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Abstract. This paper generalises some previous approaches for modelling flexible manufacturing systems 
(FMS) with shared resources. We consider a class of controlled discrete – event systems modelled as controlled 
Petri nets. Our goal is to model a live system, using the concept of synchronic distances in Petri nets, with a 
liveness controller that can be used for verifying some other parameters, beside the liveness of the Petri net 
model of the FMS, such as availability of the system’s components. An example illustrates the given approach.    
Keywords: controlled Petri nets, synchronic distances, liveness controller. 
 
Introduction 
 
Research on discrete-event systems (DES’s) has 
focused on the synthesis of controllers for 
achieving desired behaviour [1] – [3]. As with 
continuous systems, some specifications for 
DES’s are more important than others. For 
continuous systems, stability must be guaranteed 
before optimal performance can be considered. 
For DES’s, it is most important to be ensured 
that the system never enters a state in which 
equipment will be damaged or costly error-
recovery procedures become prohibitive. Such 
operational constraints are usually referred as 
forbidden state specifications [4]. Translating 
these considerations in the modelling field, we 
notice that a major concern, when modelling 
DES’s using Petri nets, is to check whether the 
Petri net model has desired qualitative properties 
such as liveness, boundedness and reversibility. 
These properties characterise the behaviour of a 
well-designed system. As long as manufacturing 
systems are concerned, the liveness ensures that 
blocking will never occur, the boundedness 
guarantees that the number of in-process parts is 
bounded, the reversibility enables the system to 
come back to its initial state from any state it 
reaches. Therefore, the reversibility property is 
related to the concept of error recovery in 
manufacturing [5] because in the presence of 
some significant error, the system may 
automatically be reinitialised through a recovery 

process. Because we use, for the modelling 
process, sure connected graphs (SCG), it results 
that boundedness property of the Petri net 
models is ensured. Since for this class of nets, 
the sufficient conditions for liveness are the 
same as those for reversibility [5], [6], the 
liveness-checking algorithm can be used to 
check reversibility, too. More, based on some 
properties related to the concept of synchronic 
distances in Petri nets we build a controller for 
liveness checking of the DES’s models. This 
Petri net controller has been proven to be 
versatile, that is when checking the liveness of 
the net (liveness which is ensured by the related 
properties), it found that the net was not live. 
The role of the controller is to verify the 
availability of the equipment that composes the 
flexible manufacturing systems (FMS’s) as 
exponents of the DES’s. A FMS consists of a 
number of systems, such as process actions, 
material storage, material processing devices, 
raw and finite material transportation devices, 
control units etc. The material flows among the 
flexible manufacturing cells, machines and 
equipment are usually connected through an 
automated handling system. Production control 
units, including process information and control 
commands are routed via a communication 
system. The communication system can have 
computers, control units, local area networks. 
The FMS can manufacture diverse types of 
products in variable batch sizes and meet fast 



transition of customer requirements. Therefore 
we choose FMS’s as an example of DES’s that 
have the ability to cope with rapid market and 
demand changes.  
 
Controlled Petri Nets 
 
In this paper we consider controlled DES’s 
which can be modelled with controlled Petri 
nets. Controlled Petri nets are an extension of 
standard Petri nets in which binary control 
inputs can be applied as external conditions for 
enabling transitions in the net. A controlled Petri 
net is a five-tuple: CPN = {P, T, E, C, B}, where 
P is the finite set of state places, T is the finite 
set of transitions, E ⊆ (P x T) ∪ (T x P) is the 
set of directed arcs connecting state places and 
transitions, C is the finite set of control places 
and B ⊆ (C x T) is the set of directed arcs 
associating control places with transitions.  
The set of state (control) places which are inputs 
to a transition t ∈ T is denoted by (p)t((c)t) and 
the set of state places which are outputs of a 
transition t∈T is denoted t(p). Similarly, for a 
state place p∈P, (t)p (respectively, p(t)) represents 
the set of all transitions for which p∈P is an 
output (input), and C(t) represents the set of all 
transitions for which control place c∈C is an 
input. A controlled Petri net is strongly 
connected if there is a direct path between any 
two transitions in the graph.  
A control u : C → {0,1} assigns a binary token 
count to each control place. The set of all 
controls will be represented as U. We notice that 
assuming a sure net for our models, we afford to 
assign a binary token count to control places. A 
transition t∈T is said to be state enabled under a 
marking m if m(p) ≥ 1 for all p∈(p)t. A transition 
t∈T is said to be enabled under a marking m and 
a control μ if it is state enabled under m and 
μ(c)=1 for all c∈(c)t. A transition set in a 
controlled Petri net is said to be enabled under a 
given marking m and control μ if all transitions 
in the set are enabled. A state transition notation 
is [2]: m0[u(⋅), σ] ⇒ m in order to indicate that 
marking m results from the valid firing sequence 
σ of the initial marking m0 under the control 

