

378

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

INTERNET BASED DISTRIBUTED METHODS IN SUPPORT OF REMOTE AND
COLLABORATIVE DESIGN

Marius PISLARU1, Alexandru TRANDABAT2, Cornelia VARGA3, Stefan HANGANU4

"Gh. Asachi" Technical University of Iasi
Bd.Dimitrie Mangeron nr.53, RO-70050 Iasi
1) mpislaru@ee.tuiasi.ro, 2) ftranda@ee.tuiasi.ro, 3) cornelia@ee.tuiasi.ro, 4) stefan.hanganu@conexgrup.ro

Abstract. The main objective of the article consists in setting up the frame for an efficient trans-institutional
internet based environment for promoting cooperative research, development and training activities among
partner institutions, especially in the design of dependable tools and systems in support of quality assurance,
control and management in engineering practice, the most dynamically developing fields nowadays. The main
results of the project will be the establishing of a new type of active research and development network of
cooperative actions in design, research and teaching activities, realized by joining the resources of all partners
and the environment of an internet-based system.
Keywords: remote sensing, distributed measurements, CAD dedicated tools, virtual instrumentation, expert
systems, neuro-fuzzy models, digital signal processing,

Introduction

Hence, a synergistic link can be created between
partners, which are performing an impressing
activity in different but related research and
teaching activities, such as: microelectronics
design, remote sensing, distributed
measurements, CAD dedicated tools, virtual
instrumentation, expert systems, neuro-fuzzy
models, digital signal processing, all of them in
support of reaching new dimensions in the
quality and dependability of tomorrow’s control
and management systems. This link can provide
also new opportunities for increasing the design
quality in terms of higher dependability of the
created systems and reduced time-to-market
implementation. This overview propose to
insurance the basis for a new quality in
cooperative research by facilitating an
immediate exchange of information, sharing of
software tools and resources (computing power),
enabling joint work on research projects and
practical design, providing access to libraries,
benchmarks and serving as a source of
information, i.e. in the field of innovation or
standardization, not only for the involved
partners, but also for any other interested person
and institution, governmental or community
body, NGO or academic, with peculiar focus on

national industries, with special emphasis on
SMEs The final purpose will be the direct
improvement of human potential in the field of
product quality and safety, including protection
of the environment by virtual laboratories of
expertise and, as result, a perspective
contribution to the welfare of society and to the
conformity assessment needed to facilitate
international trade in the fields of electricity,
electronics and associated technologies

Research methods and implementation

The Internet-based tools environment for
advanced systems is a great opportunity for
partner sides to realize the infrastructure for
future applications development. This overview
is a research initiative aiming to make possible a
user-transparent distribution of resources over
computer networks. It can be divided in three
parts:
• a Framework of reusable software, composed
by modules and design data representation
primitives;
• a web based design environment, implemented
over the framework foundations, together with a
Service Space, which provides the necessary
control on the distribution of resources and the
data sharing among partners;

• a Communication Channel, which allows
synchronous and asynchronous interaction
among the designers. The modules can be
distributed over nodes of a Internet Protocol
based network. The designers interact with all of
the modules using a Java-enabled client
software, e.g. a web browser. The Framework
Server is responsible for provide the designers
with a list of all the automation tools and
services available in the network. The designer
uses the so called ‘Tool Launcher’ to execute
any of the tools by downloading its building
blocks from the Framework and initiating the
Java Virtual Machine (JVM) embedded in the
local client software. This model ensures the
platform independence of the environment,
because the tools can be executed without any
kind of modification in a wide range of
hardware/software platforms.
The tools can be executed completely on the
client side, as a separate thread of execution
within the JVM, or they may be executed in the
server side, using the client software only as
interface. The second option is particularly
interesting when no platform-independent tool is
available, or when the tool requires intensive
computation so that the executable code
translation from platform-neutral to platform-
native becomes too costly, Figure 1.

Figure 1. Framework server concept
The Service Space provides facilities for the
integration and accessibility of executable
service modules distributed in different servers.

