

403

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

THE IMPLEMENTATION OF AN OPEN SOURCE SYSTEM FOR THE CREATION OF E-
LEARNING CONTENT WITHIN AN IRISH UNIVERSITY

Kevin JOHNSON1, Dorel PICOVICI2, Timothy HALL3

University of Limerick,
Limerick, Ireland
1) Kevin.Johnson@ul.ie, 2) Dorel.Picovici@ul.ie, 3) Timothy.Hall@ul.ie

Abstract. Open source software is becoming the most interesting ‘new’ phenomenon of the entire information
technology area, generating a level of interest similar to that of the first moments of the Internet. The impact of
open source technology is expected to be quite noticeable in the software industry, and in society as a whole. It
allows for novel development models, which have already been demonstrated to be especially well suited to
efficiently take advantage of the work of developers spread across all corners of the planet. It also enables
completely new business models, which are shaping a network of groups and companies based on open source
software development. This paper will look at work carried out on a project to create an effective authoring tool
for use within an Irish Higher Education Institution that would allow for the creation and publication of
electronic content for modules run within the University.
Keywords: Open Source technology, publishing content, authoring tool, Higher Education, dynamic content.

Introduction

In 1984, Richard Stallman, a researcher at the
MIT AI lab, started the GNU project. The GNU
projects goal was, simply put, to make it so that
no one would ever have to pay for software.
Stallman launched the GNU project because
essentially he felt that the knowledge that
constitutes a running program – what the
industry calls the source code – should be free.
Where the proprietary commercial software
vendors saw an industry guarding trade secrets
that was tightly protected, Stallman saw
scientific knowledge that must be shared and
distributed. The basic tenet of the GNU project
and the Free Software Foundation (the umbrella
organisation for the GNU project) is that source
code is fundamental to the furthering of
computer science and freely available source
code is truly necessary for innovation to
continue (O'Reilly 1999).
This basic philosophy for the creation and
distribution of software in the higher education
realm has interesting parallels. Scientific
knowledge is often in the public domain; it is
one function of academic publishing to put it
there.

With software, however, it was clear that just
letting the source code go in to the public
domain would tempt businesses to co-opt the
code for their own profitability. Stallman’s
answer to this thread was the GNU General
Public License, known as the GPL. The GPL
says that you may copy and distribute the
software licensed under the GPL at will,
provided you do not inhibit others from doing
the same, either by charging them for the
software itself or by restricting them through
further licensing. The GPL also requires works
derived from work licensed under the GPL to be
licensed under the GPL as well.
In the spring of 1997 a group of leaders in the
free software community assembled in
California. Their concern was to find a way to
promote the ideas surrounding free software to
people who had formerly shunned the concept.
They were concerned that the free software
Foundation’s anti-business message was
keeping the world at large from really
appreciating the power of free software. The
group agreed that what they lacked in large part
was a marketing campaign, a campaign devised
to win mind share, not just market share. Out of
this discussion came a new term to describe the
software that qualified as Open Source.

 404

When we talk, in English, about ‘free software’,
there is a dangerous ambiguity, due to ‘free’
meaning both ‘freedom’ and ‘gratis’. Therefore,
in this document, we will use mainly the term
‘open source’ when referring to users freedom
of use, redistribution, etc., and ‘gratis software’
when referring to zero acquisition cost. Before
going into more detail, it is a good idea to state
clearly that open source software does not have
to be gratis – in the sense of cost nothing money
wise. Even more, it usually is not, or at least, not
completely.
The main features that characterise free (open
source) software is the freedom that users have
to:

• Use the software as they wish, for
whatever they wish, on as many
computers as they wish, in any
technically appropriate situation.

• Have the software at their disposal to fit
it to their needs. This includes improving
it, fixing its bugs, augmenting its
functionality, and studying its operation.

• Redistribute the software to other users,
who could themselves use it according to
their own needs. This redistribution can
be done for free, or at a charge, not fixed
beforehand

It is important now to make clear that we are
talking about freedom, and not obligation. That
is, users of an open source program can modify
it, if they feel it is appropriate. But in any case,
they are not forced to do so. In the same way,
they can redistribute it, but in general, they are
not forced to do so.
To satisfy those previous conditions, there is a
fourth condition that is basic, and is necessarily
derived from them. This is that users of a piece
of software must have access to its source code.
The source code of a program, usually written in
a high level programming language, is
absolutely necessary to be able to understand its
functionality, to modify it and to improve it. If
programmers have access to the source code of a
program, they can study it, get knowledge of all
its details, and work with it as the original
author would.

