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Abstract. This paper will describe a method for determining the functioning parameters of the internal 
combustion engine (ICE), such as pressure in cylinders or the air-fuel ratio. Direct measuring of the internal 
combustion engine’s functioning parameters requires expensive sensors, the installation of which inside the 
engine presents big technical difficulties. Although inefficient from economical point of view, the last method is 
often used with the modern automobiles. 
 

 
Introduction 
 
The main parameter that characterises the 
internal combustion engine’s functioning is the 
air-fuel relation (or the Lambda factor). This 
parameter is directly proportional to the air 
quantity and fuel quantity relation:  
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 (at normal pressure and temperature) 
 

So, given a air-fuel ratio of 14,7:1, Lambda 
equals 1. This 14,7:1 relation is called 
stoichiometrical and corresponds to the air and 
fuel quantities needed for a complete 
combustion. For a higher quantity of fuel, 
Lambda<1, and the mixture is called rich. For a 
higher quantity of air, Lambda>1, and the 
mixture is called lean. The maximal power is 
obtained when Lambda approximately equals 
0,9. The minimal fuel consumption is obtained 
when Lambda approximately equals 1,1. 
Current engines reduce emission levels to within 
legislative limits by converting the exhaust gases 
into less toxic products using three-way catalytic 
converters. For optimum effect, three-way 
catalytic converters require that the Lambda-
ratio is closely maintained at stoichiometric 

(unity). In modern engines, a Lambda-sensor, 
mounted in the exhaust stream, determines 
whether the Lambda is above or below unity 
from the amount of oxygen present. The Engine 
Control Unit uses this to adjust the fuel pulse 
width to keep the Lambda-ratio approximately at 
unity. Power units currently under development, 
for example the gasoline direct injection engine, 
may involve operation in lean of stoichiometric 
regions of the characteristics of the engine. The 
lambda-sensor that is installed in most 
production vehicles has a voltage-lambda 
characteristic which effectively makes it a 
binary device. It can be used to indicate whether 
the value of lambda is above or below unity, but 
it is unable to provide an accurate analogue 
measurement of air-fuel ratio. Accurate 
measurements can be made using what are 
referred to as wideband lambda-sensors, but 
they are very expensive, and in fact, even the 
currently-used binary lambda sensor represents 
an undesirable cost penalty. 
The functioning regime of the engine that 
determines a minimal pollution of the 
environment is also very important. It is obvious 
that a minimal quantity of the combustion 
resultant substances is to be obtained when the 
combustion is complete, that is when Lambda 
approaches 1. 
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Fig. 1. System for neural network usage 

 
So, knowing the current Lambda value, we have 
the possibility to modify in real time the 
behaviour of the engine in accordance to certain 
optimization requirements (for example: 
minimal pollution, maximal power, minimal fuel 
consumption, etc.). This adjustment can be made 
within an automatic closed-loop system that is 
immune to perturbations and is more precise 
than the open-loop system. Most engines 
command systems use open-loop because of the 
impossibility of measuring the regulated 
variable – the Lambda factor. 
The existence of a cheap method for a precise 
measuring and the further regulation of the air-
fuel relation would allow a considerable 
reduction of the polluting gas emission as well 
as a fuel economy. Though not considered a 
sensor, the engine spark plug is in direct contact 
with the burning processes that take place in the 
cylinder.  The analysis of the tension variation in 
time at the spark plug jacks would be a 
convenient method for observing the phenomena 
inside the engine.  
The most frequent method for utilizing a spark 
plug as a sensor is the so-called ionic current 
method[1]. This method is especially used for 
measuring the pressure inside the cylinders, the 
air-fuel relation, as well as for detecting some 
disturbances, such as late ignition or cylinder 
knocking.  
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In ionic current measuring system, the spark 
plug works as a sensor only during that part of 
the cycle when it is not used for mixture 
ignition. During this period, a continuous 

tension of 100V is applied on the spark plug 
jacks and then the current is to be measured. 
This current appears due to the reactive ions 
from the flame that lead the current between the 
two electrodes of the spark plug. Ions keep 
forming during the ignition as well as after that. 
The type and the quantity of the formed ions 
depend on the ignition process characteristics. 
The ionization current depends also on pressure, 
temperature, etc., and as a result it carries a great 
amount of information on the processes inside 
the engine, and in consequence this signal is 
very complex. This is why the signal analysis 
brings many difficulties, and the classical 
methods of signals processing are no longer 
efficient. In this case, the neural networks 
represent the most adequate solution, due to 
their capacity of treating complicate forms 
signals and of finding the correspondence 
between the incoming signal and the estimated 
dimensions.  
These neural networks possess a set of specific 
characteristics, which describe them as a 
priceless mathematic instrument in recognizing 
a model (Fig. 1). 
Some of their important characteristics are the 
reaction capacity to an unknown signal, the 
possibility of extracting new information and 
statistic data from the analyzed information, as 
well as the possibility to react to a signal with 
errors. 
The neural networks contribution in observing 
the internal combustion engine functioning is the 
capacity of predicting the looked-for parameters, 



which in this case is the estimation of the 
Lambda parameter. With this purpose a device 
for analysing the concentration of some 
substances from the exhaust gas is introduced 
into the exhaust tube. Applying these 
characteristics at the neural network entrance, 
we obtain the real Lambda vector (the gas 

analyser) , measured at 
different time intervals, as well as the estimation 
vector from the transducer  

