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Abstract. PID controllers have found extensive industrial applications for several decades. Recently, mixed 
H2/H∞ optimal control problems have received a great deal of attention from the viewpoint of theoretical design. 
Mixed H2/H∞ control design approaches are useful for robust performance for systems under parameter 
perturbation and uncertain disturbance. In this paper, a design procedure is proposed to tune PID controller 
parameters. Since the criterion that must be optimized is of integral type and the constraints are imposed by the 
robust control, the problem to be solved is a highly nonlinear minimization problem, in which many local 
minima may exist. Genetic algorithms are parallel, global search techniques that emulate natural genetic 
operators. Because a genetic algorithm simultaneously evaluates many points in the parameter space, it is more 
likely to converge to the global solution. MATHEMATICA is powerful symbolic calculus software, which also is 
used in the paper to evaluate integral indexes and illustrate better the results. Illustrative simulation example 
confirm that good performance can be achieved by the proposed method. 
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1. INTRODUCTION 

 
The increasing complexity of the modern control 
systems has emphasized the idea of applying 
new approaches in order to solve different 
control engineering problems. The PID control 
is the most widely used controller type in 
industry and the design engineer must tune PID 
parameters according to specific needs. Three 
major factors in the PID controller tuning must 
be known: the plant, the controller type and the 
performance criterion of the control loop [1]. 
Within the framework of the classical theory, 
one of the factors very important in tuning PID 
controllers, the performance criteria, may be 
divided into two main groups: time domain 
criteria and frequency domain criteria. In this 
respect, the designer must simultaneously meet 
more ore less hard to satisfy the design limits 
[2]. Starting from these, in the PID control the 
following tuning methods are typically used: 
Ziegler and Nichols (1942), Chien, Hrones and 
Reswick (1952), Clarke (1984), Kaya and 
Scheib (1988), Aström and Hägglund (1984, 
1988), [1, 3-7]. The performance mentioned 

above are characterized by one obvious 
disadvantage: the designer must more or less try 
to satisfy the design limits. The ability of 
obtaining a certain stationary and transient 
regime for the closed-loop system imposes a 
particular choice of the structure and controller 
parameters, in concordance with performance 
accomplishment. The performance indexes are 
specified by design. Because in most of the 
cases the achievement of good quality 
performance indexes lead to contradictory 
solutions and the trial to “box in” the system 
response within limits of the types as: a: zero 
steady-state error, good overshoot and overshoot 
time, rise time, system time response, gain and 
phase margin etc. the only way out seems to be 
via trial and error synthesis methods. The 
system error e is the signal that is most likely to 
influence the mentioned performances [8], [9], 
[10]. As the duration of error also must play a 
role, one finds that the most meaningful of these 
performance criteria have the integral form. 
Mixed H2/H∞ control design approaches are 
useful for robust performance for systems under 
parameter perturbation and uncertain 



disturbance. However, the conventional output 
feedback designs of mixed H2/H∞ optimal 
control is very complicated and not easily 
implemented for practical industrial 
applications. Genetic algorithms (mnemonic 
GAs) are optimization and machine learning 
algorithms initially inspired from the processes 
of natural selection and evolutionary genetics. In 
this paper, the proposed algorithm will bridge 
the gap between the theoretical mixed optimal 
H2/H∞ control and classical PID industrial 
control. The proposed H2/H∞ control design 
consists in finding an internally stabilizing PID 
controller that minimizes an H2 integral 
performance index subject to an inequality 
constrained on the H∞ norm of the closed loop 
transfer function. That means the solving of the 
two problems: stability robustness constraint and 
external disturbance attenuation constraint. The 
problem can be interpreted as a problem of 
optimal tracking performance subject to a 
robust stability constraint (or external 
disturbance attenuation constraint). The design 
procedure proposed for off line PID tuning in 
order to achieve the mixed H2/H∞ optimal 
performance follows the steps: 
1.in the first step based on Routh-Hurwitz 
criterion, the stability domain of the three PID 
parameter spaces, which guarantees the stability 
of the closed loop is specified 
2.in the second step, the subset of the stability 
domain in the PID parameter space 
corresponding to step 1 is specified so that H∞ 
constraint mentioned above is satisfied 
3.in the third step the design problems becomes, 
in the subset domain of the H∞ constraint 
domain mentioned in step 2, how to obtain one 
point, which minimizes the H2 tracking 
performance. This is generally considered to be 
a highly nonlinear minimization problem, in 
which many local minima may exist. A local 
minimum can be reached via GAs.  
Genetic algorithms are parallel, global search 
techniques that emulate natural genetic operators 
[11]. Because a GA simultaneously evaluates 
many points in the parameter space, it is more 
likely to converge to the global solution. It does 
not need to assume that the search space is 
differentiable or continuous, and can also iterate 

