

353

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

AN OVERVIEW OF A COMPUTATIONAL APPROACH FOR LINGUISTIC RULES ON
THE X-BAR TREES

Konstantinos FOUSKAKIS
“Politehnica” University of Timisoara, Faculty of Automation and Computers
Bd. V. Parvan, No. 2, 1900 Timisoara, Romania
costasfous@yahoo.com

Abstract. The purpose of this work is to describe the main features of a methodology, which allows the
manipulation of X-bar based structures and the definition of linguistic rules on them in a variety of ways. This
methodology addresses the needs of those linguists who are conducting research on generative transformational
grammars using some variant of the X-bar theory. Furthermore, this methodology can be used into a
computational system which produces or manipulates X-bar structures for additional processing. The
methodology is open in the sense that it may be used both for various X-bar theory versions, but also for various
phases or aspects of natural language analysis, such as syntax and morphology.
Keywords: methodology, linguistics, system, principles, transformations, grammars.

Introduction

The X-bar theory is a linguistic framework
proposed and improved by Noam Chomsky [1]
[2] [3] [4] [5] mainly in the context of the
syntactic analysis of natural language phrases.
Also, other researchers have studied the
language in a structural way [6]. The X-bar
theory has been elaborated by several workers
both in the past [9] and more recently [8] not
only in the context of syntax [12] but also in the
context of morphology [11]. One of the basic
points of the X-bar theory is that it advocates the
existence of a general linguistic structural
scheme expressed by a restricted set of abstract
grammatical rules, which, according to the
linguistic area of concern and to the specific
case within this area, are constrained and
mapped according, to specific linguistic
categories.

The exact general structure, which is the main
built-in assumption of this methodology, will be
given in a next section. In all other respects, the
methodology is consistent with the spirit of the
X-bar theory and open to subtheories, principles
and transformations as long as these are obeying
the basic X-bar scheme.

Under these assumptions, my methodology
allows:

• the development of a set of principles
and transformations

• the development of a set of X-bar
theories in terms of principles and
transformations

• the selective application of the above on
the X-bar structures and obtaining the
desirable results

We must emphasize that the methodology does
not impose any restrictions but the basic one
(which is the most general one) and hence, it is
believed to be open to future developments of
the X-bar theory. The most important is that it
can describe general linguistic rules on the X-
bar trees in a formal way similar to the way that
the X-bar theory does and under the assumptions
of the X-bar theory. It imposes a new
methodology of expressing linguistic rules. The
methodology is also implemented as a computer
system. This system [7] is a special tool for
linguists and additionally, it can be integrated
into a computational system (even a machine
translation system) which produces X-bar
structures for additional processing.

Structure of Linguistic Knowledge

The linguistic knowledge for the presented
methodology has a structure which is presented
in the following figure.

Fig.1 Linguistic universe

This structure represents the linguistic
knowledge universe. It has the above schema
that is analyzed as follows:

• Input X-bar structures
It contains the X-bar tree structures of the
phrases (we assume that the linguist himself or
another system has produced these initial X-bar
structures). Its format is given in a section below
and is according to the X-bar theory.

• Principles and transformations
It contains all principles and transformations that
have been defined so far. The principles check
an X-bar structure if it accomplishes certain
structural requirements as a whole or in parts of
it. Also, the principles can check even if nodes,
features of nodes, anaphors, terminals or even
subtrees are according to certain linguistic
requirements. On the other hand the
transformations additionally transform the X-bar
structures and produce one or more new X-bar
trees with different structure, nodes, features of
nodes, anaphors or even terminals. Their format
is given in the corresponding section below.

• Linguistic theories
It is actually the various theory versions as
expressed in the presented methodology. Each
version of the theory is defined in terms of
principles and/or transformations which may be
conditionally applied via if-then-else
expressions. The format of a linguistic theory is
described in the corresponding section below.

• Linguistic program

It is the actual part of the linguistic universe
which declares the rules of the universe
(theories, principles, transformations) that are
applied on the X-bar structures and in what
order. The format of a linguistic program is
described in the corresponding section below.

