from the inside of the stack will 
be made by two blocks always that contains 
statements which are only executed when any of 
the variables in the list of variables change: 
- the first always is controlled by positive edge 
of Push, Pop and Reset; in this block will be 
initialize the stack and will be push and pop 
data; 
 
always @ (posedge Push or posedge Pop 
or posedge Reset) 
begin 
...
end

 

 
- the second always is controlled by negative 
edge of Pop; in this block the DataR register 
goes in High Impedance and the stack will be 
able to receive data in case of push instruction. 
 
always @ (negedge Pop) 
begin 
 DataR = 4'bzzzz; 
end 
 
The list of variables is called the sensitivity list, 
because this construct is sensitive to their 
change. The block always will loop until 
simulation is over. 
 
Stack PUSH 
 
A push instruction will cause the 4-bit input 
(DataIO) to be pushed onto the stack and the 
stack pointer SP will be incremented. 
After a depth of 7 is reached, the stack is full 
and the Full output goes HIGH. If further pushes 
are attempted when the stack is full, the Error 
output goes HIGH, and the stack information at 
the top of the stack (7) will be over-written. 
 

if (Push==1)  begin 
    when the stack is empty // 
     if (Empty==1)   
     begin 
      Stack[SP] = DataIO; 
 Empty = 0; 
 if (Err==1)   
          Err=0; 
     end 
     else   // when the stack is full 
     if ll==1)    (Fu
     begin 
 Stack[SP] = DataIO; 
 r = 1; Er
     end 
     else 
     begin 
 SP = SP +1; 
 Stack [SP] = DataIO; 
 if (SP == 3'b111)   
          Full = 1; 
     end 
end 
 
Stack POP 
 
A pop instruction will cause the top item on the 
stack to be popped and the stack pointer SP will 
be decremented. Further pops from a not empty 
stack will place the bottom data on the DataR 
register. If further pops are attempted when the 
stack is empty, the Error and Empty output goes 
HIGH. 
 
if(Pop==1) begin 
/* if SP indicates the last location 
but the stack is not empty */  
    if ((SP == 3'b000) && (Empty!=1) 
    begin 
 DataR = Stack[SP]; 
 Empty = 1; 
    end 
    else   // if the stack is emtpy 
    if(Empty==1)    
    begin 
 DataR = Stack[SP]; 
 Err = 1; 
    end 
    else 
    begin 
          DataR = Stack[SP]; 
 if (SP != 3'b000)   
          SP = SP-1; 
      // if the stack is full 
 if (Err==1)  Err = 0; 
 if (Full==1) Full = 0; 
    end 
end 



Stack RESET 
 
The reset instruction will initialize the entire 
stack to a known state: the DataR output goes in 
High Impedance and the other outputs (Stack 
Pointer, Full, Empty, Err) goes LOW. 
 
if (Reset==1)   
begin 
 DataR = 4'bzzzz; 
 SP = 3'b0; 
 Full = 0; 
 Empty = 0; 
 Err = 0; 
  end 
 
 
The test bench 
 
Once the stack module has been designed it can 
be tested by applying test inputs. This is idea of 
the stimulus module. It calls the design module 
and uses its functionality then results can be 
monitored to verify its design.  
Below is the stimulus for the 8-level stack.  
 

 
Figure 2. The stimulus for the stack 

 
A. Test Vectors 
 
In this code fragment, the stimulus and response 
capture are going to be coded using a pair of 
initial blocks used for monitoring, generating 
wave forms (clock pulses) and processes which 
are executed once in a simulation. 
An initial block consists of a statement or a 
group of statements which will be executed only 
once at simulation time 0. The initial blocks 
execute concurrently and independently.  
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module StackTest;   
/* Nothing else calls it to use its 
functionality, so it doesn't need a 
port list */ 
... 
initial 
begin 

// Stimulus 
...
end 

 

initial 
begin 
// Analysis 
... 
end 
endmodule 
 
The wires used in continuous assignments must 
be declared. We want to be able to assign values 
to the inputs and values to be driven into the 
output. It follows that the inputs must be reg 
data types and the output must be a wire. 
 
reg [3:0] DataR;  
reg Push, Pop, Reset;  
wire Full, Empty, Err;  
wire [2:0] SP;  
/* continuous assignment of DataIO to  
DataR register, with delay 0 */ 
wire [3:0] #(0) DataIO = DataR;  
 
In a module instance, the ports defined in the 
module interface are connected to wires in the 
instantiating module through the use of port 
mapping.  
Each instance is an independent, concurrently 
active copy of a module. Each module instance 
consists of the name of the module being 
instanced (e.g. Stack), an instance name (unique 
to that instance within the current module - 
StackTest) and a port connection list. 
The module port connections can be given in 
order (positional mapping), or the ports can be 
explicitly named as they are connected (named 
mapping). Named mapping is usually preferred 
for long connection lists as it makes errors less 
likely. 
 
