
25

8th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 25 – 27, 2 0 0 6

EMBEDDED SOFTWARE DEVELOPMENT FOR MECHATRONIC SYSTEMS

Nicolae MARIAN
"Mads Clausen Institute for Product Innovation" University of Southern Denmark
Grundtvigs Alle 150, Dk-6400, Sønderborg, Denmark
nicolae@mci.sdu.dk

Abstract. The widespread use of mechatronic systems mandates a rigorous engineering approach towards
embedded software development, i.e. model based development using repositories of prefabricated software
components. The main problem that has to be addressed in this context is to systematically develop the software
framework for mechatronic applications, taking into account the true nature of them, which are predominantly
continuous-time/discrete-event processes, hierarchical and concurrent systems. The implications of the adopted
modelling technique by integration of component-based design and verification are discussed in the context of
mechatronic domain systems. The result is a hierarchical-modular signal flow metamodel in which process and
control tasks are clearly differentiated. The results have been used to formulate the guidelines used to develop
COMDES - a software framework for distributed embedded applications.
Keywords: embedded software, model-based design, component-based design, reusable components.

1. Introduction

In the industrial marketplace, the constant
demand of ever greater functionality and
reliability at ever lower prices and with shorter
development cycles results in mechatronic
products that are ever more complex, posing a
serious challenge in design due to diverse,
severe and conflicting requirements, and then, in
verifying their correctness [2,5,6]. For many
mechatronic devices, this complexity has
remained manageable only because of the
advent of the microprocessor: the economics and
power of digital computation makes it the
medium of choice for controlling systems
composed of electro-mechanical and
computational elements. In the first few
prototyping cycles, the hardware may change
significantly each time, further complicating
concurrent software development. Different
teams work on different tasks around the same
product (e.g., control software, user interfaces,
customer support, service documentation), often
starting from little else than the semi-formal
descriptions of the product. Such work practices
are unable to deal with the increasing demand
for faster time to market, and for greater
flexibility in product lines. Faster development
cycles essentially demand less hardware

prototypes and faster, concurrent software
development.
Traditional embedded software development
methods involve production by hand using
programming languages such as C or even
assembly language, based on some available
automated tools to help in the design. Most tools
for embedded software are rather primitive
compared to equivalent ones for richer platforms.
When embedded software was simple, there was
little need for a sophisticated approach, which is
no more the case nowadays.
Another problem in development of embedded
systems is that the implementation step often
breaks consistency between the design models
and the actual application, as the design models
do not fit the implementation platform because
the designer was simply unaware of platform
specifics or left these out to simplify the design
or enable certain verification methods. During
the evolution of the system, the implementation
and the design models often tend to get out of
sync.
Some obvious response to these drawbacks were
object-oriented approaches and other
syntactically driven methods, but one that
emerged and start to achieve best results is the
model-based design using tools and generic
“plug-and-play” components, using techniques
for modelling continuous-time/discrete-event

26

and discrete/continuous values processes,
hierarchical and concurrent systems [2,5]. These
prefabricated components may be selected and
aggregated by the customer, perhaps for the first
time at the customer's location. However, this
requires the development of software that is
generic, reusable and customizable, rather than
software that is custom-tailored for a particular
configuration.
Component-based development of embedded
software [1,2] is a change of focus from
algorithmic and data structure related issues to
the overall architecture of a software system,
where the architecture is meant to be a collection
of objects together with a description of their
interconnection topology. A better structure can
bring predictable and guaranteed behaviour
under hard real-time constraints; scalable and
open architecture supporting both design and
analysis reuse.
The structure of the whole software system
mirrors the architecture of the control process
itself, which is made up of a number of
independent modules, with a top-level
hierarchical and concurrent controller for
discrete inputs, events and conditions, and low-
level prefabricated components for the
continuous inputs, computational activities, and
generated outputs. The model can be run step-
by-step (simulation) or can be exposed to formal
verification at all levels.
This paper defines, discusses, and illustrates a
model-based design technique for embedded
software systems. The advantages of the method
are the well structuredness of the design, and the
reusability of parts of these in relation to reuse
of components, like in industrial software
standards such as IEC 61131-3 and IEC 61499.
The Software Engineering Group of the Mads
Clausen Institute for Product Innovation (MCI)
has developed a number of integrated solutions
to design and verification of embedded software
systems under the name of COMDES
(COMponent-based Software for Distributed
Embedded Systems), in an attempt to solve the
outlined problem.
The ultimate goal of our effort is to create an
integrated embedded software development
environment, applicable to most of the

