

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

N-TIER APPLICATIONS. XML-XSLT IN DATA TRAFFIC OPTIMISATION

Cătălin CERBULESCU1, Monica CERBULESCU2

1) Faculty of Automation, Computer and Electronics, Craiova
ccerbulescu@nt.comp-craiova.ro
2) Carol I College, Craiova
mcerbulescu@hotmail.com

Abstract: The paper presents an N-tier development model for Web applications. The purpose of the approach
is minimising data processing on the server tier and moving this to the client tier. The XML data is processed
thorough XSL or client scripting, using XSL or client script templates that access either the XSL document root
either the XML document root. The data presentation is the task of the fat-client. The Applications and/or Web
Server Level queries the database and stores the result in a XML Data Island. The XML Data Island is send to
the client either through a inline XML, embedded in the HTML document either through an XML data source
url, attached to a working session. The XML data, received by the client, are exploited by client scripting or by
XSL files, generated, on the server, during the current session. The client (browser) switches to the fat-client
situation. If the client browser does not have the capabilities of handling XML, the presentation is fully
generated on the server, through server scripting and then send to the client. The client switches in the thin-
client situation.
Keywords: XML, XSL, traffic optimisation, fat-client, thin-client, XSL root, XML root.

2-tier Application Development Model

Client-Server applications represents an
architectural method of developing applications

witch has the purpose of sending information,
stored on server, to an client-user.
Client/Server (C/S) is the general term through
we can refer those systems who:

Server Application

Database Application
MainFrame

Client Application
(Browser)

1. have as a physical support a computer
network and

The client initiates the contact (transaction) with
the server application, normally on another
machine in order to access some specific
functions. The server delivers services requested
by server.
Although the C/S term was frequently associated
with the situation of a computer connected to a
database server, it refers the logical modelling of
an application, in the design phase so that it can
be done a clear division of the tasks on levels,
tiers or client/server.
In a typical C/S application, data presentation
task is made by the client application, through a
GUI while the server application ensures the
database access.

Client / Server application development

model On a large scale, the C/S architecture is the most
common development model used in
applications in the last 20 years. Today it is

422

 423

obviously that it is overtake. This is due to the
need
1. to process larger quantities of data but also
2. due to the frequent changes of the data

processing algorithms.
Those facts require changes to the level of the
Server and/or Client.
Basically, this is the so-called ”fat client” – ”thin
client” dilemma. It consists in establishing the
place (client or server) witch ensures the major
parts of the data processing.
If the larger part of the data processing is made
on server (fat server - thin client) we obtain:
- a server overloading in witch the machine

respond to fewer clients in the time unit;
- the server ensures data store but also data

processing;
- fewer tasks to execute for the client;
- low network data traffic (the client makes

requests, he does not execute any kind of
data processing);

- in the case of a Internet application, the code
for the client (client scripting) has small
dimension and it is easy to load on the client
(browser);

- algorithms changes can be made only on the
server with low costs. In the case of an
Internet application algorithms changes can
be easily made both on server and client, on
low costs;

- client applications can be designed so that
can be platform-independent.

If the larger part of the data processing is made
on client (fat client - thin server) we have:
- client overloading;
- the server does, besides the data storing,

minimum data processing;
- a task release for the server, this can trait a

larger clients number in the time unit;
- low network data traffic (the client runs data

processing and the server only serves data);
- in the case of an Internet application
- the client side scripts has a greater size and

can be hard to load;
- algorithms changes are easy to made, with

low costs
- in the case of an non-Internet application

- algorithms changes are made on client
side, with high costs because

- the client applications cannot be
designed so that can be platform-
independent. Although, Java can help to
design such kind of applications.

