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Abstract. In this paper are revues the iterative techniques, which conduct to the fractal shapes and are involved 
into complexity theory treatment. Is performed a succinct presentation of some specific problems about the 
chaos hidden in simply relations and is shown few original ideas and result in this way. All items treat classic 
complexity problems that are concern into new perspective. The original results are obtained under own 
software applications, which are development in modelling and simulating lab.  
Keywords: attractor, fractal, map, set, iterative, complexity, form.  
  
Introduction 
 
Many methods in the numeric calculus resolving 
nonlinear algebraic or differential equation but 
ignore some behaviour of these problems. Since 
fractal analysis developing were identified a lot 
of strange features in the solution of same 
equations.  
A very interesting phenomenon occurs in the 
solution of the following set of nonlinear 
differential equations called the Loretz system 
[1]: 
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This system arises from problems related to 
fluid convection and to weather forecasting. 
When the r parameter lies in the 24.7<r<145 
interval, the solution does not converge to a 
fixed point in the t→∞ limit, nor is there a limit 
cycle, but the solution keeps moving around in a 
finite area. The limit set of the orbit at t→∞ is 
generally called the attractor. It has been 
confirmed numerically that the Lorentz attractor 
system has infinitely many foldings.  

Another strange attractors have been found in 
many systems with few degrees of freedom. The 
following system, called the Rössler system [1], 
is famous for showing that chaos can be 
produces with only one nonlinear term: 
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Attractors of ordinary differential equations with 
the degree of freedom less than 2 are limited to 
either a fixed point or a limit cycle, and have 
proved not to be strange. However, even in 
system with only two variables, chaos can be 
found if the system evolves discretely. A good 
example in this sense is the strange attractor of 
the Hennon map. The equations system in this 
case is: 
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Strange attractors in systems of ordinary 
differential equations also usually have fractal 
properties. By imagining a plane in the phase 
space and observing only the points where the 
orbits pass through the plane, the dynamical 
systems can be reduced to a discrete map called 
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the Poincaré map. The Poincaré map of the 
Rössler system, like the Henon map, is self-
similar and the Rössler attractor is also fractal. 
 
Strange attractors 
 
Let us consider a simple nonlinear map called 
logistic map or bifurcation map: 
 

4r0),p1(rpp nn1n ≤≤−=+           (4) 
 
This is an example of iterative method 
application on nonlinear function. In the first 
regard it is a classical and very knowledge path 
to resolving without problems same numeric 
analysis applications. However, we can observe 
that the asymptotic behaviour of pn depends 
strongly on r parameter: 
 
- for 0≤r<1, pn decrease as n and pn approach 0; 
- for 1≤r≤2, pn monotonically approaches 1-1/r; 
- for 2<r≤3, pn approaches 1-1/r with 
oscillations; 
- for 3<r≤3.449, pn is gradually approaches 
period motion of period 2; 
- for 3.449<r≤4, the system become 
uncontrolled. 
 
The set of attractors of xn is shown in figure 1. 
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Historically, the logistic map was obtained from 
the logistic equation, which describes the 
growth of a population in a closed area: 
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If we put this equation into a difference equation 
form: 
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we obtain the logistic map if we change the 
variables as: 
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The solution of (5) can be obtained analytically 
for any initial condition u(0)>0. It 
monotonically approaches a fixed point ε/h. By 
contrast, the difference equation for large 
interval Δt and the logistic map behave quite 
differently, producing chaos. This kind of 
discrepancy between the solution of a 
differential equation and that of its difference 
equation appears in any nonlinear system if the 
difference interval is sufficiently large. Hence 
we have to be careful when we numerically 
solve a differential equation by using a 
difference equation. 
If we modify the logistic equation in the form: 
 

Figure 1. Bifurcation diagram of 
logistic map for 3≤r≤4 
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 1 
we can observe an interesting result about the 
map equation (figure 2). In this figure we can 
observe flip-flop behaviour for the 2.3 value of 
r, in the logistic map diagram. Relation (8) is 
often used in various probabilistic systems. On 
this idea the authors speculated in own 
researched the presented features for some 
oscillating systems. Another application area of 
this result can be in the numeric analyses. Here, 
like as previous problem, is possible to launch a 
study based on the basin attractor boundary of 
the specific numerical methods. In this sense can 
be performed unusual analysis for some 
numerical techniques from the complexity 
calculus. 
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Figure 2. Bifurcation diagram of 
modified logistic map for 0.01≤r≤4 

p 

r2.3 40 

1 

 
 
 
 
 
 
 
 
 
 
 
 
 
In the basin attractor studies was obtained in last 
time some interesting results. Thus, if trying to 
solve the equation z4-1=0  in the complex plan, 
we can obtain the Newton's fractal [8,9,10] 
which shown like in figure 3. And this is not the 
single case when a numeric method for solving 
nonlinear algebraic equations has same strange 
behaviour.   
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Using fractal basin boundary's theory is possible 
to orient the research to the pattern recognition 
problem for the graphical treated systems. In 
this case, we focused on the fractal basin 
boundary modelling like a separated boundary 
between different classes problem.  
 

