

337

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

XML-BASED QUERY LANGUAGES USED IN MULTIMEDIA

Sabin BURAGA1, Mihaela BRUT2

"Al. I. Cuza" University of Iaşi
Berthelot, 16, RO-700483 Iaşi
1) busaco@infoiasi.ro
2) mihaela@infoiasi.ro

Abstract. In this paper, we present the general framework of the XML information retrieval on Web, with a special
lookout to the XQuery language – proposed recommendation of the World-Wide Web Consortium. Also, we focus
on the different possible techniques for querying the multimedia information annotated in SMIL.
Keywords: query languages, XML documents, multimedia retrieval.

Introduction

The XML language (Extensible Markup
Language) [9] as the standard meta-language
applied to define markups for Web documents is
a key technology in defining the structured and
semi-structured collections of data. XML is
already used to represent many different kinds of
data: web pages, web messages, electronic
books, e-business data and applications.
In addition, some systems offer XML views of
non-XML data sources such as relational
databases, allowing XML-based processing of
data that is not physically represented as XML.
Also, using the XML structure of the Web
documents, the XML-based query languages
provide different ways of information retrieval.
In this paper, we shall present the general
framework of the querying XML documents
problem, followed by a survey of query
languages and techniques proposals,
emphasizing the XQuery language [9] – the Web
Consortium recommendation, currently in
process of standardization.
We shall discuss the possibility of querying Web
multimedia information by applying XQuery
constructs to multimedia Web documents
expressed by SMIL (Synchronized Multimedia
Integration Language) [8] elements, in order to
obtain the results in the same format.

Querying Issues in the Web Context

The World Wide Web space already became a
universe of information, being a needful work
instrument for all researchers. Many scientific
data collections are now available on the Web.
The problem of the efficient access and
management of the growing information became
more and more critically. The huge quantity of
available data makes the results of searching a
certain subject using a traditional search engine
to include hundreds or even thousands Web
pages, often provided in an irrelevant order of
significance. The main reason is that the actual
search engines (e.g. Altavista or Google) do not
take into account the structure of the Web
documents containing the requested keywords.
The XML query languages and techniques tried
to address this deficiency by extrapolating the
techniques of querying databases and processing
text documents for exploiting the XML
documents structure.
As a standard recommended by the Web
Consortium, XML is considered as the data
format for information interchanging between
the diverse Internet applications. The XML
popularity is mainly due to its flexibility in the
representation of many data types. The use of
markups give to the XML language the
possibility of self-description, and its extensible

nature makes possible the definition of new
document types, with a special destination.
Alongside XML, appeared a series of other Web
standards which were adopted, as auxiliaries, in
the query languages specifications. For example,
XML Schema [9] is a formalism which can be
used to define new data-types for querying
results. XPath [9] language offers a notation for
selecting elements from an XML document.
XSLT (Extensible Stylesheet Language
Transformations) [9] provides a language for
transforming an XML document from a
representation to another (for example, from
XHTML to SMIL).
Because XML is the standard format for
interchanging Web information, it is naturally
that queries applied to different types of
documents to be expressed as queries on XML
data. For this reasons, the necessity of a standard
specialized XML query language became
stringent.
Many of the important requirements for a querying
language – notably, XQuery [8] – follow:

• data extraction from huge XML
documents, by homogeneously
processing both the structured part
(elements, attributes, values) and the
properly text;

• syntax based on other XML standards,
such as XPath, XPointer, XSLT;

• XML data transfer between documents
having different ontologies (DTDs);

• querying the distributed data, in different
XML formats, and the integration of
XML results from multiple sources;

• support for standard querying operations:
selection, extraction, reduction,
reorganization, combination;

• verifying the rightness of query results.
Alongside the query languages, there where
developed many software tools (notably COVA)
which implement them together with other
specific retrieval techniques.
In order to pass towards the Semantic Web, there
where developed a series of XML-based
languages specialized in the modelling of
knowledge, in the same time appearing specific
query languages for documents marked up

according to these: RDQL (for RDF) or DQL (for
DAML+OIL and OWL) [9].