Input X-bar
X-bar

processor Output X-bar

Principles Theories Transformations

Program

• X-bar processor
It is the heart of the linguistic knowledge
universe and controls its action.

• Output X-bar structures
This is the output with the generated X-bar
structures and the corresponding information of
the application of the linguistic program.

The linguistic knowledge universe is a system
with rules, in the following sections the
capabilities that the presented methodology
implies will be described in more details.

The Existing Computational Methodologies

A. The phrase-structure grammars

They were presented mainly by Chomsky in
1957. They have the general form of x -> y,
where x, y can be any combination of terminal
and no-terminal elements.
The different categories of the phrase-structure
grammars are the following:

• regular grammars:
o left-linear grammars
o right-linear grammars

• context-free grammars
• context sensitive grammars
• unrestriced grammars

These grammars are used in computational
systems with different kinds of enhancements in
order to produce or recognize natural language
phrases. They are not restricted to specific tree
structures and it is difficult to maintain and
extend an application that uses this type of
grammars. However the advantage of these
grammar is that they have a very simple general
format.

 354

B. Transition networks

They are represented as finite states automatons
[10]. They are directed graphs with arcs noted
by terminal elements. One node of the graph is
denoted as starting point and another one as
ending point. A sentence is accepted by the
system if there is a path from the starting point
to the ending point and its arcs contain the
words of this sentence. There are different kinds
of transition networks :

• (STN) simple transition networks
• (RTN) recursive transition networks that

are the same with the STNs but they
additionally permit at their arcs phrasal
categories except the lexical categories
and recursions.

• (ATN) augmented transition networks
that are RTNs with a set of registers for
each network.

The disadvantages of these networks are:
• The networks are very complicated.
• It is not possible to describe general rules

for the different phrase categories in one
network. Usually, they are spread in
many different networks.

• There are problems at phrases with
ambiguities.

• The check, the maintainance and the
extension of these networks is very
difficult.

The main advantage is that they have a simple
general formalism that is possible to be
implemented easily.

C. Lexical functional grammar

The basic characheristic of this grammar type is
that the lexical records are declared as predicate
structures with arguments. These structures are
independent from the phrase structures and they
are a form of functional comments for the
lexical records. Also, there is the functional
information of the phrase structures. This
information is combined with the functional
information of the lexical records and the final
functional structure of a phrase is produced. The
disadvantage of this theory is the only two
functional equations between the functional

information of the phrase structures and the
lexical records. This sets restrictions on the
declaration of rules.

D. Generalized Phrase Structure Grammar

This grammar type emphasizes on the
information that the syntactic categories have.
The internal structure of the syntactic categories
is recognized. The corresponding theory
suggests the separation of the rules of syntactic
structures in two categories:

• Rules of immediate dominace
• Rules of linear precedence

The first type refers to the hierarchical relation
between different categories. The second type
refers to the position that the different categories
have in a sentence. This type of grammar is
better for free order languages. It does not
support a specific tree structure and it is more
difficult to extent an application or to declare
reusable and general rules.

E. Head-driven Phrase Structure Grammar

This grammar type requires the existence of
detailed morphological, syntactical and
semantical information for every word. It
requires more detailed information than the
lexical functional grammars. This grammar is
not a syntactical grammar but it combines both
syntax and semantics. It organizes the linguistic
knowledge as features structures. These features
are sorted according to the specialization of
them. Also, there is the possibility for paths that
define the relation between them. The biggest
difference between this theory and the previous
ones is the way for the manipulation of the
lexical records. Every representation requires
very complicated information and there are very
big problems for the maintenance of this huge
information. Additionally, there is not any
specific tree format and it is possible to have
arbitrary different structures.

