

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

SMART CARD TECHNOLOGY BASED ON JAVA

Philip Keersebilck
KAHO St Lieven
Associated partner of K.U.Leuven
Department of Electronic Engineering
Gebr. Desmetstr. 1
B9000 Gent, Belgium
Philip.Keersebilck@kahosl.be
www.kahosl.be

Abstract. This paper introduces smart card technology. It deals with the characteristics and the benefits of the
Java Card Technology, and also discusses important topics such as security and limitations of this technology.
Keywords: Smart Cards, Java Card Techology, security

Background to (Java) Smart Cards

A smartcart looks like a credit card, with a chip
embedded in the card’s material. It can be easy
recognized by their striking gold terminals.
Figure 1 [1] shows such a smartcard.

 Fig 1

Smartcards aren’t new. They were introduced in
Europe two decades ago in the form of memory
cards for phone systems. This is the first type of
chipcards. Memory cards store data locally, but
can not perform computations on data.
A special category of a memory card is an
optical memory card. It looks like a card with a
piece of a CD glued on top. Once written with
data, those data cannot be changed or removed.
Later on, the “intelligent” smartcard was
developed, often called microprocessor card.
This is the second type of chipcards. This card
contains a memorychip and a microprocessor

and is able to perform calculations on locally
stored data. These smartcards can carry all
necessary functions and information on the card,
so they do not require access to remote
databases at the time of the transaction.
 In both cases, chipcards are safer than the
traditional magnetics stripcards, whereon the
information is on the outside of the card and
thus can be copied easily.
In another way, you can buy smartcards with or
without electrical contacts. In the first case, this
“contact smartcard” can be physically attached
to existing card accepting devices like e.g. a
keyboard [2] or to standalone devices attached
via a USB or a serial port.
In second case, we talk about “contactless
smartcards”. These cards communicate by
means of a radio frequency signal.
Traditional development of a smart card
application has been a lengthy process. Card
manufactures developed their own proprietary
solutions and programming languages for the
smart card environment [3].
The wide range of possibilities in smart card
applications has given rise to the need to
develop a commonly accepted solution, which
can be used for developing applications that suit
the smart cards for all manufactures.
Sun saw this lack of standardisation among
smart cards, and designed the Java Card

398

Technology for this purpose. All interested
parties in the field have been able to take part in
the standardisation process.
The Java Card Technology enables Java
technology to run on smart cards. Sun provides
for a common Java environment (the JCRE, or
Java Card Runtime Environment) for these
cards.
The Java Card Application Environment is
licensed to smart card manufacturers,
representing more than 90 percent of the
worldwide smart card manufacturing capacity.

Architecture of a (Java) Smart Card

The smartcard is mostly a “one chip” cart, which
means that memory and CPU are integrated in
one chip.
Although Java Card Technology is independent
of the supporting hardware, a collection of
industry standards (ISO 7816) [4] has been made
for smart cards. It defines the physical
characteristics [5] of such cards.
This standard also defines other aspects such as
transmission protocol, electronic signals, etc…
Figure 2 shows the surface contacts of a typical
smart chip [2]. The VCC input powers the chip
(typically 3 Volts). The I/O-contact transfers
data between the smart chip and the connected
host (via the card reader device). C4, C6 en C8
are reserved for future use.

Generally, there are typically three types of
memory on the smard card system:

 ROM (basically used for storing fixed
information, such as the O.S.)

 Fig 2

 EEPROM (used for data, which can be
modified during operation of the card –
this memory can – for security reasons -
only be accessed by the way of the CPU)

 RAM (for temporary datastorage)

Example: a typically Java Card Device has an 8-
or 16-bit CPU, running at 3.7MHz, with 1kB of
RAM, 16 kB of EEPROM [1].
In the ROM, the Card Operating System is
stored. Actually, a number of Card Operating
Systems exist. Unfortunately, there is no
standard operating system for smartcards just
like Windows/Linux/etc. for PC-environment.
This fact delays the development of new
applications! Nevertheless, efforts are made to
develop standards.
Rivals for Java Card Technology are Multos and
WindowsCard. Multos is developed by Mondex.
In contradiction to JavaCard, applications are
programmed in C, so the performance is, in
comparison with Java-applets, somewhat higher.
Microsoft has developped his “own” standard,
called WindowsCard.
But standard Java with all of its libraries, is far
too big to fit on a smart card. Therefore, a
“stripped-down” version of Java, named
“JavaCard” is used for it.
JavaCard can load and reuse Javaprogram’s for
different applications. Because Java is used, it is
clear that the concept is totally object oriented.
The most important issues like encapsulation
and information hiding are integrated.
Java Card includes many features, familiar to
Java developpers, such as packages, dynamic
object creation, virtual methods, interfaces and
exceptions. But some elements of Java are not
included such as dynamic class loading,
threads, cloning, garbare collection and
finalization. [7]
Figure 3 shows a layered concept [6] of the
JavaCard.