It uses the concept of shared data-spaces:
instances of the framework design
representation primitives are kept persistent, so
they can be accessed by several users and
processed by different service modules.
The Communication Channel support for
collaborative work was included in the abstract
classes within the design representation
framework, and the behavior of the collaborative
sessions is controlled by a collaboration service
in the Service Space. Currently, the
collaboration support should include the
following features:

• separation of concepts: the design
semantic and its graphical/textual representation
are modelled by different objects, in order to
allow several visualizations - by different
designers - from a single design block;

• update/notify mechanism: a 2-way
update/notify mechanism will be implemented,
to grant consistency between the design
semantic and its representations.
The research includes the actual approaches in
the area of World Wide Web based design
environments, by the use of a widely known
user interface – a web browser – and the
possibility of remote access, mainly remote
execution of applications. In this case, the
partner acts as a data provider and analyzer,
with a low degree of interactivity. Further, with
the arise of platform independent programming
solutions such as Java programming language,
some research efforts will be done to distribute
the data processing to both sides of the network:
remote and local machines. The final project
must permit maximum access, so its architecture
should be based on the distribution of the
resources between client and server sides of the
network. In order to define the automation tools
distribution over the network, the tools are
divided in two groups, regarding the level of
interaction of the designer with each tool.
Highly interactive tools are loaded from network
and executed on the client side, while poorly or
non-interactive tools can be executed remotely
on the server side, Figure 2.As shown on Figure
2, the environment supports several servers and
clients. On the server side, the performed
functionality includes the storage of the tools,

 379

design data and the hypermedia structure of the
environment; here the non-interactive tools are
executed, as mentioned before. On the client
side, the interactive tools are loaded from the
server and executed. Some design data can be
temporarily stored. The non-interactive tool
invocation and result analysis is also done from
the client side. The distribution of the processing
load among the servers is an interesting feature,
since it is transparent for the user. So, the design
environment may be projected to execute the
heavier tasks on the computationally better
machines. On the other hand, the client side can
be a simple machine, running only a web
browser, which is the requirement for a WWW
based environment.

Figure 2. Projected client-server structure

For a really useful environment, it is mandatory
to provide the methodology and project
management support. These needs are
maximized when dealing with distributed teams,
which is one of the motivations of the WWW
based design environments.
A design environment must provide efficient
support for design methodologies. It means that
the environment must allow the designer to
specify the design flow in a higher level of
abstraction, without having to deal with data
representation formats and tool invocation
parameters. Following this concept, the design
environment should be able to translate the input
from the designer – which is a sequence of real
tasks, such as “edit the counter X of the logic
block Y and simulate it” – into a sequence of the
design tools. After the definition by the designer
of the design tasks, the design environment
should provide the tools invocation at the right

order and also deal with the data availability for
each tool. In some cases, the data conversion
may also be needed, so the environment should
deal with that task, too. Sometimes, the design
tasks definition may be difficult at an early
stage. So, the design environment should allow
the definition of abstract tasks, which will be
specified later. It is desirable that the design
environment could even suggest to the designer
one or more design flows, starting from a given
task. The proposal for alternative paths, for the
user defined design flows, is also an interesting
feature to be implemented on a design
environment.
In order to allow the design flow modeling, it is
necessary to define a tool-tool integration
architecture. The architecture must provide
facilities to model from simple tool connections
to complex design methodologies. To take
advantage on the hyperdocument-centric
approach of the project, the design flow can be
modeled as a chain of hyperdocuments. Each
one of the hyperdocuments embeds the user
interface of each of the design tools. So, the
hyperdocument links connect the tools in the
right order, allowing the user to navigate across
the design tasks. This chain should be done
previously, before the design process start,
based on the task sequence entered by the
designer. So, a tool is necessary to collect the
task sequence information from the designer and
to generate and store the hyperdocument chain.
The storage is done on the hypermedia server, so
the hyperdocuments would be downloaded as
needed by the designer. The chain may be also
dynamically edited, when the designer wants to
transfer design information from one tool to
another, during the design process, in order to
follow alternative flows. The implementation of
this architecture requires some resources to be
added to the design environment. The first, as
mentioned, is a tool for design flow definition,
through a graphical user interface, by the user.
This tool is also responsible for the
hyperdocument chain generation and storage.
The second resource is a requisite for the
functionality of the first one: a tool information
database. To allow the translation from task list
into tool sequence, the design flow editor must

Server

non-interactive tools

tool and data storage

Client
data storage

Client
data storage

Server

non-interactive tools

tool and data storage...

