

366

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

DEVELOPMENT OF SURVIVABLE SYSTEMS

Valentin MEŢGHER
Compudava S.R.L.
Str. 31 August 67B,
Chisinau, Moldova
vmetgher@compudava.com

Abstract. The vast majority of modern systems serving organization needs are closely linked into the computer
networks which have evolved over recent years into unbound networks with no central authority and distributed
administrative control providing a low visibility and control on the entire network. At the same time,
organizational dependencies on networks are increasing, and the risks and consequences of intrusions and
compromises are amplified. Incorporating survivability capabilities into organisation’s systems can mitigate
these risks. It is important to mention that survivability doesn’t guarantee that the system will not be attacked
and penetrated, but importantly it shall preserve the essential services during its operation. The development of
survivable systems shall be assured by sound engineering practices throughout the system life-cycle.
Keywords: survivability, security, life-cycle, mission, tolerance, system, process, risks.

Introduction

Survivability is defined as the capability of a
system to fulfil its mission, in a timely manner,
in the presence of attacks, failures, or accidents.
The term mission refers to a set of very high-
level requirements or goals.
It is important to recognize that it is the mission
fulfilment that must survive, not any particular
subsystem or system component. Central to the
notion of survivability is the capability of a
system to fulfil its mission, even if significant
portions of the system are damaged or
destroyed.
A key characteristic of survivable systems is
their capability to deliver essential services in
the face of attack, failure, or accident. Central to
the delivery of essential services is the
capability of a system to maintain essential
properties (i.e., specified levels of integrity,
confidentiality, performance, and other quality
attributes) in adverse environments.
To maintain their capabilities to deliver essential
services, survivable systems must exhibit the
four key properties, and namely: resistance,
recognition, recovery (the three R’s), and
adaptation [1].

As the computer systems become more complex
and sophisticated the attacks from the potential
adversaries become more ingenious. The attack
targets range from common services of
organizations such as mail, DNS servers to web
services, which are not becoming secure only by
protecting the perimeter but require proper
planning and for applications proper
development process in place in the early stages
of developing a system.
Security is routinely addressed late in the
development lifecycle. A common scenario in
the current commercial development practices is
that non-functional requirements, such as
security, are simply ignored considering the
threats present. Systems are vulnerable to
attacks without the client knowing about this,
waiting for a potential intruder to discover the
vulnerability and attack the system, only after
which the security is addressed for that system.
The lack of formal methods rigorously applied
for the development process is a critical factor
when addressing the survivability of the
systems. Current software development life-
cycle models are not focused on creating
survivable systems and exhibit shortcomings
when the goal is to develop systems with a high
degree of assurance of survivability.

Table 1. Survivability elements during life-cycle
activities.

Life-Cycle
Activities

Survivability elements

Initiation

- Mission definition and
analysis of consequences of
failure;
- Planning integration of
survivability into the life-
cycle process.

Requirements - Survivability requirements
definition;
- Establishing the essential
services required to survive.
- Specifying the
usage/intrusion scenarios.

Design - Integrating the survivability
requirements into the
architecture;
- Design is analysed if it
corresponds with the mission
of the system.

Development - Four principles of coding;
- Integrated evaluation
approach.

Testing Testing against the threat
patterns and usage scenarios.

Operation Maintaining the survivability
of the system via evolving
design.

This isolation of survivability considerations
from primary system-development tasks results
in an unfortunate separation of concerns.
Survivability should be integrated and treated on
a par with other system properties, to develop
systems with required functionality and
performance that can also withstand failures and
compromises.
Important design decisions and tradeoffs
become more difficult when survivability is not
integrated into the primary development life-
cycle. In addition, tools for supporting
survivability engineering are often not
integrated into the software development
environment. For each life-cycle activity,

survivability goals should be addressed, and
methods to ensure survivability incorporated [2].
In this paper, a software development life-cycle
model for survivability will be presented and
techniques that can be applied during new
development activities to support survivability
goals will be illustrated. In Table 1 the main
survivability elements during life-cycle
activities are reflected.
Development of the systems with critical
requirements such as survivability shall
incorporate the best software engineering
practices:

• Sound software engineering process:
requirements, design, development,
testing, project management.

• Robust and secure evolvable
interoperable architectures that avoid
excessive dependence on untrustworthy
components.

• The use of formal methods is
recommended in particularly critical
applications, and can help move the
current highly unpredictable ad-hoc
development process into a much more
predictable formal development process
[3].

• Also, no methods will help if people
participating in the process will not be
properly trained and possess the
necessary skills.