XML Query Languages and Techniques

The query languages for XML documents are
based on the following idea: they offer to the user
the possibility to formulate a query in a specific
manner and generate a new XML document as a
pattern for this query. It shall be compared with
the target XML document and shall be retained
and returned only matched data, under the
restructured form of a new XML document. The
query languages themselves are implemented as
XML documents.
We present below XML query languages and
techniques foregoing the XQuery language [9].

XQL

The XML Query Language (XQL) [6, 9] offers
the possibility of filtering and extracting
information from XML documents using a
pattern modelled after the directory notation. The
relation between tags is referred as that between
(parent) directories and their (child)
sub-directories. Inspired by XPath language,
XQL accepts the "/" character to be used to
specify the sub-tags and "@" – for attributes.
Complex queries could be constituted by using
different logical and relational operators.
For example, “author[name = ‘Berners-Lee’
and @year gt 2000]” specify all books
which author is Tim Berners-Lee, and where
published after 2000 year.

XML-QL

XML-QL [9] is a query language which allows
the extraction of information from XML
documents by means of an implemented
WHERE-CONSTRUCT command, analogous to
the SELECT-WHERE construct from SQL or
other query languages for semi-structured data.
The "WHERE" part of the command defines the
interrogation and the "CONSTRUCT" part
specifies the modality of taking over the result, as
in the following example:

 338

WHERE <book>
 <domain>Computer Science </>
 <title> $t </>
 <author> $a </>
 </> IN www.abc/bibl.xml
CONSTRUCT <bibliography>
 <author> $a </>
 <title> $t </>
 </>

Among the XML-QL facilities there could be
mentioned the references to the derived or
circular data structures (by means of regular
expressions), derived queries, and integration of
queries inside other documents.

XML-GL

The XML-GL language [6] is a graph-based
query language with both its syntax and
semantics defined in terms of graph structures
and operations. Although the queries are
formulated visually, the mechanism is too
sophisticated for an ordinary user. An extension
of XML-GL, named XML-GLrec, was
developed. This approach allows moreover
representing XML simple links and generic
recursive queries. Derived from XML-GL,
visXcerpt [1] is a visual querying language for
XML data.

Web Query Graphical Language (WQGL)

To assist users to prepare queries, we designed an
XML-based markup language, called Web Query
Formulating Language (WQFL) [4, 5]. The main
goal of WQFL is to permit obtaining Web
matched-pages with complex and flexible
queries. Each query shall be modeled by WQFL
and a WQFL document will be created for each
found page.
In the designing phase, we encode the Web pages
structural information [5]. According to the given
potential of WQFL language, some users would
like the graphical content to be found on top of
the Web pages and to consist of maximum 4
paragraphs etc. That information is stored into
WQFL documents. Each found Web document
will be processed and it will be retained only the
position (top and bottom) and the occurrences of
some HTML (or XML) elements and attributes.
For each element, we will retain three values that

represent the occurrences of that element on top,
middle and bottom of the Web page. For the
entire user's query, a WQFL document (which
will be locally stored) is generated.
Instead of HTML element names, the WQFL
documents can include position occurrences
information of any XML tags (such as SMIL,
XHTML or MathML elements). From this point
of view, WQFL can be viewed as a query
language for XML data.
More details about WQFL can be found in [4].

XQuery Language

The Web Consortium constituted the XML
Query working group in order to design the
XQuery [9] language intended for querying the
XML documents. XQuery is a functional
language, containing some expression types
which can be combined, and being based on the
datatype system from XML Schema, so that to be
compatible with the related XML standards.
The initial design of the XQuery language is
focused on the information retrieval by querying
the desired XML documents.
We present below a syntactic survey of the
XQuery language, followed by a query example
applied to a SMIL document.
The XQuery syntax was constituted by
incorporating the numerous influences, among
which the most important are the following
standards: XPath (XQuery being a superset of
XPath), XML Schema, XSLT, and XML itself
(see [2] and [8] for details).
Being a functional language, XQuery is
constituted by expressions that return values and
do not have side effects. XQuery has several
kinds of expressions – in majority, composed
from lower-level expressions, combined by
operators or keywords. The simplest kind of
XQuery expression is a literal, which represents
an atomic value, and could be numerical (integer,
decimal, double) or strings.
XQuery allow creating atomic values of other
types – such elements, attributes, text nodes,
processing instructions, and comments – by
calling constructors. A constructor is a function
that creates a value of a particular type from a
string containing a lexical representation of the

