

461

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

VIRTUAL REALITY APPLICATIONS AND FRAME-RATE CONTROL

Laurent GRISONI, Jérémie DEQUIDT, Christophe CHAILLOU
INRIA (ALCOVE), CNRS (LIFL/IRCICA), University of Lille 1, UPRESA CNRS 8022, Bâtiment M3, 59655
Villeneuve d’Ascq Cedex, France.
Email : [laurent.grisoni|jeremie.dequidt|christophe.chaillou]@lifl.fr

Abstract. This paper addresses the problem to guaranty frame-rate of a Virtual Reality application, without
specific knowledge of the host computer power. General issues are discussed, especially regarding real-time
physical simulation. Heuristic techniques are presented based on an example that dynamically adapts a model
resolution to some pre-defined frame-rate.
Keywords: virtual collaborative environment, real-time, level of detail, animation

Introduction

Most practical virtual reality applications share
the same property, most of the time so intuitive
that it is simply ignored within the development
process. This common property is the fact that,
in spite of all the possible optimizations and
sophistications it can provide, it is not easily
possible to predict, for a given complex
application, the frame-rate it will provide
without precise knowledge of the host hardware
architecture: when such knowledge is available,
devoted tests and measures are usually
performed, and application is manually tuned in
order to provide the desired performance.
Providing applications that can guaranty some
pre-set frame-rate value without any specific
knowledge of the computer host is a difficult
question. This is of course useful in videogames
industry, but also in more specific applications,
such as surgical pedagogic simulators for
example, or flight simulators. Actually most of
earlier works on the problem have been
produced in the latter context [5,6].

This article addresses the question to know how
to handle such a problem, and provide, as
flexibly as possible, tools for guaranteed frame-
rate manipulation. This problem actually
involves several key points: in order to provide
virtual reality application that can adapt their
complexity to hardware context, it is of course
mandatory to manipulate representations (either
geometrical, numerical, or more generally, from

computational point of view) that provide
parameters controlling the model resolution:
strong background on such models is hence
needed in order to provide efficient frame-rate
control.

This article is organized as follows: next section
presents related general aspects and results,
especially regarding level-of-details (LOD for
short) techniques, as well as dynamic tuning
theoretical tools that are potentially involved in
the process. Section 3 details the classical
manner to manipulate and control level-of-detail
models. Section 4 proposes a framework that
extends the approach discussed in 3 to
animation, especially regarding physical based
animation. Section 5 presents a practical
example we introduced within a complex
surgical simulator that dynamically adapts the
rendering of human intestine model to requested
frame-rate.

Related aspects

As mentioned above, the problem addressed in
this article involves strong control on the models
manipulated, i.e. at least a set of control
parameters for each object, and algorithm: so
far, most of results that can be linked to frame-
rate adaptation propose control on the model
itself, rather than on algorithms.

Geometrical model control involve, in its
simplest version, level of detail manipulation

 462

[12]. More sophisticated aspects can be found in
the so-called multi-resolution objects [7,8,9], or
mesh dynamic simplification [11], possibly
depending on point of view [10]. We refer the
reader to [1] for an excellent overview of such
model manipulation. From a more theoretical
point of view, many geometric models take
advantage from wavelet theory [13,14,15]: such
tool provides numerical framework for
automatic simplification and refinement.
Wavelets suffer from quite involving
mathematical prerequisites, but provide stable
tools, that come along with rigorous error
evaluation when used for model simplification.

As a result, many theoretical and practical
results exist about geometrical control of
representation complexity. Next section
discusses the classical use that can be done
around such geometrical models.

Geometric LOD manipulation

Most existing works aiming at controlling
frame-rate work the following way: considering
current frame-rate measure, modifications are
applied on parameters defining geometry
complexity, in order either to make the drawing
faster, or on the other hand more accurate. This
straightforward principle is often made
theoretical using the notion of cost
function[2,3,4]. Such a function, most of the
time heuristically determined, measures the
“cost” displaying a given model: this cost
functions evaluates the computation complexity,
hardware rendering time, or virtually any “cost”
that can be involved in the process. Depending
on the possible evolutions of this function,
modifications are accordingly made on models
in order to provide optimal representation,
respecting the desired frame-rate. It is to note
that, classically, models are classified, and
associated different priorities, depending on the
viewing distance they are used. This is the most
classical criteria that is used. Within animation
context, there might be some others: this will be
detailed in the next section, that describes the
use of LOD for animation, as well as some

linked aspects, including software architecture
requirements.