Iterative system development

Two life-cycle models, the waterfall and the
spiral models, are probably the most well
known.
The waterfall model represents a linear process,
where clear inputs and outputs are defined for
each phase of development of a product and one
phase can start only after the previous one has
finished.
In the spiral model (more widely used recently)
the development is iterative with essential
activities such as prototyping, architecture first
approach, re-use and early assessment of risks.
The spiral model can be adapted/modified to

 367

satisfy specific requirements such as for
survivable systems.
The iterative development approach is spanned
throughout the entire life-cycle of a system

ensuring the mission fulfilment and survivability
strategy, being the driving factor, are
omnipresent and can be traced through all of the
project phases as illustrated in Fig.1.

Fig 1. The Development process of survivable systems.

Requirements

The key activities of the requirements process
are: elicitation, analysis, specification and
validation [4]. The different activities of the
requirement process are repeated until an
acceptable level is achieved. Modern
requirements processes use extensively UML
tools to automate, ensure accuracy and
traceability of information. Two common
formats for requirements are Formal
Requirements and Use Cases.
The proper definition of survivability
requirements is crucial for achieving the
survivability of a system. The survivability
requirements may vary for different systems
according to the scale, to the cost and risks for
the organization of losing the essential
services.
There shall be well defined the model of a
mission (specified at the inception phase) that a
specific system is intended to fulfil in adverse
environments and conditions.
Functional/Survivability. The requirements of a
survivable system are based on
functional/system requirements defining how

the system will operate under normal
conditions and survivability requirements
specifying the capabilities of a system to
deliver essential services under attack.
There shall be established a set of essential
services the system must deliver and each
system requirement shall be checked if it is
related to an essential service.
The survivability requirements are represented
by these categories: Resistance, Recovery,
Recognition and Adaptation [2]:

• Resistance Service Requirements.
Resistance is the capability of a system
to deter attacks. Resistance is thus
important in the penetration and
exploration phases of an attack, before
actual exploitation. Current strategies
for resistance include the use of
firewalls, authentication, and
encryption.

• Recognition Service Requirements.
Recognition is the capability of a
system to recognize attacks or the
probing that precedes attacks. The
ability to react or adapt during an

 368

intrusion is central to a system’s
capacity to survive an attack that cannot
be completely repelled. To react or
adapt, the system must first recognize it
is being attacked. In fact, recognition is
essential in all three phases of attack.

• Recovery Service Requirements.
Recovery is a system’s ability to restore
services after an intrusion has occurred.
Recovery also contributes to a system’s
ability to maintain essential services
during intrusion. Recovery strategies in
use today include replication of critical
information and services, use of fault-
tolerant designs, and incorporation of
backup systems for hardware and
software.

• Adaptation and Evolution Service
Requirements. Dynamic adaptation
permanently improves a system’s
ability to resist, recognize, and recover
from intrusion attempts. For example,
an adaptation requirement may be an
infrastructure that enables the system to
inoculate itself against newly
discovered security vulnerabilities by
automatically distributing and applying
security fixes to all network elements.

Usage/Intrusion Requirements. Survivable-
system testing must demonstrate the correct
performance of essential and non-essential
system services as well as the survivability of
essential services under intrusion. Because
system performance in testing (and operation)
depends totally on the system’s use, an
effective approach to survivable-system testing
is based on usage scenarios derived from usage
models [2].
There are other system survivability
requirements throughout the life-cycle related
to development, operation, and evolution.
In the iterative approach of development the
requirements are adjusted/modified throughout
the entire life-cycle managed via a
configuration management process. When the

requirements are enough detailed the
design/architecture phase can start.

Design

The software design must describe the
architecture of the system, how the system is
decomposed and organized into components,
and must describe the interfaces between these
components. It must also describe these
components into a level of details suitable for
allowing their construction [4].
Software design consists normally of two main
activities: architectural design and component
design.
The design along with requirements process are
the most critical and effort consuming activities
in the life-cycle, especially for survivable
systems where much of analysis has to be done
while developing the conceptual architecture.
The design passes through a number of
iterative activities: Definition; Analysis;
Evaluation.
Software Design Definition. The conceptual
architecture is developed based on the
requirements for the system including
survivability; the architecture styles and design
patterns are selected; the respective framework
is applied for object-oriented design. The
architectural design describes how the software
is decomposed and organized into components,
including operating systems, network
protocols, encryption key management,
authentication systems. The main components
shall be carefully considered/selected taking
into account the survivability element.
Software Design Analysis. The design is
analysed if it corresponds to the mission of the
system and against the main survivability and
quality attributes as security, reliability,
performance, fault-tolerance. The essential
services defined earlier in the life-cycle have to
be reflected in the architecture to ensure the
system (essential services) will operate in
adverse environments. The main attributes of
the survivability (recognition, resistance,
recovery and availability) shall be considered