As shown above, the programming language is
another major problem that needs to be solved
when designing non-Web C/S applications.
That’s because the client application, usual
developed in a visual medium, must run on
different platforms and being platform
independent. It reaches the situation when an
application, developed for a company cannot be
used for another company. So, the software
development became less profitable.
Some of the important elements followed in
designing a C/S application are:
- the easiest the client uses the application the

more complicated is the architecture of the
C/S system;

- the server must be able to trait a large
number of requests so that the systems
performances are diminished by the network
performances and not by the application;

- the use of an RMI architecture must be take
in consideration in solving the “fat-client”
problem. This approach will cross the
standard C/S application border and became
a “distributed computing” approach and 3 or
n-Tier system architecture.

3-Tier Application Development Model

If an organisation needs to make important
changes in the data processing system, it must
change the system architecture. A well suitable
architecture can lead to system easy and fast
adapting to the new requirements, no matter if
that means more users or new rules.
Right architecture is the key of the new
client/server systems. For the most of the cases,
the right choice is the N-Tier client/server
architecture.
The basic 3-tier application development model
is presented in the Figure 1.
C/S applications disadvantages and limitations,
presented above, lead to the development of a
new application architecture on 3 or more tiers.
Basically, an application on several tiers leaves
the client in the situation of a “thin-client”, so

Proces Management

System Management
Transactions

Security

Client GUI
(Browser)

Client – Desktop Level
Server-Application

Level

Web Server Database Server

Data Storing Level

Storing medium

Figure 1. 3-tier application development model

that level, the most platform-dependent, is easy
to implement. For this purpose can be used, for
example, a browser developed for a particular
platform.

Client Tier
The application client tier is responsible with
data presentation, handling client events and
GUI. Most of the algorithms stored here were
move mostly on the next tier: the application
server.

A typical implementation of this tier uses
applets or client scripts. The developer can
choose between one of the approaches
depending on application requirements and
advantages and disadvantages of each approach.
The client tier, also present in the C/S model,
was switched in the situation of a ”thin-client”.

Application Server Tier
The application server tier, new added in the
system architecture, was not explicitly present in
the C/S model. This new level is the system key.
Objects that implement algorithms are stored
here. The tier protects data from being accessed
directly by clients. Also, it contains components
that can be accessed directly by clients, on the
client tier. CORBA, as an applications
integration technology tend to be more used at
this level.

Data Storing Level
On the data storing level it can be used various
system types, from relational to non-relational
databases.
The borders between tiers are logical, not
physical, each one of them can run on the same
machine. The only restriction is that the system
to be more structured and the borders between
tiers being well defined and practically
represented by the composing object interfaces.
The system manager, based on specific
conditions for each application imposes those.
 The advantages of using a 3-tier model for
developing applications are:
1. separation of the 3 tiers. With this

separation, more clients have access to a
larger variety of server applications. Mainly
advantages for client applications are: fast
development by reusing algorithms
components and a shorter testing phase
because the server components were already
tested;

2. re-defining the data storing strategy does not
affect the client, this one accessing data from
a well defined and well designed interface
witch embeds all storing details;

3. objects manipulating data processing
algorithms must be stored as closer as it can
to the data storing medium. Ideal, on the
same machine. This way the network traffic
was reduced because this is the application
zone with the most intense data traffic.

 424

 425

4. unlike the C/S system architecture in witch
only data were accessible to the public, now
the public can access services;

5. the servers, as more secure systems that can
ensure a better protection and security of the
data are much easy to manage and maintain.
Although, as a distributed applications, data
protection and access control are important
parts of the system. In a simple way, the 0
level of security ensures authentication,
authorisation and data cryptography.

6. related to the system upgrade, it is easy to
change a soft component on the server than
to deliver to the numerous clients new
versions of the application.

N-Tier Application Development Model

A distributed N-Tier application is:
- a framework for providing a flexible,

distributed computing environment, that can
take full advantage of the infrastructure and
resources you currently have, while
preparing for whatever changes the future
brings;

- a variation on the familiar Client / Server
computing model, which uses Internet /
Intranet related technology, to maximise
return on investment and existing skill sets,
while providing a reliable, flexible
framework for change and growth;

- a method for centralising control over
increasingly critical corporate information,
while encouraging departmental innovation
and maximising supplier and customer input.