Fractals by maps 
 
For a given map [5,6]: 
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the set of initial points {xo} whose iterated 
points never diverge (|xn|<∞ for any n) is called 
Julia set. For many maps, the Julia sets are 
known to be fractals. A good example is the 
following complex logistic map: 
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where z=x+jy, j= 1− . 
In the same way, equation: 
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conducts to another fractal. To set of complex 
parameters b such that successive iterates of z=0 
under g(z) do not tend to ∞ is named the 
Mandelbrot set. This set has a fractal border. 
When we solve an algebraic equation 
numerically by Newton's method, we have to 
iterate a map similar to (11). If the equation 
have several solutions, an initial value for the 
iteration will be attracted to one of the solution. 
The boundary of the set of points that finally 
converge to one of the solution becomes a 
fractal. Two initial points that are arbitrarily 
close can approach distinct solutions, if they 
start close to this boundary. 

Figure 3. The Newton-Raphson fractal for 
          z4-1=0 equation 

Another simple method to construct fractals is 
provided by contraction maps. A contraction 
map is a mapping that shortens the distance 
between any two points. It is trivial that the 
invariant set of a single contraction mao is a 
point. However, for two or more contraction 
maps the invariant set is the set X which 
satisfies: 

)x(f...)x(f)x(fx n21 ∪∪∪=        (12) 
which is a fractal.  
 
For example, in the case n=2, the following 
maps produce the Cantor set in the [0,1] 
interval. 
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In the complex plane we have the Koch curve if 
the mappings are: 
 

j
6
3

2
1

,z)1()z(f,z)z(f 21

+=

+−==

α

ααα
         (14) 

 
where z  denotes the complex conjugate of  z. 
Thus all regular (non-random) fractals can be 
expressed in this formalism, which because its 
simplicity is expected to become more important 
in future. 
 
Random clusters  
 
Consider a 2 or 3 dimensional lattice and 
distribute points randomly on it with p 
probability.If neighbouring sites are occupied by 
points, they are regarded as connected. By 
changing the probability p of the occupation of 
sites we can estimate the critical probability pc 
and fractal dimension of clusters. 
The fractal dimension of clusters is calculated in 
the following way. We define the mean radius of 
clusters of size s as:  
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where ri denotes the distance between the centre 
of mass and the i-th point, and <•> indicates the 
average over all s-clusters. When Rs is 
proportional to a power of s, the clusters are 
statistical fractals with dimension D which 
satisfies the relation: 

D/1
s S~R                          (16) 

 
The result of simulations show that (16) holds at 
p=pc and the fractal dimensions are estimated as 
1.9 (2 dimensional lattice) and 2.5 (3 
dimensional lattice) [1]. This value in the 2 

dimensional case agrees with the experimental 
value. 
The critical point pc is known to depend on the 
type of underlying lattice. On a square lattice 
pc=0.59, on a honeycomb lattice pc=0.70, and 
on a triangular lattice pc=0.50. 
However, the fractal dimension and other 
critical indices are anticipated to be universal 
and independent of the underlying lattice. 
 
Clusters in spin systems 
 
The best-know model of magnetic material is 
the Ising model [7]. In this model, spins which 
can take only the value +1 or -1 are arranged on 
a lattice. The total energy (or Hamiltonian) E of 
the system is given by the equation: 
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Here, ΣΣ denotes summation over nearest 
neighbour sites. J is the coupling constant and H 
is the external field. In thermal equilibrium, the 
probability of occurrence of the state with total 
energy E is given by: 
 