 339

desired type. In general, a constructor has the
same name as the type it constructs. For example,
the following constructor creates a value of type
date: date(''2003-12-14''). In XQuery could be
used variables, their names prefixed by “$”
symbol.
XQuery provides a core function library, and a
mechanism whereby users can define additional
functions. For example, the substring() function
could be used to extract seven characters from a
string, beginning with the fourth one:
substring(“Tim Berners-Lee'', 4, 6).
For referring to a specific XML sub-element,
there could be used XQuery path expressions,
which are based on the syntax of XPath [8]. A
path expression consists of a series of steps,
separated by the slash character (e.g.
doc("books.xml")/bib/book). For selecting the
sub-elements which satisfy certain conditions,
XQuery allows the use of predicates. In the
following example, @year=”2003” is the
predicate:
doc("books.xml")/bib/book[@year="2003"].

One of the most powerful features in XQuery is
FLWOR expressions. They are similar to the
SELECT-FROM-WHERE statements in SQL.
The name FLWOR is an acronym, standing for
the first letter of the clauses that may occur in a
FLWOR expression:

• for clauses: associate one or more
variables to expressions, creating a tuple
stream in which each tuple binds a given
variable to one of the items to which its
associated expression evaluates;

• let clauses: bind variables to the entire
result of an expression, adding these
bindings to the tuples generated by a for
clause, or creating a single tuple to
contain these bindings if there is no for
clause;

• where clauses: filter tuples, retaining
only those tuples that satisfy a condition;

• order by clauses: sort the tuples in a tuple
stream;

• return clauses: build the result of the
FLWOR expression for a given tuple.

For example, if the books.xml document contains
elements <book> having the attribute “year” and
the sub-elements <title>, <author>, and
<publisher>, the next query constructs a new
element named <results>, containing a list of
<result> elements, each having an <author>
sub-element and a list of <title> sub-elements
corresponding to all books written by the
respective author:

<results>
{
 let $a := doc("books.xml")/bib/book
 for $name in
 distinct-values($a/author),
 order by $name
 return
 <result>
 <author> { $name } </author>
 {
 for $b in
 doc("books.xml")/bib/book
 where some $ba in $b/author
 satisfies
 ($ba/author = $name)
 return $b/title
 }
 </result>
}
</results>

The XQuery language provides, also, an entire
set of operators, such as arithmetic, relational and
traversal operators (see [9] for details).

Using XQuery Constructs for Synchronized
Multimedia Retrieval

The paper proposes an XQuery technique that
can be used to search within the multimedia
presentations written in SMIL. The SMIL
language is a Web Consortium’s standard in
order to annotate information about the temporal
scenario of different Web multimedia objects.

Examples

We consider the following SMIL document,
called books.smil, which contains information
about diverse published books and their
associated synchronized video-clips (we omit
some syntactic details):

<smil>
<head></head>

 340

<body>
<seq>
<b:books xmlns:b=" books.dtd">
 <par>
 <seq>
 <video region="rvideo" begin="0s"
end="15s"
 id="v1" src="../movies/web.avi" />
 <img region="rvideo"
 src="../images/web.jpg"
 dur="20s" begin="v1.end">
 </seq>
 <text region="rtext"
 dur="v1.dur+20s">
 <b:title>Web
Technologies</b:title>
 <b:author>S. Buraga</b:author>
<b:publisher>MatrixRom</b:publisher>
 <b:year>2001</b:year>
 </text>
 </par>
 <!-- other constructs -->
</seq>
</body>
</smil>

To generate a SMIL slide-show with all books
published by a certain publishing house (e.g.
Matrix Rom) after 1998, sorted by title, we can
compose the following XQuery assertions:

<seq>
 {
 for $b in doc("books.smil")
 /body/b:books/seq/par/
 where $b/text/b:publisher =
"MatrixRom"
 and $b/text/b:year > 1998
 order by $b/text/b:title
 return
 <par>
 <video region="rvideo" dur="30s"
 src="$b/seq/video[@src]" />
 <text region="rtext" dur="30s">
 <b:title>
 {$b/text/b:title}