policy U. R(u, m) and R(U(⋅), m) denote the set 
of markings reachable under valid transition 
firing sequences of any length under the control 
u and the control policy U, respectively. The 
immediately reachable set Ri(U(m), m) is the set 
of markings reachable under the firing of a 
single transition set. A partial ordering on the set 
of controls U is defined for two controls ui, uj ∈ 
U, ui ≥ uj signifies ui(c) ≥ uj(c) for all c∈C, and is 
said that ui is more permissive than uj. Given a 
marking m, and two controls ui and uj, if ui ≥ uj,, 
any transition set, which is enabled under the 
control uj is also enabled under the control ui. 
The forbidden state control problem [4], [5] is to 
determine a control policy U for which 
R(U(⋅),m0) ⊆ MF for all m0 ∈ MF, where MF 
represents the set of forbidden markings. In [5], 
the set of forbidden markings is represented in 
terms of forbidden conditions. A marking m ∈ 
M satisfies a forbidden set condition F⊆P if 
m(p)=1 for all place conditions p ∈ F, where M 
is the initial marking set of the controlled Petri 
net. The method presented in [5] identifies a set 
of paths for the place conditions. Given a place 
p∈P, a precedence path π for p is defined as a 
sequence of directed places (p1, p2, … pn) so that  
1) ppn = ;  
2) ≠ ∅; )( 1

)()(
)( ptc

t

3) for each ( )
i

t pt= ,  for 1 < i ≤  n, = ∅. ( )tc

The notation ( )
1pt t=π  denotes the controlled 

transition leading to the precedence path π. The 
set of all precedence paths for a place condition 
p is represented by pΠ . 
 
Liveness properties of controlled Petri nets 
 
In an ordinary Petri net, a transition is said to be 
live if from any reachable marking and for any 
transition, there is a reachable marking under 
which the transition is fireable. A controlled 
Petri net is live under a control policy U (·) and 
an initial marking m0 if and only if for every 
marking m ∈ R(U(·), mo) and every t∈T, there is 
a marking m’∈ R(U(·), m) and a few controls 
u∈U so that the transition t is enabled under the 
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pair m’ and u. We notice that a control policy 
can be so restrictive that the resulting controlled 
system is not live. Therefore, in order to have 
enough conditions for the controlled Petri nets 
to be live we define the synchronic distances 
[7]: For any two transitions ti and tj in a 
controlled Petri net, with an initial marking m0, 
the synchronic distance d(ti, tj) is: 

 ( ) ( ) ( )jiji ttttd **max, σσ
σ

−=
∑∈

  (1) 

Where Σ is the set of firing sequences starting at 
markings m∈R, and σ*(t) is the number of times 
the transition t fires in the firing sequence σ. 
The following propositions represent results 
given in [4]-[7] about the properties concerning 
liveness in controlled Petri nets: 
Proposition 1: Given a strongly connected 
controlled Petri net, an initial marking m0∈M, 
and a control law U, there is a finite number k so 
that if σ is a valid firing sequence of length l>k, 
then σ*(t) ≥ 1 for all t∈T.  
This proposition states that if there is an 
allowable transition firing sequence of length 
greater than some constant, in a strongly 
connected controlled Petri net, then all 
transitions in the graph will have fired at least 
once in the sequence. Therefore, the length of a 
firing sequence is calculated as . ( )∑