mechatronic systems, consisting of software
configuration and analysis graphical tools that
seems rich enough to configure and reason about
different abstractions made for design and
verification purposes using different semantic
models through standardized prefabricated
proved components, much in the same way as
that is done in mature areas of engineering such
as Mechanical Engineering and Electronics, and
ultimately to efficiently produce reliable
embedded real-time software.
The paper is structured as follows: Section 2
presents the modelling technique used to specify
system structure and behaviour, i.e. the discrete
part as composition and hierarchy of state
machines, as well as the continuous part using
simple or aggregated function blocks. An
example of applying the method to a gripper
system, consisting of an arm with shear and
normal force sensors, a DC motor for gripping
control, an actuator for lifting control, is
sketched in Section 3. Section 4 presents main
directions for verification of functional and
timing behaviour of such systems, and
application to our example. A summary of the
software design method and its implications is
given in the concluding section of the paper.

2. Component-based design in COMDES

Under COMDES, a distributed embedded
application is specified in terms of interacting
subsystems (function units), such as sensor,
control unit, actuator, operator station, etc., as a
set of state based, or not, signal flows of the
form stimulus response [2]. Function units
(FU) are defined as software logical integrated
circuits encapsulating one or more dynamically
scheduled tasks (activities) that are configured
from state machines (SMs) (reconfigurable) and
prefabricated lower-level components such as
function blocks (FBs). The concurrent
composition of interacting subsystems is
synchronous in the way adopted by the
synchronous model and languages, i.e. every
subsystem that can make a transition upon its
inputs in an execution instance, does so, and the
reaction is considered instantaneously related to

27

changes, allowing recording all external events
in the proper order [8].

2.1 COMDES components

COMDES software components are derived
systematically from the engineering domain and
they mimic hardware/control counterparts. The
hierarchy of components is presented in Figure 1.

Figure 1. Hierarchy of components in COMDES.

2.1.1 Function Unit

Overall system configuration can be described
by a function unit diagram, i.e. a signal flow
graph specifying FUs and their interactions. FUs
interact by exchanging signals, i.e. labelled
messages (pressure, temperature, etc.) within
various types of distributed transactions, such as
producer-consumer, client-server protocols.
Producer-consumer interaction is preferred for
time-critical communication, because is one-to-
many in the general case, and. it may have state-
message or event-message semantics.
FUs encapsulate input/output signal drivers (the
triangles in Figure 2), and one or more threads
of control – activities. These generate
application-specific reactions to timing and/or
external events by invoking lower-level
components - FBs, which implement specific
signal processing and control functions.
Activities interact with the outside world via
signals provided by input and output signal
drivers (by analogy with hardware integrated
circuits).
The input/output drivers are in charge of
decoding/encoding messages. COMDES
framework uses content-oriented message
exchanging, i.e. the message needs to be
processed and then goes to the activities that are
interested in it decomposed in internal signals.
For example, the three PID control parameters
KP, KD, KI can be composed into one message

by output drivers of the OS FU, and then the
corresponding FU input driver will decompose it
and distribute to different activity consumers in
the Controller FU.

2.1.2 Activity

Activity encapsulates one or many FBs that
perform different functions. Complex activity
behaviour can be formally specified in terms of
hybrid SMs modelled by hierarchical and
concurrent SMs. An activity is aggregated by
pre- and post-processing FBs and a Moore SM.
Each state is associated with a specific reaction
which is accomplished with one or more output
signals that are generated in response to the
corresponding event. A transition between states
usually includes:

Trigger: Activating event
Guard: Predicate that must evaluate to true
at the instant the transition is triggered
Effects: Specifies an Action Sequence to be
performed when the transition fires.
Source: The source state
Target: The target state that is designated
after the transition is fired

A signal is computed via a sequence of
transformations that can be modelled with a FB
diagram, i.e. an acyclic signal flow graph whose
nodes implement basic application functions
such as PID.