Paradoxically, if this freedom is to be
guaranteed for a given piece of software, with
current legislation, it is necessary to “protect” it
with a license, which imposes certain
restrictions on the way that it can be used and
distributed. This fact causes some controversy in
certain circles, because it is considered that
these licenses make the software distributed
under them “less free”. Another view, more
pragmatic, is that software will be made “more
free” by guaranteeing the perpetuation of these
freedoms for all its users. Because of that,
people holding this view maintain that it is
necessary to limit the ways of use and
distribution. Depending on the ideas and goals
of the authors of a piece of code, they can decide
to protect it with several different licenses.

Open Source For Higher Education
Advantages of Open Source in Higher
Education

Motivations for using and developing open
source software are mixed, ranging from
philosophical and ethical reasons to pure
practical issues. In this section, some of the most
widely proposed practical advantages will be
introduced.
Usually, the first perceived advantage of open
source models is the fact that open source
software is made available gratis or at a low
cost. But this characteristic is not exclusive to
open source software, and several proprietary
software products are made available in similar
ways (a prominent case could be Microsoft’s
Internet Explorer)(Libre 2000). What really
distinguishes open source software from
software available without fee is the
combination of effects due to the characteristics
listed above in the introduction.
All of them combined produce a synergistic
impact that is the cause of the real advantages of
the open source model. Here are some more
details on how these characteristics turn into
advantages:

• The availability of the source code and
the right to modify it is very important. It
enables the unlimited tuning and
improvement of a software product. It

 405

also makes it possible to port the code to
new hardware, to adapt it to changing
conditions, and to reach a detailed
understanding of how the system works.
This is why many experts are reaching
the conclusion that to really extend the
lifetime of an application, it must be
available in source form. In fact, no
binary-only application more than 10
years old now survives in unmodified
form, while several open source software
systems from the 1980s are still in
widespread use (although in many cases
conveniently adapted to new
environments). Source code availability
also makes it much easier to isolate bugs,
and (for a programmer) to fix them.

• The right to redistribute modifications
and improvements to the code, and to
reuse other open source code, permits all
the advantages due to the modifiability
of the software to be shared by large
communities. This is usually the point
that differentiates open source software
licenses from “nearly free” ones. In
substance, the fact that redistribution
rights cannot be revoked, and that they
are universal, is what attracts a
substantial crowd of developers to work
around open source software projects.

• The right to use the software in any way.
This, combined with redistribution
rights, ensures (if the software is useful
enough), a large population of users,
which helps in turn to build up a market
for support and customization of the
software, which can only attract more
and more developers to work in the
project. This in turn helps to improve the
quality of the product, and to improve its
functionality. Which, once more, will
cause more and more users to give the
product a try, and probably to use it
regularly.

Perceived disadvantages of Open Source

Open source development models also lead to
the perception of some disadvantages. However,

some of them are only disadvantages if we are
stick to classical (proprietary) development
models, which is of course not the case with
open source. Listed below are some of these
disadvantages:

• There is no guarantee that development
will happen. In other words: it is not
possible to know if a project will ever
reach a usable stage, and even if it
reaches it, it may die later if there is not
enough interest. Of course, this is also a
problem with proprietary software, but it
is more evident in the case of open
source. Especially when a project is
started without strong backing from one
or more companies, there is a significant
initial gap, when the source base is still
immature and the development base is
still being built. If it is not possible to get
funding or enough programmers
cooperating at this stage, the project just
“dies”, or perhaps slowly fades out.
Usually, when it reaches a self-
sustaining level, the user and
development base is such that it can
proceed by itself, without other external
incentives.

• There may be significant problems
connected to intellectual property. This
point is especially important, now that
some countries are accepting software
and algorithm patents. It is very difficult
to know if some particular method to
solve a software problem is patented, and
so the community can be considered
guilty of intellectual property
infringement. Developers consider
source code not as an executable device,
but a mere description of how a device
(the computer) executes, and therefore
uphold the idea that source code is not
by itself (in absence of an
executableprogram) covered by patent
law even in countries where software
patents are accepted. In any case, it still
leaves problems for the users, who need
the executable programs. Although the
issue of software patents is a problem for

 406

the whole software industry, open source
is probably one of the more clear cases
where it can be shown how they harm
the regular process of software
development. The specific problems are
that availability of source code simplifies
the detection of patent infringements by
patent holders, and that the absence of a
company that holds all the rights on the
software also makes it difficult to use the
mechanisms in use by companies to
defend from patent litigation, like cross-
licensing or payment of royalties.