∈Tt
t*σ

Proposition 2: Given a strongly connected 
controlled Petri net, with a forbidden class 
condition F and an initial marking m0∈M, the 
following conditions hold: 
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a) (p)(p(t)) = {p} for every place p∈F; 

b) ≠ ∅ for all p∈F and ( ) ( ) ( )( )⎟
⎠
⎞

⎜
⎝
⎛ − tcc pt 1π 11 pΠ∈π , 

where and pFp
FF ∈

∪∈
1

1 1 ≠ p; 

c) there are places pi, pj∈F so that p∈F and that 
 for any ( ) ( )

j
c

i
c tt ππ ⊄ ii ππ Π∈ and ; jj ππ Π∈

Then, the controlled Petri net is live under the 
maximal admissible policy UF. The first two 
conditions of proposition 2 state that the output 
transition from any marked place p in a 
forbidden set condition can always be enabled. 
Condition a) states that place p is the only state 
place input to the transition, and this transition is 

state enabled when p is marked. Condition b) 
states that there is a control so that the input 
transition to any path leading to a place in the 
forbidden state can be disabled without 
disabling the output transition for other 
forbidden places. Condition c) states that there is 
a control for the transition tπ, where the 
unmarked path π leads to the place p∈F, so that 
tπ is enabled to fire, while disabling tπ1 for other 
path leading to p1∈F. Therefore, in a strongly 
connected controlled Petri net, with a forbidden 
class condition F and an initial marking m0∈M, 
if the proposition 2 holds for all F, then there is 
a fireable transition under some control 
μ∈UF(m0), and the net is live. 
The given propositions allow us to build a 
controller, which we believe to be novel, so that 
under a control law U(m0) and in the presence of 
the UF(m) control, it ensures the liveness of the 
strongly connected controlled Petri net model of 
the FMS’s. 
 
Liveness controller for controlled Petri nets 
 
Quality control and management systems must 
be analysed using collected data, and then the 
result is used for controlling the process and for 
preventing damages. When process conditions 
change, the process parameters must be adjusted 
according to process variability. Liveness can be 
used to investigate and control the process, as 
shown in Fig.1. 

 

FMS 
(Petri net model) 

Liveness Controller
(LC) 

Liveness  characteristics
Output

Finite
products

Controllable
factors

Input
Raw

material 
Uncontrollable 
factors 

 
Fig. 1. Liveness controller for a FMS 

Our approach for the liveness significance may 
be different from the classical ones, but we see 
this as a controller for the modelling process. 
The liveness controller (LC) activities, in this 
paper, are constructed in terms of Petri nets 



formalisms: these activities can be refined into a 
Petri net, as shown in Fig. 2. 
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Fig. 2. Petri net model of a LC 

 
The Petri net elements of the LC are described 
as follows. LC_P1 represents the data collected 
from the shop floor. LC_T1 indicates the initial 
data set and LC_T2 indicates the subsequent data 
set. LC_T1 and LC_T2 are controlled and 
mutually excluded by LC_P2. The number of 
tokens in LC_P2 indicates the required initial 
number for analysing the capability of the 
process. For us, the process capability can be 
evaluated in terms of the liveness capability. 
LC_P5 contains the data analysed by the process 
capability. The marking of LC_P5 controls 
LC_T5 and LC_T6, which represent the live and 
the non-live process, respectively. If a process 
results to be non-live, then LC_P6 restarts the 
capability analysis of the process after adjusting 
the process parameters in concordance with the 
conditions imposed by proposition 1 and 
proposition 2, as discussed above. 

If the Petri net in Fig.2 is live, then LC_T4 is not 
inhibited and the process is considered to be 
capable, where location LC_P11 stores the 
results of the control analysis. The inhibitor arc 
connected to LC_T2 is designed for controlling 
the number of initial data simulations for 
analysing the process liveness. The inhibitor arc 
connected to LC_T3 indicates when the initial 
data (measurements) are complete, and the 
process can be executed to generate the liveness 
of the system. When LC_P10 is marked by firing 
LC_T4 it indicates that the process is live under 
the initial parameters, and when LC_P10 is 
marked by firing LC_T9 it indicates that the 
process became live under adjusted parameters.  

LC_P2 LC_P1 

LC_T1 

LC_P3 

LC_T3 

LC_T2 

LC_P4 

LC_T4 

LC_T7 

LC_P10 

LC_P11 

LC_P5 

LC_T6 

LC_P9 LC_P8 

LC_T5 

LC_P7 

LC_P6 

LC_P12 

LC_T8 LC_T9 

The inhibitor arc connected to LC_T4 indicates 
if the process liveness is not acceptable. In this 
situation LC_P7 is marked and inhibits the firing 
of transition LC_T4. Locations LC_P8, LC_P11 
and LC_P12 indicate to another (eventually) 
process the status of the controlled process. The 
following example of controlling the traffic in a 
railway system will highlight the above given 
approach. 
 