Distribute N-Tier applications refers to the use
of any combination number between hardware
levels and/or software levels with the purpose to
deliver a structured collection of information
services.

Any number of levels can exist: client, interface,
agent, transaction, data server etc. Also, that
level operates as logical units, on each machine
or on a various number of machines. This leads
to a greater flexibility and scalability of the
system.
This approach for an application permits that:

- a bigger parts of the application is eliminated
from the client side, leading to the “thin
client”;

- an increasing number of levels between
client and data processing;

- the client level task is handling the GUI;
- integration of various resource collection in

a whole system.
Distribute N-Tier applications can be developed
using a large variety of programming languages,
operating system and platforms.
The purpose of this approach is that it permits to
each application level to be managed, installed,
extended absolutely independent from others
levels.
Java, as a programming language and virtual
machine, is a new type of client in 2 or N-Tier
systems. Because the new client can run on any
computer and any platform, the software
development is made not only for 2-Tier
application but for N-Tier applications.

Xml Data Island

XML Data island is a XML document witch
exists inside a HTML document. This concept
allows data processing from the XML
document. The beginning of the XML Data
Island is marked with the XML tag and the ID
attribute ensures a name that can be used to refer
it.
Embedding XML Data Island in a HTML
document can be done by:
1. using XML element in a HTML document;
2. overloading the HTML SCRIPT element.
The use of the XML element in a HTML
document can be made by:
- XML data can exist inline, inside the XML

tag, as below

<XML ID="XMLID">
 <XMLDATA>
 <DATA>TEXT</DATA>
 </XMLDATA>
</XML>
- XML element can have a SRC attribut, witch

value is the XML source data url, as
below<XML
SRC="http://file_url/xml_name.xml"></XM
L>

Processes Management

System management
Transactions

Security

Client GUI
(Browser)

Client Level - Desktop
Application Server

Level

Web Server Database Server

Data storing level

Data storing
medium

XML XML

Figure 2. 3-Tier XML based architecture for web applications

XML element is present in the HTML DOM, in
the all collection and is being viewed by
browsers as a tree node. XML dates from inside
the XML element can be accessed through the
XMLDocument property of the XML element.
XMLDocument property returns the XML tree
root node, from the XML element or by the
XML referred through the SRC attribute value.
From this root, it can be browse through XML
Data Island using XML DOM.
By overloading the HTML SCRIPT element, the
XML dates can be accessed by calling the
XMLDocument property for the SCRIPT object.
The XML data can be generated from an
existing database, using an N-Tier application
model. With XML, structured data can be kept
separated from the presentation and display
level.

XSL

An XSL transformation is usually used for
browsing XML documents and leads to the
generation of a new XML tree. This clear
separation between the document source and the
resulted data trees accomplish the XML
purpose, which is separate the content from
presentation. So, it allows both the XML
grammar and XML source structure to be
independent from both the language and
presentation structure.
The XSL document contains a template with the
desired resulting structure and identifies dates

from the XML source witch can be inserted in
this template.
The XSL ensures data processing from real
documents, recursive data or with a high
irregularity. Templates fragments are defined
and the XSL processor combines the result of
this fragments into a finally tree based on the
XML data. Each template fragment declares the
type and the source node context to witch it is
assigned, allowing the XSL processor to
establish a relation between the source nodes
and the templates fragments.
XSL transformation responds to the XML
requirements:
- allows XML data display, transforming the

XML into a displaying suitable structure;
- allows the direct browse of the XML files

through high-level browsers facilities;
- XSL transformations can be executed on the

server so that the HTML documents
containing XML data can be served to the
low-level browsers;

- schema transformation. The transforming
process is independent from any particular
grammar and can be used to translate XML
data from one schema to another;

- XML conversion through query, sorting and
filtering sentences.