Stack StackTest (DataIO, Reset, Push, 
Pop, SP, Full, Empty, Err); 
 
In the stimulus initial block, we need to generate 
waveform on the Push, Pop, Reset inputs and 
initialize DataR register. 
 
initial  begin 
// initialize  registers 
    NrIter = 8; 
    # 0  Reset = 1; 
/* #2 means do after two unit of  
simulation  time */ 
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    # 2  Reset = 0; 
// after reset the stack is empty 
   Pop = 1;   
   # 1 Pop = 0; 
// initialize register DataR 
   DataR = 4'b0000; 
//  
   for (i=0; i<=NrIter; i=i+1) 

push data onto the stack

   begin 
        # 2 Push = 1; 
        # 1 Push = 0; 
        DataR = DataR +1; 
   end 
// getting data from the stack 
   # 1 DataR = 4'bzzzz; 
/* pops the stack and stores the  
contents in DataR register   */ 
   for (i=0; i<=NrIter; i=i+1) 
   begin 
      # 2 Pop = 1; 
      # 1 Pop = 0; 
   end 
end 
 
B. Results Analysis 
 
The Response initial block can be described 
very easily in Verilog as we can benefit from a 
built-in Verilog system tasks. 
 
initial  // Response 
begin 
$display("Push  Pop  Reset  DataIO 

u rror  SP"); Empty  F ll  E
$monitor($time, ,Push, ,Pop, ,Reset, 
, ,DataIO, ,Empty, ,Full, ,Err, 

; ,SP)
end 
 
$display system task allows the designer to print 
a message. 
$monitor is a system task that is part of the 
Verilog language. Its mission is to print values 
to the screen. The $monitor task is executed 
whenever any one of its arguments changes. 
$time is a system function and it returns the 
current simulation time. In the above example, 
$time is an argument to $monitor. However, 
$time changing does not cause $monitor to 
execute.  
The space at position 2 in the argument list 
ensures that a space is printed to the screen after 
the value of $time each time $monitor is 
executed.  
This is the outputs created by $monitor in 
StackTest testbench: 

 
Time Push Pop Reset DataR DataIOEmpty Full Error SP 
  0         x       x       1        x          x      0       0       0       0 
  2         x       1       0        x          x      1       0       0       0 
  3         x       0       0        0          0      1       0       0       0 
  5         1       0       0        0          0      0       0       0       0 
  6         0       0       0        1          1      0       0       0       0 
  8         1       0       0        1          1      0       0       0       1 
  9         0       0       0        2          2      0       0       0       1 
11         1       0       0        2          2      0       0       0       2 
12         0       0       0        3          3      0       0       0       2 
14         1       0       0        3          3      0       0       0       3 
15         0       0       0        4          4      0       0       0       3 
17         1       0       0        4          4      0       0       0       4 
18         0       0       0        5          5      0       0       0       4 
20         1       0       0        5          5      0       0       0       5 
21         0       0       0        6          6      0       0       0       5 
23         1       0       0        6          6      0       0       0       6 
24         0       0       0        7          7      0       0       0       6 
26         1       0       0        7          7      0       1       0       7 
27         0       0       0        8          8      0       1       0       7 
28         0       0       0        z          z      0       1       0       7 
30         0       1       0        z          7      0       0       0       6 
31         0       0       0        z          z      0       0       0       6 
33         0       1       0        z          6      0       0       0       5 
34         0       0       0        z          z      0       0       0       5 
36         0       1       0        z          5      0       0       0       4 
37         0       0       0        z          z      0       0       0       4 
39         0       1       0        z          4      0       0       0       3 
40         0       0       0        z          z      0       0       0       3 
42         0       1       0        z          3      0       0       0       2 
43         0       0       0        z          z      0       0       0       2 
45         0       1       0        z          2      0       0       0       1 
46         0       0       0        z          z      0       0       0       1 
48         0       1       0        z          1      0       0       0       0 
49         0       0       0        z          z      0       0       0       0 
51         0       1       0        z          0      1       0       0       0 
52         0       0       0        z          z      1       0       0       0 
 
Another system task is $stop and it puts the 
simulator into a halt mode and passes control to 
the user.  

 
initial begin 
/* Will stop the execution after 
100 simulation units */ 
   #100  $stop; 
end 

 
The figures show how the initial block has 
created a waveform sequence for the stack 
signals, for push and pop instruction. The Push 
instruction pushes the contents data onto the 
stack and when the stack pointer (SP) is reached 
7, the stack is full and the Full output goes 
HIGH. 



 

 
Figure 3. Stack Push

  
The Pop instruction pops the stack and stores 
the contents in DataR register and when the 

stack pointer (SP) is reached 0 the stack is 
empty and the output Empty goes HIGH. 

 

 
Figure 4. Stack Pop 

 
3. Conclusion 
 
Simulation of the Verilog source before 
synthesis allows a direct form of testing the 
design and finding simple run-time bugs before 
being tested in hardware. To allow ease of 
simulation, the stack was replaced with accurate 
timing model and file to represent their behavior 
and storage. Functionality could easily be tested 
by writing programs in byte-code and saved as a 
file to be automatically run by the simulation. 
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