An example of traffic coordination in a 
railway system  
 
We consider an example of coordinating 
departures of railway vehicles in a railway 
system [8]. The goal of our Petri net is to model 
the layout of the transport system. When a 
vehicle needs to move from the current stop to 
the next adjacent stop, it needs to receive a 
“ticket” of movement first to know its 
destination. Then, the vehicle acquires the 
control right of the next adjacent stop to make 
sure that stop is free at the moment. If both of 
these conditions are satisfied, it can start its 
travelling to the next adjacent stop (station). In 
the same time, the control right of the current 
stop will be released to allow another vehicle to 
use it as a destination or pass-by stop. The 
controlled Petri net model of the railway system 
consists of a number of elementary controlled 
nets, as shown in Fig.3. 
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Fig. 3. Elementary controlled Petri net for 
modelling the railway system 

 
The notations of places in Fig. 3 are explained 
as follows: 
 
1) st_i, i∈N represents the stop at a workstation. 

A token in st_i means that a vehicle is 
currently stationing at stop i; 

2) ctrl_i, i∈N represents the control right of stop 
i. When ctrl_i is marked, it means that stop i 
is freed now and all vehicles are allowed to 
move to stop i; otherwise, it means that there 
is a vehicle at the stop i, therefore no other 
vehicle can move to that stop; 

3) mv_ij, i, j∈N, with an arc connecting stop i 
and stop j in the net, represents the status of 
the vehicle movement from stop i to stop j. A 
token in place mv_ij means that a vehicle is 
currently moving from stop i to stop j; 

4) tk_ij, i, j∈N, with an arc connecting stop i 
and stop j in the controlled Petri net 
represents the “ticket” of the path from stop i 
to stop j. A token in place tk_ij means that a 
vehicle wants to move from stop i to stop j; 

5) mv_ok represents the status of completing the 
vehicle movement along a path. A token in 
place mv_ok means that the vehicle has 
completed the path movement. 

 
For example, we consider five workstations as 
shown in Fig. 4. 
The process flow for the directed graph in Fig. 4 
is the following: A convoy of railway trucks 
leaves the garage line (stop_0) and is sorted in 
order to load/unload some trucks at line number 

1 (stop_1) and then to load/unload the rest of the 
trucks at the line number 2 (stop_2). The next 
operation is to form the convoy with the loaded 
trucks at the manoeuvre lines of the shunt board 
(stop_3) and then the convoy is sent back to the 
garage lines, when the trucks correspond for the 
traffic security laws, or to the line 1, in order to 
unload the trucks when these do not correspond 
for the traffic security. This final verification is 

made at the expedition lines (stop_4) of the 
shunt board.  

ctrl_i

st_i

ctrl_j

tk_ij
mv_ij

st_j

mv_ok

 

stop_0 

stop_1 stop_2 

stop_3 stop_4 

 
 

Fig. 4. Layout directed graph for five 
workstations example 

 
The controlled Petri net for the layout directed 
graph in Fig. 4 is given in Fig. 5, in which stops 
st_i, where i = 0,…, 4, represent potential 
collision regions through which railway vehicles 
must pass. A collision can occur if two vehicles 
simultaneously occupy a zone (i.e., there are two 
tokens in the set of places representing a zone). 
Because the transition following each forbidden 
place (each place in a forbidden zone) has only a 
single input, place conditions a), and b) of 
proposition 2, given in section 3, are satisfied. 
Furthermore, since no two controlled transitions 
share simultaneously the same control places, 
then condition c) is also satisfied. It results the 
net in Fig. 5 is live under the initial parameters. 
In Fig. 2, in the liveness controller, we observe 
that transition LC_T11 is not inhibited. 
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ctrl_2
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Fig. 5. Controlled Petri net for modelling the railway system with five workstations 
 
 
Conclusions 
 
In this paper we presented a set of sufficient 
conditions for a class of controlled Petri nets 
which will ensure liveness under a control 
policy for avoiding a set of forbidden states. 
Liveness is an important property of systems, 
which will ensure that the system continues to 
operate while avoiding undesirable states. In 
order to construct a live system we introduced 
an algorithm, which can be used in a unified 
modelling technology. Such research increases 
the integrability of models with different 
behaviours. An example for traffic coordination 
in a railway system was chosen for 
exemplifying the given approach for modelling 
FMS’s. Further researches will increase this 
method, by applying differential Petri nets in the 
structure of the liveness controller. 
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