X-Bar Structures

The X-bar structures, that the system
manipulates, are derived from the following
rules:

 355

Χ2 Spec Χ2 Χ2 Spec Χ1
Χ1 Χ1 Υ2 Χ1 Χ0 Υ2
Spec X0 Spec X2
X0 terminal

In the above rules the Y2 is a structure of the
form X2. These rules can derive structures of
form X’’ or XP of the X-bar theory [8]. The
above X-bar structures are represented in the
system with the use of parentheses and they
have the following form:

(X2 (Spec) (Χ1 (Χ0) Υ2))
(X2 (Spec) (Χ1 (Χ1(….) Υ2))
(X2 (Spec) (Χ2(Spec)…

In the following sections words or symbols in
bold are operators.

A. Nodes and their features

A node of an X-bar structure is defined by its
name followed by its category. So the node Χ2
is declared as x barii, the node Χ1 is declared as
x bari and the node Χ0 is declared as x bar.
Also every node of the tree may have a set of
features. The features give grammatical,
syntactic and semantic information of a node or
subtree. In order to declare the features of a node
we use the operator features followed by the
features of the node. The way of declaring the
features of nodes is described below. The
features of a node are surrounded by the [and]
and separated by commas, their order is not
important.
A feature is notated as following:

• + Name of the feature
• - Name of the feature
• Name of the feature
• [name of the feature1,….,name of the

featureN]=name of the featureX

Their semantics depend from our interpretation.
Examples of the previous cases are the
following:

• +male
• -human
• singular

Spec X1

X0 Y2

X2
• [+live_being,+thing]=complements

An example of a complete node is the following:
node article bar: features [+singular,

+nominative]

B. Terminals

The terminal elements of the X-bar structures
are declared by the operator terminal followed
by the terminal element:

terminal terminal element
Examples of terminals of the X-bar structures
are the following:

• terminal man
• terminal woman

C. Anaphors

The system also supports the anaphor
declaration between elements of an X-bar
structure. The elements that we can connect to
anaphor are the following:

• terminal elements
• subtrees
• traces of terminal elements
• traces of subtrees

In order to declare the anaphor between
elements of the above types we use the
following format:

anaphor name of anaphor

The anaphor always follows the terminal
element. An example of the terminal element the
with its anaphor i1 is the following:

terminal the:anaphor i1

An example of anaphor between two different
elements is the existence of the terminal element
man and the terminal element that that is

 356

connected to the anaphor i1. The way of
declaration of this anaphor is the following:

• terminal man:anaphor i1
• terminal that:anaphor i1

Besides an anaphor between terminal elements,
there are the following possibilities of anaphors:

1) between the terminal and its trace, for
example the word man and its trace t:
terminal man:anaphor i1
terminal t:anaphor i1

2) between the subtree and its trace, for
example the subtree of the noun phrase
(ΟP (article the) (Ο’(Ο house) e)) and its
trace t :
(node o barii,
 (node article bar, terminal the),
 (node o bari,
 (node o bar, terminal house),
 empty)): anaphor i1
t:anaphor i1

The operator empty is used to denote an empty
branch of a tree.

Principles and Transformations

The principles are described according to the
methodology by using the following format:

• principle the name of the principle.

• variables (in this field we declare the
variables which correspond to parts of an
X-bar structure)

• structuredescription (in this field we
describe the structure of the subtree of an
X-bar structure on which we want to
apply the principle rule)

• structurecommands (in this field we
describe the conditions and the
commands of this rule)

The above rule can define principles in order to
check whether the X-bar structures match
specific requirements. An example of principle
of the X-bar theory that can be defined with the
principle rule is the case filter (see examples at
a section below).

The transformations are described according to
the methodology by using the following format:

• transformation the name of the
transformation.

• variables (in this field we can declare
the variables which correspond to parts
of an X-bar structure)

• structuredescription (in this field we
describe the structure of the subtree of an
X-bar structure on which we want to
apply the transformation rule)

• structurecommands (in this field we
describe the conditions, the commands
and the required transformations of this
rule)

The above rule can define transformations in
order to transform the X-bar structures. An
example of transformations of the X-bar theory
that one can define with the transformation
rule is the movement of a noun phrase (see
examples at a section below).