Fig 3
The Java interpreter translates the Java
statements, present in the operating sytem, to
machinecode, destinated for the Java virtual
machine. But, instead of implementing a

 399

 400

complete Java virtual machine (is not possible as
result of the limited memory space), a set of API
classes (sometimes called “Java Card
Framework”) is defined “above” the Java
interpreter.
The JVM (Java Virtual Machine), implemented
in ROM, controls access to all smart card
resources such as memory and I/O. It executes
the Java bytecode on the smartcard, providing so
the functions accessible from outside such as
signature, log-in, applications. [7]

Like in browserapplications, Java Card
applications are called applets. Multiple applets
can reside on a cart. Therefore, a “bankcard”
for example, with Java technology, can be used
as phonecard and as an identity card, …
JavaCard is compatible with the EMV-standard
(Europay, MasterCard and Visa). This standard
describes the financial actions and transmission-
protocols for financial transactions [4].
Smartcard manufacturers such as Schlumberger,
Gemplus, Siemens, Visa, IBM, Bull,… work
with the Java technology.

Java SmartCard implementation

Sun offers a Java Card Development Kit which
is a suit of tools [10 for designing Java Card
technology based implementations and
developing applets based on the Java Card API
Specification [9]. A developer’s guide can be
found on different websites. [11]

The first two steps are the same as when
developing traditional Java applets. But, once
you have created the class files, the process
changes: before these classes can be loaded on a
Java Card device, they must be converted to the
standard Converted Applet (CAP) file format,
and then (optionally) verified. The cap file
generation process does stringent type checking
on the class file for value consistency (a much
more thorough check than the Java compiles
performs).
Once verified, the CAP file is ready to be
installed on the Java Card Device (JCD).
You can test Java Card Applets without a smart
card or card reader, just by using the JCD kit.

Lifetime of a Java Card

The lifetime of a Java Card’s hardware starts
when the native O.S., Java Card VM, API
classes libraries and optionally, applets, are
burned into ROM (masking). Before such a card
reaches the user, it needs to be loaded with
general data such as e.g. manufacturer’s name
(initialising) and personal data such as personal
key, pin number, name, … (personalization). At
this point, the card is ready to use and to be sold.
Now you can insert your card into a reader and
start downloading applets.
The physical lifetime ends when the card is
expired or blocket due to a fatal error.
The lifetime of a Java Card’s software starts
when the applet is installed and registered. They
stay alive when power is switched off.

Benefits of Java Card Technology

Java Card Techology produces a number of
benefits [12]:

 Interoperable: applets will run on any
Java Card Technology–based smart card
(independent from the hardware)

 Multi-application capable: multiple
applications can coexist on a single smart
card

 Post-issue-downloading: new applets can
be installed after a card has been issued

 Secure: Java Card technology provide a
relative good secure execution (see
discussion in point 7)

 Open environment: developers have
access to Java developent tools

 Compatible with international standards
(see point 2)

Applications of Java Card Technology

Thanks to the incorporated security functions, a
Java smartcard can be used for many purposes.
The practical applications can be broadly
classified into 3 main categories:

 Data carrier: card is used as a
convenient, portable and secure means of
information

 Identification: the card provides a secure

 401

means of identifying the holder to allow
access to e.g. a personal computer

 Financial operations
Some examples:

 Financial transactions:
o Cardholder can be used to store value

(credit/debit) and, because it can
store information of multiple
applications, it can be used to access
all the accounts of the customer.

o Cardholders can dial the bank and
download some money onto the
card.

 Medical information: a Java Card can store
important medical information, destinated
for the pharmacy, medicin, … (Germany,
France, Japan)

 Public transport:
o With a Java Card, the traveller could

book in one time parking place, train-
or airplainticket, hotelreservation, …

o Automatisation of electronic
roadpricing (Singapore)

 Government: the electronic passport, in
combination with biometrical recognition
(f.e. fingerprint). [12] In Belgium, the
electronic passport, with Java Technology,
will be introduced in 2004. In the
Netherlands, a number of universities has
already introduced the “Studentchipcard” [13]

Security of JavaCards

Java, an object oriented language, is, as known,
a secure language [16]. Java applets are subject
to Java security restrictions.
The security model of Java Card systems differs
from standard Java in many ways! For example:
the Security Manager class is not supported on
Java Card; garbage collection is not present.
Otherwise, enhanced language security policies
are implemented by the virtual machine, such as:

 Applet firewall: this prevents that an
individual applet could access the
contents or behaviour of objects by other
applets

