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Abstract. This paper addresses the problem to guaranty frame-rate of a Virtual Reality application, without 
specific knowledge of the host computer power. General issues are discussed, especially regarding real-time 
physical simulation. Heuristic techniques are presented based on an example that dynamically adapts a model 
resolution to some pre-defined frame-rate. 
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Introduction 

 
Most practical virtual reality applications share 
the same property, most of the time so intuitive 
that it is simply ignored within the development 
process. This common property is the fact that, 
in spite of all the possible optimizations and 
sophistications it can provide, it is not easily 
possible to predict, for a given complex 
application, the frame-rate it will provide 
without precise knowledge of the host hardware 
architecture: when such knowledge is available, 
devoted tests and measures are usually 
performed, and application is manually tuned in 
order to provide the desired performance. 
Providing applications that can guaranty some 
pre-set frame-rate value without any specific 
knowledge of the computer host is a difficult 
question. This is of course useful in videogames 
industry, but also in more specific applications, 
such as surgical pedagogic simulators for 
example, or flight simulators. Actually most of 
earlier works on the problem have been 
produced in the latter context [5,6].    
 
This article addresses the question to know  how 
to handle such a problem, and provide, as 
flexibly as possible, tools for guaranteed frame-
rate manipulation. This problem actually 
involves several key points: in order to provide 
virtual reality application that can adapt their 
complexity to hardware context, it is of course 
mandatory to manipulate representations (either 
geometrical, numerical, or more generally, from 

computational point of view) that provide 
parameters controlling the model resolution: 
strong background on such models is hence 
needed in order to provide efficient frame-rate 
control. 
 
This article is organized as follows: next section 
presents related general aspects and results, 
especially regarding level-of-details (LOD for 
short) techniques, as well as dynamic tuning 
theoretical tools that are potentially involved in 
the process. Section 3 details the classical 
manner to manipulate and control level-of-detail 
models. Section 4 proposes a framework that 
extends the approach discussed in 3 to 
animation, especially regarding physical based 
animation. Section 5 presents a practical 
example we introduced within a complex 
surgical simulator that dynamically adapts the 
rendering of human intestine model to requested 
frame-rate. 
 
Related aspects 
 
As mentioned above, the problem addressed in 
this article involves strong control on the models 
manipulated, i.e. at least a set of control 
parameters for each object, and algorithm: so 
far, most of results that can be linked to frame-
rate adaptation propose control on the model 
itself, rather than on algorithms. 
 
Geometrical model control involve, in its 
simplest version, level of detail manipulation 
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[12]. More sophisticated aspects can be found in 
the so-called multi-resolution objects [7,8,9], or 
mesh dynamic simplification [11], possibly 
depending on point of view [10]. We refer the 
reader to [1] for an excellent overview of such 
model manipulation. From a more theoretical 
point of view, many geometric models take 
advantage from wavelet theory [13,14,15]: such 
tool provides numerical framework for 
automatic simplification and refinement. 
Wavelets suffer from quite involving 
mathematical prerequisites, but provide stable 
tools, that come along with rigorous error 
evaluation when used for model simplification. 
 
As a result, many theoretical and practical 
results exist about geometrical control of 
representation complexity. Next section 
discusses the classical use that can be done 
around such geometrical models. 
 
Geometric LOD manipulation 
 
Most existing works aiming at controlling 
frame-rate work the following way: considering 
current frame-rate measure, modifications are 
applied on parameters defining geometry 
complexity, in order either to make the drawing 
faster, or on the other hand more accurate. This 
straightforward principle is often made 
theoretical using the notion of cost 
function[2,3,4]. Such a function, most of the 
time heuristically determined, measures the 
“cost” displaying a given model: this cost 
functions evaluates the computation complexity, 
hardware rendering time, or virtually any “cost” 
that can be involved in the process. Depending 
on the possible evolutions of this function, 
modifications are accordingly made on models 
in order to provide optimal representation, 
respecting the desired frame-rate. It is to note 
that, classically, models are classified, and 
associated different priorities, depending on the 
viewing distance they are used. This is the most 
classical criteria that is used. Within animation 
context, there might be some others: this will be 
detailed in the next section, that describes the 
use of LOD for animation, as well as some 

linked aspects, including software architecture 
requirements. 