)Tk/(E Be~W −                       (18) 
 
where kB is Boltzmann's constant and T denotes B

temperature. 
A numerical simulation is performed as follows. 
First, specify an appropriate initial state, which 
may be random or uniform. Then, choose one 
spin at random and calculate the change of total 
energy of the system assuming that the spin is 
reversed. Change the sign of the spin according 
to the probability calculated from (18). Choose 
another spin at random and repeat the same 
process. After a large number of repetitions, 
thermal equilibrium is obtained. 
In both 2 and 3 dimensional space, the Ising 
model is known to show a phase transition at a 
critical temperature, Tc. For T<Tc , symmetry is 
spontaneously broken and most spins take the 
same value, which indicates that the system is 
ferromagnetic. On the other hand when T>Tc , 
each spin takes the value +1 or -1 nearly 



 

independent of neighbouring spins and the 
average of spin vanishes, which shows that the 
system is demagnetised. At the critical point 
T=Tc, the characteristic size of clusters of the 
same spin diverges and distribution of the 
clusters becomes fractal. The fractal dimension 
of the clusters is estimated to be 1.88 in 2 
dimensional space and 2.43 in 3 dimensions. 
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Applications 
 
One interesting application of the chaos theory 
consists in the stochastic modelling of electric 
breakdown. We assume that the electric 
breakdown between a pair of electrodes spreads 
stochastically with proportional probability to 
the local electric field. Let Φ denote the electric 
potential which takes values 1 or 0 at the 
electrodes. Solve the discrete version of the 
Laplace equation [1]: 
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on a lattice space with the given boundary 
conditions. Choose a site at random from the 
neighbouring sites of the electrode with Φ=1, 
with proportional probability to the gradient of 
Φ. The bond connecting this site to the electrode 
is then regarded as broken and the value of Φ 

becomes 1 at the site. Solve the Laplace 
equation with the new boundary condition and 
again choose at random a neighbouring site of 
the electrode and its attached cluster, with 
proportional probability to the gradient of Φ. 
Repeat the same procedure again and again. We 
can observe that cluster of sites forms the shape 
of a lightning discharge. Is proved that the shape 
is identical to that of DLA (Diffusion Limited 
Aggregation). 

Figure 4. An incompressible mixture of
A and B particles 

This model has been extended to the more 
general η-model, in which we choose a broken 
site with proportional probability to |∇Φ|η. The 
basic model is the special case η=1. When η>1 
the difference of gradients |∇Φ| is enhanced, 
hence sites near a sharp tip of the cluster are 
more likely to be broken and we have a cluster 
with smaller fractal dimension. The fractal 
dimension of a cluster, which grows from a 
point-like electrode in d dimensional space, is 
approximately given by the following: 
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Another interesting application of the fractal's 
results is the self-avoiding random walks. This 
is a random walks that never intersects its own 
trajectory. Though this condition is very simple, 
theoretical treatment becomes extremely 
difficult, since the whole past trajectory affects 
the present motion. Self-avoiding random walks 
are considered as a model of a polymer. Thread-
like polymers in solution are self-avoiding 
entangled by thermal fluctuation. The fractal 
dimension of self-avoiding random walks in 3 
dimensional space is obtained approximately as 
5/3, which coincides with the experimental 
values for polymers. This value 5/3 can also be 
deduced theoretically by a dimensional analysis.  
The theory of complexity provides possibility to 
produce complicated structures by a simple rule. 
Considering the fact that any living creature is 
formed from a finite amount of DNA, the idea of 
producing complicated structure by simple rules 
seems promising. The numerical models called 
cellular automata are studied in order to clarify 
this problem.  



 

A cellular automata has the following five 
properties: 
 
1. It is defined on a discrete lattice. 
2. Time evolution is discrete. 
3. The number of states at each site is finite. 
4. The rule of evolution is deterministic. 
5. The evolution rule is governed by the state 

of neighbouring sites. 
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Here is the simplest non-trivial example. Let 
ai(n) denote the state of the i-th site on a 1 
dimensional lattice at time step n. The value 
taken by ai(n) is either 1 or 0. The evolution rule 
is given as: 
 

2mod)1n(a)1n(a)n(a i1ii −+−= −      (21) 
 
With the initial conditions: 
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the result pattern is nothing but Sierpinski's 
gasket in discrete space-time (figure 5). 
 
Conclusions 
 

In the complexity theory is notable involving of 
the iterative functions in behaviour of fractal 
pattern. Study of the nonlinear equation, treated 
into iterative techniques, makes the subject of 
this paper. It consists in a short revue of the 
most important principles of the fractal calculus 
and complexity applications in fundamental 
sciences and technologies. Were been presented 
also some new ideas of analysis to iterative 
relations like as named the modified logistic 
equation, which map is shown in figure 3. On 
this relation can be performing some studies 
with valuable results in numeric analysis area. 

Figure 5. The Sierpinski triangle
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