LOD for animation

Only geometrical aspects have been treated so
far in this article. Yet, animation also benefits
from multi-resolution results. [19, 20] presents a
simple framework for animation level-of-detail:
in this work, simple tests are used for automatic
representation selection. [16] presents a
theoretical framework for multi-resolution
physical simulation, practically used in [17].
[18] presents a practical example of multi-
resolution animation used on human organ
physical simulation. It is to note that such
models involve sophisticated simulation
algorithms. Apart from the appealing results
such a work presents, it has some immediate
consequences on a software framework that
would combine such a model to other simulated
objects. In order to be understood, this points
needs to go deeper in detail into the classical
physical animation process (we refer the reader
to [21] for a good introduction on that point), but
can yet be explained on some points: classical
physical animation involve some infinite loop,
where forces are calculated (depending on
geometric collisions and user interaction) and
partial differential equation resulting from these
forces, integrated. It is known that using implicit
integration schemes provides better numerical
stability [21], and allows for larger integration
timesteps. Such flexibility has already been used
within some multiresolution physical animation
[18]: yet, it is simple to understand that
involving such models in a simulation involving
other, simple object, would constraint the whole
to be time-step adaptive as well: several objects,
each willing to command the time-step, would
make the whole process very tricky.

In order to counter-balance such a problem, it is
quite attractive, from algorithmic point-of-view,
as well as from intellectual point-of-view, to
consider each object as being alone in its
simulation process. Each object would be
considered as an autonomous entity that
interacts with other objects, and adapts its

behavior to the constraints it faces (computation
time, rendering time, speed, distance of viewing,
etc…). Multi-agent based architectures hence
appear quite appealing to such a context: yet,
this goes at first against the well-accepted
principle that physical simulation needs global
synchronization, that is, simulation time is
discretized the same manner for all objects. We
recently proposed a multi-agent framework for
simulation [23] that demonstrates it is actually
possible to mix multi-agent approach with
interactive physical simulation. Figure 1 shows
an example of animation where each object is
considered as an autonomous agent, interacting
with other objects.

Figure 1. Example of real-time physical
simulation using multi-agent framework: each
object is considered as an autonomous entity.

Such an approach opens the way to true frame-
rate control for animation, and makes it possible
to achieve simple tasks, such as for example
partial inactivation when some object simulation
sets the object at equilibrium state, and no
interaction is performed on the object. By
comparison, such a feature is so far very hard to
achieve in classical, global frameworks.

Example and results

In order to illustrate the notion presented above,
we achieved simple test in some existing
platform. This platform aimed at providing
surgeons with pedagogic tool for minimally
invasive surgery, allowing them to interactively
manipulate human intestine system
representation [22]. Such a model has been
associated, for its rendering part, to a frame-rate

control system, that is described here. We will
not detail the model used for representation: we
simply mention what is strictly necessary to
understand the influence of the parameters on
the model, and we use the functionality as a
“black-box” that depends on two parameters.
This rendering uses two parameters, respectively
ε (floating point value) and n (positive integer
value), that determine the complexity of the
rendering. Their use is described below for
better understanding of their consequence on the
rendering.

The first parameter ε determines how many
parameter intervals will be used in the
tessellation of the skeleton curve representing
the intestine (see Figure 2 for visual example).
The second parameter n defines the complexity
of the primitive cylinder used for tessellation
(we used hardware-based skinning for better
result, see [22] for details). It determines the
quality of the overall shape, i.e., the coarser the
primitive, the coarser the resulting deformation.
In our implementation, we actually use several
versions of the tesselation primitive. The
number of polygons in each version is O(2i), for
i=0,…,n. Using skinning, raising the number of
vertices on the tessellation primitive produces
smoother interpolation with only a small
measured computational overhead.

The principle of the frame-rate control algorithm
is fairly simple. In fact, it can be seen as a
feedback control loop: considering the distance
between the measured frame rate and the
required value, tuning functions are applied to ε
and n. Fig. 2 illustrates this. Precisely speaking,
the iterations from one display configuration (εk,
nk) to the next one (εk+1, nk+1) uses the following
relations:

⎣ ⎦⎪
⎩

⎪
⎨

⎧

=
−+=

−+=

++

++

+

11

11

01

)(
)(

kk

kkkk

kkk

n

ff

ρ
εεβρρ

αεε

where ρk is a floating point version of the integer
variable nk, α and β are two arbitrary constants,
fk is the current measured frame rate, and f0 the

 463

desired one. In our implementation, we used
α=10-4 and β=5. These values were
experimentally determined, and practically
appeared to provide satisfactory results: indeed,
using these values, the tessellation process
stabilizes itself at the desired frame rate in less
than a second.

Figure 2: Low quality tessellation (top) and high
quality tessellation (bottom) obtained using our
automatic frame rate adaptation system at 900

and 460 frames/sec respectively, on a GeForce 4
based system.

Conclusion

This article presented some heuristic approach to
guarantying frame-rate. The presented technique
allows for fast adaptation to required frame-rate,
and can easily be generalized to other specific
3D animated objects. A lot yet remains to be
done before such frame-rate control could be
flexibly adapted within any virtual reality
applications: we strongly believe in the potential
of agent-based architecture for the wide-
spreading of such tools. So far, only very few
has been done on the question to provide generic
tools for cost function generation: this point
would also be interesting from a research point
of view.