 369

for each component of the architecture,
especially in the context of supporting the main
services.
Design Evaluation. The design shall be
evaluated by using iterative design reviews, but
also by using dynamic techniques, such as
simulation and prototyping. The architecture
shall be evaluated against the common threats
(grouped in a regularly updated library) to the
systems to ensure its resistance to such attacks.
Each system architecture will have its own
number of iterations, but finally a trade-off
shall be found between various attributes (such
as security vs. performance for example) to
produce an architecture which is in line with
the system’s mission, and has the necessary
survivability attributes incorporated.

Development

The development is the act of constructing the
system through a combination of coding,
validation and testing activities. Proper coding
practices shall be applied to avoid the existence
of vulnerabilities out of poor coding practices,
which can lead to backdoors to the system
intrusion.
The four principles can be applied for building
the system, which significantly affects the way
the software is constructed: reduction of
complexity; anticipation of diversity;
structuring for validation; use of external
standards.
Integrated evaluation is a powerful approach
which includes periodic internal checks for
intermediate versions of code to ensure in an
iterative manner that it works correctly.

• Unit testing. Used by developers to test
well-defined software units after their
completion.

• Daily builds and smoke tests. A
methodology ensuring the code keeps
stable daily.

• Code inspections. Manual way of
checking for abstract classes of errors
and adherence to coding standards
adopted by the organization.

Important is for the implemented system that it
will be as bug free as possible [5] and behave
in all circumstances in the way it was specified
and intended to work.

Testing

In the modern software engineering practice,
the testing is no longer seen as an activity
which starts after the coding phase, but
encompasses the whole system development
process. Three big stages in testing of complex
software systems are distinguished:

i) Unit (testing of finalized
components),

ii) Integration (testing of assembled
components),

iii) System testing (concerned with the
behaviour of the system). System
testing deals with testing the non-
functional specifications such as
security, performance, tolerance, all
parts of system’s survivability
behaviour.

Penetration testing, usage-based testing, and
boundary-value analysis are useful approaches
for evaluating system survivability.
Penetration testing. The system is tested using
a wide range of techniques in order to break the
system and interrupt its mission: probing and
scanning, brute force attacks, audit at the
security, network and application level. The
evidence that the system has the survivability
attributes is if it performs its essential services
even after successful attacks on the system.
Usage-Based Testing. The approach constructs
usage models considering the possible users
(legitimate and intruders) and their behaviour
according to probabilities. The results are used
to predict survivability properties.
Boundary-value analysis. Test cases are chosen
near the boundaries of the input where the
defects tend to concentrate.
“Enough” testing shall be provided and best
practices testing techniques [5] applied to
provide assurance for survivability properties
of the system.

 370

Operation

The evolutionary design shall permit the
system to adapt to the changing operating
environment along with the evolution of
intrusion techniques. Monitoring tools shall be
in place to detect anomalies in system
behaviour, to detect if survivability related
attributes are affected. The survivability shall
be sustained by continual incorporation of new
survivable solutions through an evolutionary
design process.

Conclusions

Developing systems with critical survivability
requirements relying on open-bounded
uncontrolled networks is a complex and
difficult task to achieve.
Some of the challenges are in areas of
designing evolvable architectures, developing
new robust, secure protocols, develop more
secure operating systems, explore the process
of dynamic adaptability of the systems, etc.
Although much research is yet to be done in the
area of survivability, the path to development
of truly survivable systems is by combining the
latest advances in computer and network

technologies (especially concerning the
security, reliability, fault-tolerance), with
applying the software engineering best
practices and serious discipline and QA
throughout the development cycle.

References

[1] Ellison, Robert; Fisher, David (1997).
Survivable Network Systems: An Emerging
Discipline. SEI. Carnegie Mellon University.
[2] Nancy R. Mead, Robert Ellison, Richard C.
Linger, Howard F. Lipson, John McHugh
(2000). Life-Cycle Models for Survivable
Systems. CERT. Carnegie Mellon University.
[3] Peter Neuman (2000). Practical Architectures
for Survivable Systems and Networks. Computer
Science Laboratory. SRI international.
[4] Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society Press.
2001.
[5] Steve Maguire (1993). Writing Solid Code.
Microsoft press.
[6] M. Haug, E.W. Olsen, L. Consolini (2001).
Software Quality Approaches: Testing,
Verification, and Validation. Springer-Verlag
Berlin Heidelberg.

 371

	Testing