...
interactive toolsinteractive tools

 380

have complete knowledge about the design
environment tools, its input and output data
formats and its relationships with the design
tasks.
The third resource to be added is the only one
who may cause changes on the model. It is a
module to be added to every design tool,
allowing the hyperdocuments of the generated
chain to configure the design tools on invocation
time.
This resource is necessary, because the design
flow information is stored on the
hyperdocuments, but the tool during its
invocation must access it in order to setup its
functionality to fit the design flow requirements.
For instance, the download of the design data is
done by the tool and the information about the
data storage network location is stored on the
generated hyperdocument.
The main point on this architecture is to keep the
focus on the document: the designer is saved
from the tasks of keeping track on the design
data or even choose a tool to visualize that data
on any of the design steps. It is only needed to
follow the previously created hyperdocument
chain, so the design data will be automatically
transferred from step to step and the right tools
will be downloaded in order to visualize and edit
that data, Figure 3.
Some cautions are needed, in order to conceive
an interactive and evolutionary environment,
which permits quick modifications, if necessary,
due to some possible causes:
• if some modules are to be executed both
in the client and server sides of the network;
• when the hyperdocument-based tool-tool
integration, in spite of its flexibility and
possibility of dynamic tool chain creation and
simple maintenance, may allow insufficient
tool-tool binding. The integration may be too
loose and inefficient in some cases, mainly
when repeated iterations are necessary or when
complex multi-view design blocks are involved;
• if an object-oriented model should
substitute the file-based data storage and
transmission. The object-oriented model would
allow better integration with the design tools
and support efficient design data storage, using a

unified data model. The normal file-based
approaches require an intense use of format
converters, due to the lack of a unified model.

Hypermedia server

Figure 3. Tool-tool integration architecture

In figure 4, the general structure for the design
environment is briefly presented. On the server
side of the network, two repositories of Java
classes for pre-defined design blocks are playing
a similar roll as the design libraries on current
design environments.
On the client side, the user invokes a design tool
through the web browser. The invocation is
done by downloading a hyperdocument, which
assembles the tool by instantiating the building
blocks from the framework repository. When the
design task is finished, the user can update the
design representation class repositories and/or
store the design as persistent objects on Java
Spaces – also on the server side of the network.
Typically, the first procedure would be done to
add new reusable design blocks to the
repository, while the second one would be taken
to ongoing design storage. Both the class
repositories and the design are available to other
users over the network. It is important to notice
that any tool development can be done in a
similar way. Tool designers can add new tool
blocks on the framework repository by adding
the classes which will initiate the tools.

Tool
URL

Data
URL

Tool
URL

Data
URL

Tool
URL

Data
URL

Data server

Tools server

Client side

hyperdocument

chain

Designer
d l Same procedure occurs for every hyperdocument of the chain

Tool
URL Client downloads

data and tools
from the URLs
referred in the Data

URL
h t.yperdocumen

 381

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

Server JavaSpaces

design framework class repository design representation class design objects
repository repository

378

Conclusion

The feasibility of such a solution has already
been tested, see literature, and this approach has
been followed in a collaborative manner by two
different research groups, with the aim of
creating an international knowledge base,
accessible from the students of both countries
teams. This is the first step through the building
of a common educational background by
remotely sharing information and
instrumentation among the students and the
researchers of the involved Universities.
Nowadays, the project involves experimentally
the Technical University Gh. Asachi, Iasi,
Romania, and the T.U. Darmstadt, Germany,
leading to a common teaching method based
itself on the reciprocal validation of the student
knowledge and on a continuous know-how
exchange

References

[1] U. Mayer, J. Becker, T. Hollstein, M.
Glesner, L. S. Indrusiak, R. Reis (2000) An
Internet-Capable CAD suite for the Multi-Level
Design of Complex Microelectronic Systems;

Design Automation and Test Conference in
Europe 2000 (DATE 2000), User Forum, Paris,
France
[2] J. Becker, U. Mayer, M. Glesner, L. S.
Indrusiak, R. Reis (2000) Providing Flexible
Internet-Infrastructure for FPGA-Based CAD
Courses; 3rd Europ. Workshop on
Microelectronics Education (EWME´2000), Aix
en Provence, France
[3] T. Kuhn, W. Rosenstiel, U. Kebschull (1999)
Description and Simulation of
Hardware/Software Systems with Java. In: 36th
DESIGN AUTOMATION CONFERENCE,
New Orleans, USA. p.790-793
[4] R. Helaihel, K. Olukotun (1997) Java as a
Specification Language for Hardware-Software
Systems. In: Proceedings of the International
Conference on Computer-Aided Design
(ICCAD), p. 690-697.
[5] L. Francis Chan, M.D. Spiller, A.R. Newton
(1998) WELD – An Environment for Web-Based
Electronic Design; Proc. of 35th Design
Automation Conference (DAC´98), pp. 146-152,
June 15-19, San Francisco, USA.

Figure 4. Design environment

tool

tool

 …initiates

design block

design block

Client
Web Browser + Active Interfaces

…downloads…

…stores…

…shares…

Client
Web Browser + Active

Interfaces

	Figure 3. Tool-tool integration architecture