several times on each datum received. Global 
optimization can be achieved via a number of 
genetic operators, e.g., reproduction, mutation, 
and crossover. GAs are more suitable to the 
iterative PID H2/H∞ control design for the 
following reasons: the search space is large; the 
performance surface does not require a 
differentiability assumption with respect to 
changes in PID parameters (therefore, the 
gradient-based searching algorithms that depend 
on the existence of the derivatives is inefficient); 
the likely fit terms are less likely to be destroyed 
under a genetic operator, thereby often leading 
to faster convergence. MATHEMATICA is 
powerful symbolic calculus software, which also 
will be used in the paper to illustrate better the 
results. [12]. MATHEMATICA offers a reach 
extensible environment for engineering applied 
mathematics. Some illustrative examples obtain 
by simulation confirm that good performance 
can be achieved by the proposed method. 
 
2. PID ROBUST CONTROL DESIGN 
 
Let consider the PID control system in Fig.1. 
The plant G(s) to be controlled undergoes 
perturbation ∆G(s) and the PID controller, is of 
the classical type: 

skskksC DIR ++= /)(     (1) 
where the plant perturbation ∆G(s) is assumed to 
be stable but uncertain. 
 

_
e(t)
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Fig. 1. PID control system with plant 

perturbation 
 
Suppose ∆G(s) is bounded according to the 
relation: 
 

),0[,()( ∞∈∀≤Δ ωωξω jjG   (2) 
where the function ξ(s) is stable and known. 
The robust stability reveals that if a controller 
C(s) is chosen so that nominal closed loop 
system (free of ∆G(s)) in Fig.1 is asymptotically 
stable, and the following inequality holds, 
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then the closed loop system in Fig. 1 is also 
asymptotically stable under plant perturbation 
(2), where the H∞ norm in (3) is defined as: 

ω
ω

jGsG (sup)(
),0[ ∞∈

∞
=     (4) 

I.e., the maximum peak of the spectral density of 
G(s). 
However, often robust stability alone is not 
enough in control system design. Optimal 
tracking performance is also appealing in much 
practical control engineering applications. 
Therefore, the mixed H2/H∞ control problem is 
formulated as follows: 

∫
∞
0

2 ,)(min dtte      (5) 
for the nominal closed loop system in Fig. 1, 
subject to the robust stability constraint (3), 
where e(t) is the tracking error. That means, 
under the constraint (3), the error energy 
(integral squared error criterion) (5) must be as 
small as possible. From the above analysis the 
control design problem involve how to specify a 
PID controller to achieve the optimal tracking 
(5) subject to the robust stability constraint (3).  
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2. PID MIXED H2/H∞ OPTIMAL 
CONTROL 
 
In the nominal case, the tracking error signal is 
given by: 
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Using Parseval’s theorem, one obtains the 
expression of the integral criterion: 
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where B(s) and A(s) are Hurwitz polynomials of 
s with appropriate degree. The minimization 
problem in the equation (7) can be solved with 
the aid of the residue theorem. Let 
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Then using MATHEMATICA facilities, and 
Krasovschii-Pospelov formulae one obtains the 
general form of Jm :  
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For m=1, 2, 3 (usually in practical applications) 
one obtains [2]: 
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where 3,0,, =iba ii  depend on the plant and 
controller parameters. 
Then, based on the residue theorem, the robust 
performance in (9) must be of the following 
form: 