• It is sometimes difficult to know that a
project exist, and its current status.
There is not much advertising for open
source software, especially for those
projects not directly backed by a
company willing to invest resources in
marketing campaigns. However, some
people see this fact as a market
opportunity, and several companies with
experience in Internet based information
services are approaching open source
software with added value services
which maintain information useful for
people or companies trying to locate or
evaluate open source software of some
given characteristics.

It is extremely important to ‘see’ through the
various interpretations of the advantages and
disadvantages of open source, and if possible try
to analyze with quantitative methods if open
source can be helpful in a given situation, or for
a given user or company.
Based on this research carried out on Open
Source technologies, it was agreed that the tool
would be implemented on an open source
platform like Linux and using open source
technologies like PHP and Mysql. More details
on this follow in the subsequent sections. Aims
And Objectives
The application was being designed with the
following aims in mind:

• Flexibility – allow access any time, any
where

• Adaptability – caters for the diverse and
changing needs of Universities

• Customisable - allow custom content to
be added by the different colleges within
the University

• Expandable – permit the tool to be
expandable to suit the changing need of
the authors and students

• Updatable – allow for the easy
updatability of content through the tools
interfaces

• Standards Compliant – compliant with
leading standard bodies AICC/IEEE/IMS
etc

• Low cost – is less expensive than
competing services

Once all of these objectives were known, the
next step was to design the tool around the
people who were going to be using it – the users.

System Users

Research was carried out on the additional tools
and systems that are available in today’s ever
changing market. The functional specifications
and features associated with these systems were
reviewed and feedback was given to the design
team. It was agreed that out tool would be
viewed from three different viewpoints, that of
the user, the author and the administrator.
The user was the intended end user for the tool
as so it was important that their viewpoint was
captured and feedback in to the development
process of the tool. This allowed us to create a
tool that suited the user and catered for their
needs. Some of the functionality associated with
the learner included:

• Log in/Log out of the tool
• Search Capabilities
• Take a new course
• Continue an existing course

The author on the system was viewed as being a
lecturer or teacher of sorts. This author would
have the following features available to them
(Johnson 2002):

• Log in/ Log out

 407

• Create Content
1. Fragment – smallest possible level of

granularity
2. Topic
3. Lesson
4. Module
5. Course
6. Curriculum – A group of courses

• Publish Content
1. Topic
2. Lesson
3. Module
4. Course
5. Curriculum – A group of courses

• Search Databases
• Manage Content Creation
• Management of publishing factors
• Management of users
• Tutorials/Help sections

The administrator is the final user on the system.
Some of the tasks associated with this user
included:

• Set privileges - allow only certain
users to view content

• Maintain data base(s)
• Assessment/Report generation -

for groups /courses/ individuals
• Track all other users for

commercial and security
purposes.

• Use the content as learner’s

System Architecture

The Authoring system, and resulting tool,
proposed by this paper essentially provides non-
technical authors the means to create a series of
topics, lessons or modules of learning, from low
granularity learning objects and combine them
to be published into a new structure. The author
has the option to create basic textual learning
objects and import learning objects created by
other third party applications, such as word
documents, Acrobat files, PowerPoint
presentations, images, macromedia flash objects,
JavaScript, HTML files etc. This group terms
these low levels of granularity learning objects

as “fragments”. Once this content is uploaded,
the file or content is stored in a specific location
on the server (Phoenix 2003). The exact location
is dependant on who is uploading the piece of
content. The associated content has information
or metadata associated with it and stored in a
database for quick search and retrieval
functions. It is worth noting that this tool will
allow some additional new content to be created
that is non-reusable, such as course summaries,
aims and objectives etc that are specific to the
aggregation of content (Concannon and Johnson
2003).
Following the population of a fragment learning
object database, the authoring tool will allow the
sequencing of these learning objects into new
aggregations, compliant and implemented via
the IMS Content Packaging (CP) Specification,
as also outlined in ADL’s (Advanced
Distributed Learning) SCORM (Shareable
Content Object Reference Model) suite
(ADLNet). The author is presented with all of
the available content that is uploaded and not
copyrighted. The author selects the content that
they wish to use and proceeds to sequence this
in a format that is suitable for the user to view.
This information is then stored in an XML
(eXtensible Markup Language) file on the
system. This file is compliant with the IMS CP
Specifications. The author will have the option
to build new topics, lessons, modules, courses
and programs from imported learning object
fragments. Therefore the fragment resources
will be available to the authoring tool along with
the relevant metadata. The author can create
high-level maps of learning episodes, indicating
a best path, or sequence through a collection of
learning material. This system was implemented
as the first draft of the tool and used within the
University for a testing period of 3 months. The
feedback received from this testing enabled us to
modify and update the tool for its next
evolution.