  
LOD for animation 

 
Only geometrical aspects have been treated so 
far in this article. Yet, animation also benefits 
from multi-resolution results. [19, 20] presents a 
simple framework for animation level-of-detail: 
in this work, simple tests are used for automatic 
representation selection. [16] presents a 
theoretical framework for multi-resolution 
physical simulation, practically used in [17]. 
[18] presents a practical example of multi-
resolution animation used on human organ 
physical simulation. It is to note that such 
models involve sophisticated simulation 
algorithms. Apart from the appealing results 
such a work presents, it has some immediate 
consequences on a software framework that 
would combine such a model to other simulated 
objects. In order to be understood, this points 
needs to go deeper in detail into the classical 
physical animation process (we refer the reader 
to [21] for a good introduction on that point), but 
can yet be explained on some points: classical 
physical animation involve some infinite loop, 
where forces are calculated (depending on 
geometric collisions and user interaction) and 
partial differential equation resulting from these 
forces, integrated. It is known that using implicit 
integration schemes provides better numerical 
stability [21], and allows for larger integration 
timesteps. Such flexibility has already been used 
within some multiresolution physical animation 
[18]: yet, it is simple to understand that 
involving such models in a simulation involving 
other, simple object, would constraint the whole 
to be time-step adaptive as well: several objects, 
each willing to command the time-step, would 
make the whole process very tricky. 
 
In order to counter-balance such a problem, it is 
quite attractive, from algorithmic point-of-view, 
as well as from intellectual point-of-view, to 
consider each object as being alone in its 
simulation process. Each object would be 
considered as an autonomous entity that 
interacts with other objects, and adapts its 



behavior to the constraints it faces (computation 
time, rendering time, speed, distance of viewing, 
etc…). Multi-agent based architectures hence 
appear quite appealing to such a context: yet, 
this goes at first against the well-accepted 
principle that physical simulation needs global 
synchronization, that is, simulation time is 
discretized the same manner for all objects.  We 
recently proposed a multi-agent framework for 
simulation [23] that demonstrates it is actually 
possible to mix multi-agent approach with 
interactive physical simulation.  Figure 1 shows 
an example of animation where each object is 
considered as an autonomous agent, interacting 
with other objects. 
 

 
 

Figure 1. Example of real-time physical 
simulation using multi-agent framework: each 
object is considered as an autonomous entity. 

 
Such an approach opens the way to true frame-
rate control for animation, and makes it possible 
to achieve simple tasks, such as for example 
partial inactivation when some object simulation 
sets the object at equilibrium state, and no 
interaction is performed on the object.  By 
comparison, such a feature is so far very hard to 
achieve in classical, global frameworks. 
 
Example and results 

 
In order to illustrate the notion presented above, 
we achieved simple test in some existing 
platform. This platform aimed at providing 
surgeons with pedagogic tool for minimally 
invasive surgery, allowing them to interactively 
manipulate human intestine system 
representation [22]. Such a model has been 
associated, for its rendering part, to a frame-rate 

control system, that is described here. We will 
not detail the model used for representation: we 
simply mention what is strictly necessary to 
understand the influence of the parameters on 
the model, and we use the functionality as a 
“black-box” that depends on two parameters. 
This rendering uses two parameters, respectively 
ε (floating point value) and n (positive integer 
value), that determine the complexity of the 
rendering. Their use is described below for 
better understanding of their consequence on the 
rendering. 
  
The first parameter ε determines how many 
parameter intervals will be used in the 
tessellation of the skeleton curve representing 
the intestine (see Figure 2 for visual example). 
The second parameter n  defines the complexity 
of the primitive cylinder used for tessellation 
(we used hardware-based skinning for better 
result, see [22] for details). It determines the 
quality of the overall shape, i.e., the coarser the 
primitive, the coarser the resulting deformation. 
In our implementation, we actually use several 
versions of the tesselation primitive. The 
number of polygons in each version is O(2i), for 
i=0,…,n. Using skinning, raising the number of 
vertices on the tessellation primitive produces 
smoother interpolation with only a small 
measured computational overhead. 
 
The principle of the frame-rate control algorithm 
is fairly simple. In fact, it can be seen as a 
feedback control loop: considering the distance 
between the measured frame rate and the 
required value, tuning functions are applied to ε 
and n. Fig. 2 illustrates this. Precisely speaking, 
the iterations from one display configuration (εk, 
nk) to the next one  (εk+1, nk+1) uses the following 
relations: 
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where ρk is a floating point version of the integer 
variable nk, α and β are two arbitrary constants, 
fk is the current measured frame rate, and f0 the 
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desired one. In our implementation, we used 
α=10-4 and β=5. These values were 
experimentally determined, and practically 
appeared to provide satisfactory results: indeed, 
using these values, the tessellation process 
stabilizes itself at the desired frame rate in less 
than a second. 

 
 

 
 
 

Figure 2: Low quality tessellation (top) and high 
quality tessellation (bottom) obtained using our 
automatic frame rate adaptation system at 900 

and 460 frames/sec respectively, on a GeForce 4 
based system. 

 

Conclusion 
 
This article presented some heuristic approach to 
guarantying frame-rate. The presented technique 
allows for fast adaptation to required frame-rate, 
and can easily be generalized to other specific 
3D animated objects.  A lot yet remains to be 
done before such frame-rate control could be 
flexibly adapted within any virtual reality 
applications: we strongly believe in the potential 
of agent-based architecture for the wide-
spreading of such tools.  So far, only very few 
has been done on the question to provide generic 
tools for cost function generation: this point 
would also be interesting from a research point 
of view. 
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