The principles and the transformations rules can
express the linguistic rules in an abstract way.
Of prime importance for the above is to declare
variables at the field variables. These variables
can determine the possible values of parts (trees,
nodes, features of nodes, terminals, anaphors) of
the X-bar structures. Also, the principles and
transformations use a set of operators and define
or use variables at the fields
structuredescription and structurecommands
in a way close to the English language. These
operators and the variables provide the
necessary abstract way of expressing the
linguistic rules [7]. Finally, it is important to be
mentioned that the rules return boolean values
denoting the success or failure of the application
of the principle or transformation on an X-bar
structure. When a principle or a transformation
is applied on an X-bar structure, it succeeds if
and only if both structuredescription and
structurecommands succeed, otherwise it fails,
thus affecting the course of action of the
linguistic program.

 357

Linguistic Theory

In order to describe a theory we use
transformations, principles and other theories
that we have already defined.
The general scheme for the declaration of the
theory is the following:

• theory name of the theory.
• The main part of the theory.

In the main part of the theory we can use a
sequence of principles, transformations and
other theories as follows:

• principle name of the principle
• transformation name of the

transformation
• theory name of the theory

or with the use of external user intervention:
• askprinciple name of the principle
• asktransformation name of the

transformation
• asktheory name of the theory

Besides the above unconditional way for the
application of rules, there is the ability for
conditional application of them. When we say
rules we mean the principles, the
transformations and the theories.
The structure for the selective application of the
rules is the following:

if condition then action 1 else action 2
On the conditional part of this structure we can
check if a rule or any logical combination of
rules is true or false in order to proceed to the
application of the first (then) or the second
action (else).

Also there is the ability for recursive application
of a theory by using in the main body of the
theory the following formula:

theory the name of the same theory

The above can be used within an if - then - else
structure in order to have conditionally recursive
application of the theory.

Finally, we can use in the main body of the
theory, the following four operators for the
modification of the X-bar structures that are to

be used by the next principle, transformation or
theory. The operators are the following:

• addstructures : It adds the structures
that have been produced by the last
transformation or theory on the existing
X-bar structures.

• setstructures : It sets as X-bar structures
the structures that have been produced by
the last transformation or theory.

• restorestructure : It resets the X-bar
structures to the structure that have been
read from the X-bar trees input.

• getstructure : This operator gets the
next input X-bar structure in order to
apply the following rule.

All the above elements can be used in the main
body of a theory and are separated by commas
and finish with a full stop. A sequence of the
above elements composes the main body of a
theory. These elements are applied on the X-bar
structures according to the order that have been
declared in the theory.

Linguistic Program

It contains the principles, the transformations
and the theories that we want to apply on the X-
bar structures. These are applied in the order that
they are in this input.

The way of the selectively calling of the
principles, the transformations and the theories
is the following:

• theory the name of the theory

• transformation the name of the
transformation

• principle the name of the principle

Also, it is possible to have external user
intervention in the following way:

• askprinciple name of the principle
• asktransformation name of the

transformation
• asktheory name of the theory

 358

Examples

The following two examples are rules that are
well known in the X-bar linguistic theory.

The principle of case filter [8]

The linguistic rule is the following:

Case filter

No nominal phrase can stand in a structure
unless it bears a case. In other words, the
structure that contains (NP [-case]) is rejected.

principle ‘Case Filter’.

variables

node noun set ‘NP’ bar or ‘Ο’ bar.

structuredescription
 (node &noun: transformationvariable sd1,
 terminal &t):transformationvariable sd2.

structurecommands
 (features case set [+ptosi] or [+case],
 ifthenelse(&sd1 acommon &case,
 comment
 “The principle of case filter is valid at :
“:&sd2,
 comment
 “The principle of case filter is not valid at
: “:&sd2)).

The above principle acts upon X-bar structures
which have one of the following two sub trees:

Then at the field structurecommands checks if
the node NP or O has the feature +case or the
feature +ptosi and sends the corresponding
message at the output.