Phase Two

The second phase of the tool build upon what
was initially coded and released at the start. One
of the main drawbacks that the users and authors

found pertaining to the tool was that it was
limited in the assignment upload area. This
information was relayed to the development
team and changes were drafted and implemented
with a couple of weeks. The next version of the
tool would allow the students to see the
assignment deadline approaching (based on a
Unix timestamp command) and therefore know
instinctively that the assignment needed to be
uploaded soon. Upon completion of uploading
an assignment, the students can view the
directory listing and see the uploaded file, verify
it is the right size as the original on the local
machine and if they are not happy with this they
can delete the file and upload again. The
information is stored in a database as well to
state that the student has uploaded the
assignment. Once they have uploaded an
assignment a teaching assistant or lecturer for
the module, namely someone with author or
admin privileges, can view the uploaded
assignments and grade them. The final stage of
this process is that the author gives the students
some private form of feedback for their personal
viewing and some general form for all the other
students in the forum to see. This modification
worked well and the students were happy with it
and the author was pleased that they could now
grade the assignments as they are uploaded and
give the students feedback also. This feedback
will prove useful to next year’s students when
they are reviewing the uploaded content and
associated feedbacks. For the final stage of the
tool, authors wanted to be able to dynamically
create folder structures on the server from the
tool or graphic user interface console. They
wanted to be able to create their own structure to
the course as opposed to sticking to the default
layout. Hence the need for another revision of
the source code.
Phase Three

 408

This stage allowed the author to create a new
folder structure for the content that was to be
uploaded and tagged with metadata content. The
layout of the site was now in the hands of the
author. They could create folders and sub
folders at their discretion. A new feature was
added that allowed the author specify the type of

content that was being uploaded to the server –
namely lecture notes, lab solutions, lab problems
or Exam papers. This, in turn, allowed for a
more refined publishing system to be installed
and permit the author to publish only certain
content from each immediate category. This
stage is still in testing at the moment.
One advantage of the system is its Open Source
software. The system is designed and built on a
Linux environment running an apache web
server configured to run PHP (PHP Hypertext
Preprocessor) (PHP) and MySQL (open source
database system) (MySql). One of the main
factors for the small turnaround time between
phases was this open source technology. There
was no delay in coding new functions or
working on existing functions. The system was
available to the team and easy to modify and
expand to meet the new needs of the users. The
Linux environment and PHP worked flawlessly
together and PHP had a lot of the features built
in to deal with the database functions as well as
the file management scenarios that arose in
phase three.

Figure 1. Uploading Process on the Authoring

Tool
Conclusions

The authoring tool was created to meet the
needs of the university system here, within the
Department of Electronic and Computer
Engineering in the University of Limerick,
Ireland. The tool was rolled out and reviewed
and tested, allowing for updating and expansion
when the need arose. The tool permitted the

 409

publishing of content online for students within
the courses and also allowed the user to give
feedback to the students based on their work and
progress within the class.
One of the strikingly attractive features of the
tool was that it was based on an open source
infrastructure – from the technology used to
hose the website to the code that was written to
deliver it. This tool, while still being a long way
from the likes of commercial systems like
WebCT and Blackboard, still has it advantages
and, from one point of view, it may be only a
matter of time before it catches up.

Acknowledgements

The work presented in this paper form part of a
major project, called ENCOMPASS, which has
been funded by Enterprise Ireland’s Advanced
Research Technology Program under the
National Development Plan. See the website:
http://encompass.amt.ul.ie.
References:

[1] ADLNet "Advanced Distributed Learning
Network (ADL Net) Advanced Distributed
Learning, SCORM Past."
[2] Concannon, F. and K. Johnson (2003).
Designing an Authoring System to Support
Learning Object Repositories for Small to
Medium Sized Enterprises. Elearn 2003,
Phoenix Arizona.
[3] Johnson, F. C. a. K. (2002). "Technical
Specification for the Encompass Tool - Draft 2."
[4] Libre, W. g. o. L. S.-. (2000). Free Software/
Open Source: Information Society Opportunities
for Europe ?
[5] MySql "MySql Database available at
http://www.mysql.com."
[6] O'Reilly, T. (1999). Open Sources Voices
from the Open Source Revolution, O Reilly and
Associates.
[7] Phoenix (2003) "Phoenix Web site Available
at http://phoenix.ul.ie/."
[8] PHP "PHP Website available at
http://www.php.net/."

	Introduction
	Open Source For Higher Education
	Advantages of Open Source in Higher Education
	Perceived disadvantages of Open Source

	System Users
	System Architecture
	Phase Two
	Phase Three

	Conclusions
	Acknowledgements