),,(min DIRmm kkkJJ =                    (11) 
From the definition (4), the constraint in (3) can 
be expressed by: 
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or: 
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where p(ω) and q(ω) are some appropriate 
polynomials of ω. The physical meaning of the 
above relation is that if the largest peak of 
Θ(ω)=p(ω)/q(ω) is less than 1, then the system 
in Fig. 1 is stable under plant perturbation. 
Generally speaking, to scan ω∈[0,∞) to find the 
peaks of Θ(ω) is not an easy task. Actually, the 
peaks of Θ(ω) occur at the points which must 
satisfy the following equation: 
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Therefore, only the real roots αi of the above 
equation need to be found. So, the robust 
stability constraint in (3) is equivalent with: 
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The design procedure is, therefore, a 
minimization problem (11) under the inequality 
constraint (15). The algorithm follows the steps: 
Step 1: Given a plant G(s).PID controller and 
the enveloping function ξ(s) of the plant 
perturbation. 
Step 2:Specify the parameter domain Δ of (kR, 
kI, kD) to guarantee the stability of the nominal 
closed loop system via the Routh-Hurwitz 
criterion, where: 

}),,{(: 3ℜ⊂=Δ DIR kkk              (16) 
Step 3:Compute a set of parameters in Δ from 
GA and compute αi, i=1,n from (14). 
Step 4:Check if the relation (15) is fulfilled. 
Step 5:Compute Jm (11) in order to obtain robust 
performance. Then repeat the procedure Step3 
to Step 5 until a suitable parameter set is 
obtained. 

 
3. GA FOR MIXED ROBUST CONTROL 
 

 316

GAs is powerful search algorithms based on the 
mechanics of natural selection and natural 
genetics. The algorithms work with a population 
of strings, searching many peaks in parallel as 
opposed to a single point; use probabilistic 
transition rules instead of deterministic rules; 
use objective function information instead of 
derivatives or other auxiliary knowledge. GAs 
are inherently parallel, because they 
simultaneously evaluate many points in the 
search space. Considering many points in the 
search space they have a reduced chance of 
converging to the local optimum and would be 
more likely to converge to the global optimum. 
GAs require only information concerning the 
quality of the solution produced by each 
parameter set (objective function evaluation). 
This differs from many optimization approaches, 
which require derivatives information, or, worse 
yet, complete knowledge of the problem 
structure and parameters. Since genetic 
algorithms do not require such problem specific 

information, they are more flexible than more 
search methods. 
A genetic algorithm is an iterative procedure, 
which maintains a constant size population of 
candidate solutions. During each iteration step, 
or generation, three genetic operators 
(reproduction, crossover and mutation) are 
performing to generate new populations 
(offsprings), and the chromosomes of these new 
populations are evaluated via the value of fitness 
that is related to some cost functions. On the 
basis of these genetic operators and evaluation, 
the better new populations of candidate solution 
are formed. It is shown in the SCHEMA 
THEOREM [11]. that the genetic search 
algorithm will converge from the viewpoint of 
schema. With the above descriptions, the 
procedure of a simple genetic algorithm is given 
as follows: 
1.Generate randomly a population of binary 
strings. 
2.Calculate the fitness for each string in the 
population. 
3.Create offspring strings by simple GA 
operators. 
4.Evaluate the new strings and calculate the 
fitness for each string. 
5.If the search goal is achieved, or an allowable 
generation is attained, stop and return. 
 