The rule for the movement of a noun phrase [8]

This transformation moves a noun phrase from
one position of the X-bar tree to another.

transformation ‘Movement of a noun phrase’.
variables
 node ‘Noun’ set ‘N’ barii or ‘Ο’ barii
 also node ‘V’set ‘V’ bari or ‘R’ bari.

structuredescription
 (node &’V’:transformationvariable sd3,
 subtree &sb1,
 (node &’Noun’, anytree, anytree):
 transformationvariable sd1
): transformationvariable sd2.

structurecommands
 (&sd1 addanaphor i1,
 transformations
 &sd2 transform

(node &sd3,
 (node &sd3,
 subtree &sb1,t:anaphor i1),
 subtree &sd1)

).

The above transformation acts upon an X-bar
structure that has a subtree of the following
structure and produces a new X-bar structure:

V’ or R’

 Sb1

N’’ or O’’

NP

any terminal

O

any terminal

And the produced X-bar structure is as follows:

 V’ or R’

V’ or R’

N’’ or O’’
(sub tree anaphor) i1

t:i1 (anaphor)
Sb1

 359

Conclusions

A computational system that implements the
presented methodology is possible to be used as
a tool by researchers. They can define rules and
they can apply them on a set of X-bar structures.
Additionally, it is possible to combine this with
another system that produces these X-bar
structures. That system can use a set of very
simple rewriting rules for the production of the
X-bar structures.

These rules can be based only on general phrase
structure information. They can produce a set of
X-bar structures and then the second software
system (that implements the presented
methodology) will examine and transform these
structures and will produce new ones or will
reject invalid structures.

The software system of the presented
methodology can manipulate the semantic and
syntactic information of the X-bar structures.
For this reason it is necessary for the lexicon to
have the syntactic and semantic information as a
form of node features.

The main advantage of this approach is the
possibility to define more general and simple
rules that can be close related with the X-bar
theory. The structures are all derivations of a
specific binary tree, the X-bar scheme.
According to the linguistic researchers this
scheme is strong enough to be used for the
representation of the natural language sentences.
The above facilitates the implementation, the
maintainance and extension of the
corresponding applications. This two level
implementation is better for embedded
applications since the defined and produced

structures are simpler and it is not necessary to
have large memory size and strong processor.

References

[1] Chomsky, N. (1970) Remarks on
nominalization, In Jacobs & Rosenbaum (eds)
Readings in English Transformational Grammar,
Massachusetts: Xerox College, 184-221.
[2] Chomsky, N. (1981) Lectures in government
and binding, Dordrecht: Foris.
[3] Chomsky, N. (1982) Some concepts and
consequences of the theory of Government and
Binding, Cambridge: MIT Press.
[4] Chomsky, N. (1986) Barriers,
Massachusetts: MIT Press.
[5] Chomsky, N. (1995) The minimalist
program, Massachusetts: MIT Press.
[6] Fodor, J.A & Katz,. J.J (1964) The structure
of language - Readings in the philosophy of
language, Englewood: Prentice Hall.
[7] Fouskakis, K. E. (2000) An open system for
linguistic rules on the X-bar trees, Ukrainian
Journal of Computational Linguistics, Lviv,
Ukraine.
[8] Haegeman, L. (1994) Introduction to
Government and Binding 2nd Edition, Oxford:
Blackwell.
[9] Jackendoff, R. (1977) The X-bar syntax – A
study of phrase structure, Massachusetts: MIT
Press.
[10] Noble, H. M. (1988) Natural Language
Processing, Oxford: Blackwell Scientific
Publications.
[11] Spencer, A. (1991) Morphological theory
an introduction to word structure in generative
grammar, Oxford: Blackwell.
[12] Theofanopoulou, D. (1994) Transformation
syntax from the theory to application II, Athens:
University of Athens.

 360

	The principle of case filter [8]
	The rule for the movement of a noun phrase [8]
	Conclusions