</b:title>
 <b:year>
 Year: {$b/text/b:year}

</b:year>
 </text>
 </par>
 }
</seq>

The result of this query could be:
<seq>
 <par>
 <video region="rvideo" dur="30s"
 src="../movies/fla.avi" />
 <text region="rtext"
dur="30s">
 <b:title>
 Formal Languages
 and Automata

</b:title>
<b:year>

 Year: 1999
</b:year>

 </text>
 </par>
 <par>
 <video region="rvideo" dur="30s"
 src="../movies/web.avi" />
 <text region="rtext"
dur="30s">
 <b:title>
 Web Technologies

</b:title>
<b:year>

 Year: 2001
</b:year>

 </text>
 </par>
</seq>

In the second example, we’ll generate a SMIL
presentation which includes all books having in
the title “Language” or “Programming” words.
For each found book, the associated video-clip
and other relevant information is provided.
The XQuery construct is:

<seq>
for $b in doc("books.smil")
 /body/b:books/seq/par
 let $e :=
 $b/text/b:title[contains(string(.),
 "Language")
 or contains(string(.),
"Programming")]
 where exists($e)
 return
 <par>
 <video region="rvideo" dur="30s"
 src="$b/seq/video[@src]" />
 <text region="rtext" dur="30s">
 <b:title>
 {$e}
 </b:title>
 <b:year>
 $b/text/year
 </b:year>
 </text>
 </par>
</seq>

Implementation

The XML processing techniques use both DOM
(Document Object Model) [2, 9] and SAX
(Simple API for XML) [2] models, implemented
in PHP. In order to process XQuery constructs,
the XQuery Lite [7] PHP library is used. To view
SMIL presentations, different players can be

 341

used. Our tests adopted GRiNS and RealOne
players.

Conclusion

In this paper, we presented first a short survey on
XML-based query languages and their
applications. The paper focused on XQuery
language – proposed recommendation of the
World-Wide Web Consortium.
One of the interesting problems regarding data
retrieval is the multimedia retrieval. For this, the
paper presented different techniques of
generating SMIL presentations starting from
existing (semi-)structured synchronized
multimedia information. These techniques used
XQuery constructs.
As a further work, we intend to investigate
different approaches in order to automatically
formulate XQuery constructs from a set of
querying templates. Another direction –
following an idea presented in [3] – is to generate
RDF assertions that can be used to associate
metadata for multimedia resources, as a possible
contribution to Semantic Web.

References

[1] Berger, S. et al. (2003) Xcerpt and visXcerpt:
From Pattern-Based to Visual Querying of XML,

Proceedings of Intl. Conf. on Very Large
Databases – VLDB03.
[2] Buraga, S. (2001) Web Technologies, Matrix
Rom, Bucharest.
[3] Buraga, S. (2002) Modeling Relations
Between Web Resources, Transactions on
Automatic Control and Computer Science,
vol.47 (61), No.2, Politehnica Press, Timisoara.
[4] Buraga, S., Brut, M. (2002) Different
XML-based Search Techniques on Web,
Transactions on Automatic Control and
Computer Science, vol. 47 (61), No.2,
Politehnica Press, Timisoara.
[5] Buraga, S., Brut, M. (2001) A Proposal for a
Web Structural Search Language Based on XML
Technologies, Scientific Annals of the
"Al.I.Cuza" University of Iasi – Computer
Science Section, Tome X, 2001, "Al.I.Cuza"
University Press House, Iasi.
[6] Ceri, S. et al. (1999) XML-GL: A Graphical
Language for Querying and Restructuring XML
Documents, Proceeding of the Eight International
World-Wide Web Consortium – WWW8,
Toronto.
[7] * * * (2003) XQuery Lite:
http://sourceforge.net/projects/phpxmlclasses/
[8] * * * (2003) World-Wide Web Consortium’s
Technical Reports: http://www.w3.org/TR/
[9] * * * (2003) World-Wide Web Consortium’s
Activity on Query Languages:
http://www.w3.org/XML/Query

 342

	Introduction
	WHERE <book>