.  Some types of 
neural networks are known to have some 
specific properties that could solve the upper 
given problem taking as an example the many 
levels perceptron (Fig. 2) (MLP). The many 
levels perceptron is a static network but it is 
adapted for processing dynamic data[3]. 
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Fig. 2. The structure of a many-level perceptron 
 
We may consider that the MLP network casts a 
vector with n elements from the entrance in a n-
dimensional space. The vectors that belong to 
different classes, occupy different regions of this 
entrance space.  
During the process of learning the neural 
network, a training file which contains the 
exemplar vectors is always attributed to the 
MLP network entrance in the iterative result of 
which a partition of space occurs in order to 
obtain a classification of all vectors. During the 
work phases, the vector to be classified is 
presented to the MLP network [2], which 
divides it into categories and determines where 
this vector is situated in the n-dimensional 
space. In most of the cases the hidden layer, a 

component part of the MLP network, consists of 
elements whose goal is to determine the 
Euclidian distance: 
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by a Gauss Function for activation (Fig. 3)  
 

 
 

Fig. 3. Gauss function 
 
A clustering algorithm is used for calculating the 
centre (position) of the cluster. In its elementary 
form, the exit level of the MLP network 
achieves a linear sum of the basic function 
values.  The nonlinear transformation done by 
the basic neurons signifies the movement of the 
entrance vectors in a space with bigger 
dimension. Under some circumstances the 
vectors are easier to separate in a larger space, 
rather than in the space of their intrinsic 
dimension. The architecture of the neural 
networks depends a lot on the entrance space 
topology as well as on the comparison criteria. 
The engine can be equipped with a 
dynamometer which presents the engine with a 
“dummy” load that can be varied as desired. The 
resulting load-torque can be measured and the 
output power calculated. The throttle setting and 
air-fuel ratio can be manually adjusted. The air 
fuel ratio that results from this adjustment is 
measured by an exhaust gas analyser. The 
ignition-system is modified by the addition of a 
high-voltage test-probe at the spark-plug to 
enable the 
voltage to be measured and recorded. A current 
transformer is fitted to the high-tension line to 
permit the recording of current data. 
A MLP network with one single hidden level 
and with the activation sigmoid function can be 
used to classify the transducer data. The learning 
through back propagation algorithm is applied to 
the MLP network during its usage. That is a 
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training file which contains the classification 
needed data is required. The estimation vector 
from the transducer  is 
created through measures at equal time intervals. 
Each vector is associated with an exit vector 

 
showing whether the Lambda value measured by 
the gas analyser is enriched, equal to 1, or 
impoverished. Three sets of traducer vectors and 
respectively their exit vectors S
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r, Sc, Sw are 
obtained. These vectors are combined in one 
single training file F={ Sr, Sc, Sw }. The MLP 
network is trained using the inverted cumulative 
propagation. The criteria used for determining 
the end of the training process is based on the 
principle of selecting a convergence value Tc of 
the neurons exiting data. It is possible that the 
neural network can indicate a rich, lean or 
correct mixture (Lambda = 0.9, 1.1 or 1.0 
respectively) with a success rate of 
approximately 90% providing load, speed etc., 
as constant values. Owing to experimental 
difficulties in obtaining data, these results can be 
obtained with smaller training files than would 
be expected to give optimum discrimination. 
Much better results are desirable, a reasonable 
aim being 99% correct discrimination with a 
much smaller deviation of Lambda from 
stoichiometric, for example one or two percent, 
over a range of speed and load conditions. This 
in turn requires much larger quantities of 

training (and test) data. However, practical 
problems should be encountered in capturing the 
large amounts of training data required. The 
most serious is that the engine is required to 
maintain a constant value of Lambda for several 
minutes, so that a large number of representative 
voltage signatures can be captured, while in fact 
considerable drift in the Lambda value occurs 
over this time. An associated problem which 
may be encountered is that the simultaneous 
manual control of load, speed and Lambda 
become impracticable. In an attempt to facilitate 
close control of the Lambda value, to enable 
training data for the neural network to be 
collected, a feedback loop can be put in place 
from the Lambda sensor to enable closed-loop 
control.  
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