Genetic algorithms are working with a 
population of binary strings, not with the 
parameters themselves. For example, with the 
binary coding method, The PID parameters set 
would be coded as binary strings, of 0’s and 1’s 
with different length. The designer in the search 
space specifies the choice of a certain length. In 
the binary coding, the bit length BBi and the 
corresponding resolution the relation relates Ri: 
 

12 −
−
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where Mi and mi are the upper and the lower of 
the parameter ki. As a direct result, the PID 
parameter set (kR, kI, kD), can be transformed 
into binary string (chromosome), with the 
length: 
 

∑= i iBL                (18) 



The decoding procedure is the reverse procedure 
of coding. 
In this paper, the fitness and cost function is 
obviously define with the relation: 

),,(),,( DIRmDIR kkkJkkkE =             (19) 
where the triplet (kR, kI, kD)εΔ. The fitness value 
is a reward based on the performance of the 
possible solution represented by the string, or it 
can be thought of as how well a PID controller 
can be tuned according to the string to actually 
minimize the tracking error. The better the 
solution encoded by a string (chromosome), the 
higher the fitness. To minimize the quality index 
in (19) is equivalent to getting a maximum 
fitness value in the genetic searching algorithm. 
A chromosome that has lower quadratic index 
should be assigning a larger fitness value. Then 
the genetic algorithm tries to generate better 
offsprings to improve the fitness. Therefore, a 
better PID controller could be obtained via 
better fitness in genetic algorithms. There are 
quite a number of approaches to perform this 
mapping known as fitness techniques. 
In this paper is proposed the technique so-called 
windowing [11], as described in Fig. 3., 
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Fig. 3. The relation between the cost function 
and fitness function F 

where m and n are computed in each generation 
according with Fb, Fw, Eb, Ew. 
Now, let us shortly describe the operation with 
the three basic operators. 
Reproduction. Reproduction is based on the 
principle of survival of the better fitness. The 
fitness of the ith string , Fi is assign to each 
individual string in the population where higher 
Fi means as shown better fitness. These strings 

with large fitness would have a large number of 
copies in the new generation. 
Crossover. By the second operator, the strings 
exchange information via probabilistic 
decisions. Crossover provides a mechanism for 
strings to mix and match their desirable 
qualities through a random process.  
Mutation. The third operator, mutation, 
enhances an ability of genetic algorithms to find 
a near-optimal solution. Mutation is the 
occasional alternation of a value at a particular 
string position. In the case of binary coding, the 
mutation operator simply flips the state of a bit 
from 0 to 1 and vice versa. Mutation should be 
used sparingly because it is a random search 
operator. 
As said above the convergence of a genetic 
search algorithm is discussed from the viewpoint 
of schema.[11] 
 
4. Design example 

 
In order to illustrate the effectiveness of the 
proposed approach the following example with 
numerical simulation is given: 
 
Example. Let us consider the control system 
shown in Fig. 1. A PD controller would be given 
to achieve the mixed H2/H∞ optimal tracking 
under the bounded plant perturbation. So, 

F(kR, kI, kD) 
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Suppose the input command is a unit step, then: 

)(
)()( 2 sA

sB
ksks

sse
RD

=
++

=             (21) 

The cost function is: 

DDR

R
DIRDIR kkk

k
aaa

ababkkkJkkkE
2
1

22
),,(),,(

210

2
2
00

2
1

2 ==
+

==

                (22) 
The relation between fitness function and cost 
function is given by the linear relation. The 
robust stability constraint lead to the relation 
(13) with appropriate polynomials for Θ(ω). 
The genetic algorithm begins by randomly 
generating a population of 1,000 chromosomes. 
After 10 generation, proper controller 

),,
 

Fb 
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parameter can be obtained. The obtain values 
for controller parameters are kR=100 and kD=30. 

[7] Clarke, D.W., (1984) PID algorithms and 
their computer implementation, Trans. Inst. 
Meas. Control, 6, pp.305-316. In Fig. 4, is represented the step response of the 

control system. [8] Calistru, C.N., Olah, I ,and Mastacan, L., 
(1994) A Method for tuning PI controllers in 
mechanical and metallurgical processes, Proc. 
of. TCEPCEMMME’94 Workshop, Miskolc, 
pp. 88-93. 
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Fig. 4. The step response of the control system 
 
In conclusion, the presented example shows 
clearly the effectiveness of the proposed robust 
approach.  
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