 Security and cryptographic classes: they
support symmetric and asymetric
encryption tools, pinmanagement,

random datageneration, cardholder
verification,…

It’s pity that three issues oppress the security-
level of the Java Smart Card: there exists a
terminal problem, physical attacks threaten
datasecurity [17] and post-issue downloading has
risks!
First of all, there is the terminal problem. Since
there is no built-in display in most cards, the
CAD (Card Acceptance Device) must take on
responsibility. Any display, used during
transactions (such as transferring money), needs
to be trustworthy. And that is now the problem:
how sure can the card user be that the card is
doing what it is supposed to be doing during
transaction? How can a card user check to see
for example whether account balances have been
properly debited or not? So, what the user really
need, is a trusted display.
The second problem concerns physical attacks
on smart cards. Smart cards are tamper
resistant, but not tamper proof [14]. An attacker
can introduce errors by plenty of ways such as:
pointing a radiation source at the card, hitting a
card, applying unusual voltages, washing with
chemical mixtures... Of course , some of these
methods need expensive laboratory conditions
and a team of specialists, but the security can not
be taken for granted.
Finally, we know that new applets can be loaded
on existing cards even after it has been issued to
a consumer. This introduces a number of
security risks, including the possibility that the
downloaded appletcode will behave maliciously
[15]. This significant risk can be mitigated by a
solid software risk management.
By this point, it should be clear that the use of
Java Cards, especially when used in e-commerce
systems, has important security implications.

Limitations of JavaCards

JavaCards have some limitations. First of all,
Java is an interpreted language and, this results
in a relative slower execution of algoritms.
Moreover, smart cards have limited memory
resources and computing power. The worst
limitation is the amount of RAM. This limits
the designing of applications. Memory usage
can be improved by using advanced data-

compression techniques.

Evolutions

As shown in table 1, intelligent cards are, in
comparison with the widely used magnetic stripe
cards, expensive.

Table 1: Properties smart cards

The expectation is that, with growing use of
these cards in the future, the price will be
significantly reduced.
With the announced introduction of 32-bit
microprocessor, instead of the actual 8- or 16-bit
microprocessors, smart cards will accept more
advanced applications. Advanced encryption
techniques will improve security.

Conclusion

Smart cards with the Java Card API represent a
relatively new set of technologies. They open a
wide range of applications for the growing
e-commerce market. All in all, Java Card as a
platform independent tool, seems a good choice
for smart card applications. Especially multi-
application smart cards just like the Java Smart
Card have a great future: who likes to wear a
great number of cards in his wallet?
Otherwise, the high cost is a problematic issue at
the moment. Finally, applying this new
technology introduces some security risks.

References

[1] “Java Card Technology”,
http://java.sun.com/products/javacard/
[2] “Smart-Card Devices and Applications”,
http://www.dell.com/us/en/gen/topics/vectors_2

001-smartcard.htm, January 2001
[3] “P. java based smart cards.”, Paavilanen P.
[4]“Understanding Java Card 2.O” in
http://www.javaworld.com/javaworld/jw-03-
1998/jw-03-javadev.html
[5] The TB Smartcard Product Family
http://www.bull.gr/bull/www.cp8.bull.net/prod/t
bfam.htm
[6] “An introduction to Java Card Technology
part 1”, C.E. Ortiz http://wireless.java.sun.com/
javacard/articles/javacard1
[7] From hype to reality”, Baentsch, Buehler.
http://www.computer.org/concurrency/pd1999/p
df/p4036.pdf
[8] “Java Card Language Subset and Virtual
Machine Specification”, Sun Microsystems",
http://www.javasoft.com/products/javacard/inde
x.html
[9] “An introduction to Java Card Technology –
part 2”, C.E Ortiz,
http://wireless.java.sun.com/javacard/articles/jav
acard2
[10] “Securing iMash”, G. Yeung, A. Kaplan,
P. Brisk http://www.cs.ucla.edu/~gavin/pub/
cs239smartcard.pdf
[11] “How to write a Java Card applets: a
developer’s guide”,http://www.javaworld.com/
javaworld/jw-07-1999/jw-07-javacard.html
[12] “Moving towards biometrics electronic
purse with Java Technology Card”, Heng Su
Miang.
http://www.javacard.org/paper/c_paper.htm
[13] “Stichting Studentenchipkaart:
functionaliteit” http://nieuws.surfnet.nl/nieuws/
beleid/jg99-00/04.html
[14] “Tamper Resistance of smartcard” in The
Second USENIX Workshop on Electronic
Commerce Proceedings. ISBN 1-880446-83-9
[15] “Java security – Hostile applets, holes and
antidotes”, Gary McGraw. ISBN 0-7881-9196-9
[16] “JavaCard Platform Security”, Sun.
http://java.sun.com/products/javacard
[17] “Securing Java”, Gary Mc Graw & Ed
Felten. ISBN
[18] “Java Card Technology for Smart Cards”,
Zhiqun Chen. ISBN 0201703297

 402

http://java.sun.com/products/javacard/

	SMART CARD TECHNOLOGY BASED ON JAVA
	Philip Keersebilck
	KAHO St Lieven
	Associated partner of K.U.Leuven

	Gebr. Desmetstr. 1
	B9000 Gent, Belgium

	
	Background to (Java) Smart Cards
	Architecture of a (Java) Smart Card
	Java SmartCard implementation
	Lifetime of a Java Card
	Benefits of Java Card Technology
	Applications of Java Card Technology
	Security of JavaCards
	Limitations of JavaCards
	Evolutions
	Conclusion