Xml/Xsl. Solution For Data Traffic
Optimisation In 3-Tier Applications

XML offers a robust solution for 3-Tier
applications, as it can be observed from the
Figure 2.

 426

 427

The data, stored in various forms are converted
in XML format, tacked and processed by the
Web server and sent to the client in the form of a
”data island”, inline, as XML documents inside
HTML documents or as a XML source url.
The advantage of this solution became obviously
when the client uses a browser with the
capability of handling XML, through XSL or
client scripts that access the XML or XSL
document root. As it can be observed by the
Figure 2, at the level border, only XML format
dates are travelling.
By taking in consideration the frequent situation
in witch servers must trait a huge number of
client requests, an increasing data traffic takes
place between the levels Data Storing and
Application-Server but also between
Application-Server and Client.
The data traffic optimisation inside the
application brings in discussion:
1. Loading from the database server of an
optimal data quantity and sending data to the
Application-Server level. The optimisation
principle can be refer here:
- a single data loading from the databases, of a

maximal data quantity witch can be used in
data processing either

- on a several loads of small quantities of data,
the requests to the database server being
made by the Application level.

Depending on the system characteristics and on
the application liberty degrees, it can be choose
one of the two above described techniques;
2. optimising the communication between the
Client level and the Application level. This can
be achieved:
- through a single request from the client and a

large quantity data response from the
Application-Server level;

- through a series of client requests followed
by small quantity data response.

In order to optimise the system optimisation it
can be consider a constant product between the
number of server-client-established liaisons and
the data quantity send by such a link.
Web applications that needs to handle a large
number of client requests, it is desired to
minimise the data processing made on server
and moving those to the client.

The purpose of the approach is minimising data
processing on the server tier and moving this to
the client tier. This is possible because XML
became a standard and more and more browsers
have the capability of processing XML through
client scripting.
The server response to the client will be in
HTML format and it will contain or not
embedded XML data. Using data island, the
client became fat-client, with the advantages and
disadvantages exposed above. The minimum
number of the responses of a the server through
the client will be:
1, for the situation of using inline data island.
The response contains XML as embedded data
in HTML;
2, for the situation in witch data island are
presented as an XML source url. The response is
only in HTML format and the XML dates are
loaded separately.
During a working session, uniquely attached to a
client, the server queries the database (the dates
are stored in no matter what form) and the result
will be stored in a temporary XML file and
eventually an XSL file. The files are attached to
the session and can have the lifetime of the
session that creates them.
We consider a frequent situation in witch a
client needs to access a particular set of data
from server. It is also very probable that the
client will require the control over the selected
data manipulation.
As an example, we suppose a client that
accesses a university database and selects from
it a set of students. The required students will be
extracted from the database (stored in any
format !) and stored either in a XML data-island
either inline, in the HTML file.
In order to minimise the further number of
server access, the client must request a
maximum number of information about the
students: name, birth date, registers data, etc.
Much more, the server must generate the XSL or
scripts that can cover the whole types of
operations that the client may need. For the
existing database, the application can have, for
example, templates for the following operations:
selecting students based on one criteria,
selecting result on several courses etc. Once the

 428

data arrived at the client, this can select the
desired presentation mode: either the display of
whole data or, more probable, selecting from the
set of some students, some particular data, such
as data register regarding general averages
marks, general averages marks sorted by
courses, etc.
The combination of XSL-client scripts that
manipulates XML data through DOM is enough
to cover the whole area of operations that the
client might need.
For general presentations, for example: the
whole data selected from the database, an XSL
can be used. The server generates this XSL at
the moment he generates the XML. The XSL is
attached to the working session and has,
eventually, his lifetime.
For specific operations, like displaying data for
students with average mark greater than a
desired mark, it is necessary to manipulate the
XML through client scripting. Client scripts
access either the XSL document root, either the
XML document root, as a consequence, using or
not XSL transformations.
So the server manipulates a part of the
information stored in the database, analyses the
browser capabilities and sends data to the client.
Depending of the browser capabilities of
handling XML through scripting and/or XSL,
we have 2 possible situations that server need to
handle in order to obtain, at the client, the
desired presentation:
1. the browser has the capabilities of processing
server sended XML data and obtain the desired
result. The browser manipulates the XML data
through client scriting that access the XML
document root or XSL document root. By the
C/S traffic point of view this is the “fat-client”
situation. The task of the client task is to process
and present them. The task of the server is:
- querying the database;
- converting the query result in XML format;
- choosing the way of sending the XML data