References

[1] D. Luebke, M. Reddy, J. D. Cohen, A.
Varshney, B. Watson, R. Huebner (2002), Level
of Detail for 3D Graphics, Morgan Kaufmann
ed., ISBN 155-860-8389.
[2] D.G. Aliaga, A. Lastra (1999) Automatic
image placement to provide a guaranteed frame
rate, Proceedings of the 26th annual conference
on Computer graphics and interactive techniques
(SIGGRAPH), 307—316.
[3] T. A. Funkhouser, C. H. Séquin (1993)
Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex
Virtual Environments, Computer Graphics(27),
Annual Conference Series, pp. 247-254.
[4] Maciel, P. W. C., and Shirley, P. (1995)
Visual Navigation of Large Environments Using
Textured Clusters. In Proceedings Symposium
on Interactive 3D Graphics, pp. 95—102.
[5] Bruce Schachter (ed.) (1983), Computer
Image Generation, John Wiley and Sons.
[6] Mueller, Carl (1995) "Architectures of Image
Generators for Flight Simulators", University of
North Carolina Computer Science Technical
Report TR95-015.
[7] A. Finkelstein, D. Salesin (1994),
Multiresolution curves, Proc. of the 21st annual
conference on Computer graphics and
interactive techniques, pp. 261-268.
[8] D. Zorin, P. Schröder, T. Derose, L. Kobbelt,
A. Levin, W. Sweldens (2002), Subdivision for

 464

 465

Modeling and Animation, course note in the 29th
annual conference on Computer graphics and
interactive techniques, july.
[9] I. Guskov, K. Vidimce, W. Sweldens, P.
Schröder (2000), Normal meshes, Computer
Graphics Proceedings (SIGGRAPH 2000), pp
95-102.
[10] D. Luebke (2000), Advanced Issues in
Level of Detail: Robust View-Dependant
Simplification for Very Large Scale CAD
Visualization, SIGGRAPH course Notes.
[11] P. Cignoni, C. Montani, R. Scopigno
(1998) A Comparison of Mesh Simplification
Algorithms, Computers & Graphics, Pergamon
Press, Vol. 22(1), pp. 37-54.
[12] J.H. Clark (1976) Hierarchical geometric
models for visible surface algorithm,
Communications of the ACM, 19(10), pp.547-
554, Oct.
[13] W. Sweldens, P. Schröder (1996), Building
your own wavelets at home, ACM SIGGRAPH
Course Notes.
[14] L. Grisoni, C. Blanc, C. Schlick (1999)
Hermitian B-splines, Computer Graphics
Forum, 18(4), pp. 237-248, december.
[15] P. Schröder, W. Sweldens (1995) Spherical
wavelets: Efficiently representing functions on a
sphere, Computer Graphics Proceedings
(SIGGRAPH 95), pp. 161-172, 1995
[16] E. Grinspun, P. Krysl, P. Schröder, (2002)
CHARMS: a simple framework for adaptive
simulation, ACM TOG, Proc. of the 29th annual

conference on Computer graphics and
interactive techniques, 21(3), pp. 281-290, july.
[17] S. Capell, S. Green, B. Curless, T.
Duchamp, Z. Popovic (2002) A multiresolution
framework for dynamic deformations. In Proc.
of ACM SIGGRAPH/Eurographics Symp. on
Computer animation, ACM Press, pp. 41–47.
[18] G. Debunne, M. Desbrun, M.-P. Cani, A.H.
Barr (2001), Dynamic real-time deformations
using space and time adaptive sampling,
Computer Graphics Proceedings (Aug), Annual
Conference Series, ACM Press / ACM
SIGGRAPH. Proc. SIGGRAPH’01.
[19] D.A. Carlson, J.K. Hodgins (1997,
Simulation Levels of Detail for Real-time
Animation, Proc. Graphics Interface '97, pp 1-8.
[20] D. C. Brogan, J. K. Hodgins (2002)
Simulation level of detail for multiagent control,
Proc. of the first international joint conference
on Autonomous agents and multiagent systems,
pp. 199-206.
[21] A. Witkin, D. Baraff, M. Kass (1997) An
Introduction to Physically Based Modeling,
ACM SIGGRAPH Course Notes.
[22] L. Raghupathi, L. Grisoni, F. Faure, D.
Marchal, M.-P. Cani, C. Chaillou (2004) An
Intestine Surgery Simulator: Real-Time
Collision Processing and Visualization,
accepted for publication in IEEE Trans. On
Visualization And Comp. Graphics.
[23] J. Dequidt, L. Grisoni, C. Chaillou (2004),
Asynchronous interactive physical simulation,
submitted for publication.