to the client, through data-island or inline
XML file;

- sending XML data to the client;
- generating the XSL files, for transforming

XML;

- generating HTML response page to the
client and the client scripts that will
manipulate XML data;

This is the situation that allows data traffic
optimisation between client and server. The
client has all the data he needs to present but
also has all the scripts to manipulate them,
without the server intervention.
Depending of the databases available for the
application, that can pre-generate a series XSL
or client scripts templates that will be inserted in
HTML response to the client. The operations
implemented by the templates will cover a large
area of client presentation requests. It will
achieved the situation when, based on the client
request, the server sends to this the XML data
but also the templates for the desired operations.
2. the browser does not have the capability of
presenting XML data through client scripts that
access the XML or XSL document root. Also,
the browser does not have the possibility of
loading an XSL from the server. This case, the
server makes all the data manipulations, through
server scripting or XSL templates. By the point
of view of the C/S data traffic it is a “thin-client”
situation. The server has the task of processing
and sending data and the client has the task of
displaying data. Any new client request of
presenting data is sended to the server, analysed
by this and the response is sended to the client.
In this case, the use of XML does not have
major advantages.

Conclusions

The proposed model (Figure 2), combining the
3-Tier applications and XML/XSL advantages,
can be successfully used in Web applications, in
witch the client uses an browser that have the
capabilities of handling XML data through client
scripting. The script accesses the XML or XSL
document root. The client switches to the “fat-
client” situation, data presentation being
exclusively his task. The server has only the task
of selecting from the database an maximum
amount of data and to send them to the client
using one of the two XML Data Island formats:
inline XML Data Island or a XML data source
url.

 429

The server also generates an amount of XSL or
client script templates that will be used to
manipulate the XML data. The templates will be
generated according to the types of data
manipulation algorithms that the client will need
in order to present data.
As a result of this approach, the Application-
Server and Data Storing levels are free from the
task of processing data, with the following
advantages:
- a low server response number to a client, in

the situation in witch a client receives all the
dates needed in a presentation. The response
will include, besides the HTML presenting
data format, the XML data and XSL;

- on a client request, the server selects from
the database a maximal set of information,
sends them to the client, after what the
communication between those two ceases;

- in the case o using the model in a Intranet,
having the same client browser type, the
Application-Server level don’t need to detect
the browser type that makes the request, in

order to analyse his capabilities. So, the
application response time decreases.

If the browser does not have the capabilities of
handling XML, the client became a “thin-client”
and the use of XML does not have major
advantages.
The solution has major advantages in Intranet
Applications, where all the clients use the same
browser and the maximum data manipulation
algorithms can be know a-priori by the server.

Reference

[1] Jane Sturm, (2000), Developing XML
solutions, Microsoft Press
[2] MSDN Library (2003), N-Tier Development
Model
[3] MSDN Library, (2003), Creating a Three-
Tier Web Site
[4] William Pardi, (1999), XML in Action. Web
Technology. Microsoft Press
[5] www.n-tier.com, The N-Tier Revolution

http://www.n-tier.com/

	N-TIER APPLICATIONS. XML-XSLT IN DATA TRAFFIC OPTIMISATION
	Cătălin CERBULESCU1, Monica CERBULESCU2
	2) Carol I College, Craiova
	N-Tier Application Development Model

	Xml Data Island
	XSL
	Conclusions
	Reference