Function Unit

Input Driver Output Driver

Function Block

OS

Sensor Controller Actuator

Figure 2. Generic objects of COMDES
Framework.

2.1.3 Function Block

FB is the main COMDES component. FB can be
seen as a class specifying a number of re-entrant
and re-locatable routines, as well as a general
definition of the so called FB execution record.

Application
Function Unit

Activity

FB

28

The latter is a data structure containing all
necessary information such as parameters, signal
inputs and outputs, internal variables, and is
instantiated for each object of a given FB class.
A FB is ready to execute whenever the
necessary signals arrive at its inputs, Figure 3.
Then the basic FB (BFB) will execute, and
produce signals at its outputs, which can become
the input signals of the successor BFB and so on,
until the last one is executed and the final output
signal is generated.

Enable

BEGIN

END

Function Execution
10Inputs

Outputs

Enable

Figure 3. Control flow inside a FB.

FB instances are interconnected via softwiring
using pointers to the corresponding data
locations. Softwiring is conceived as an output-
to-input(s) connection: output data is stored in
the output buffer of the source FB instance
record, and it is subsequently accessed by one or
more destination FBs through the corresponding
input pointers. This allows for efficient one-to-
many connections by limiting the need to copy
source data to multiple destination inputs.
Based on different interaction mechanism,
softwiring can be classified to be static and
dynamic. In the former case a FB input is
connected to the output of another FB by means
of an assignment statement:

FB_Instance1.input=FB_Instance2.out
put

It is obvious that this technique only support
special-purpose applications. Dynamic
softwiring can be implemented by the use of
pointers, which point to corresponding data
locations instead of direct references:

ADD_Table[0].input1_pointer =
&(ADC_Table[0].output)

We can easily figure out that dynamic softwiring
support both one-to-one and one-to-many
interaction. And connections can be
reconfigured by updating the values of input
pointers in the corresponding instance records,
without changing the code of software
components involved, which is suitable for on-
line reconfiguration.
Two or more BFBs that aggregate a complex
function can be seen as a composite FB (CFB).
For example, we can specify a CFB called
signal processing, which is composed of BFB
such as ADC, unit conversion, limit checking,
etc
A CFB is externally indistinguishable from a
BFB. It can be viewed as an aggregation of
BFBs that execute in certain precedence by a
standard routine called FB driver. The FB driver
is a static FB execution scheduler that linearly
invokes encapsulated BFB instances according
to the execution schedule. The execution
schedule is derived from the signal flow diagram
depending on applications.

Function Block Driver: {
 i = 0;
 do {
 read SCHEDULE[i];
 execute control action specified by
 SCHEDULE [i].FB_type and
 SCHEDULE [i].FB_instance;
 i = i+1;
 } while (SCHEDULE[i].FB_type != NULL);
}

2.1.4 Input and Output Drivers

Input and output drivers are special types of
components, data-oriented components, with
peculiar features with respect to their I/O
connection patterns:

An input driver has no input connections to
other FBs, i.e. it has physical inputs and one
or more outputs (one place buffers) that are
connected to the inputs of other FBs.
An output driver has no output connection to
other FBs, i.e. it has physical outputs and
one or more inputs that are connected to the
output buffers (again one place buffers) of
the corresponding source FBs.

29

Input and output drivers are similar to FBs, but
they are not inherited from the class of FB. They
are special components aggregated in FUs.

3. Gripper system

The gripper system consists of a robotic arm
with shear force sensors, microcontroller (AVR
Atmel128 and STK300), a pair of motor driving
circuits, and a PC that allows measurements of
both normal and shear forces, Figure 4. The
normal forces are the result of gripping objects
and can be calculated from the mechanical
pressure that builds up upon compressing the
elastomer material. Shear forces are the result of
accidentally missing the object, which slips
between the fingers of the artificial hand.
Subsequently, the sensor is subject to shear
forces, causing if the value is below a limit,
activation of the gripping function.

User PC

Function Unit of
Operation Station and

User Interface

Function
Unit of
Sensor

Function
Unit of

Controller

Function
Unit of

Actuator

RS232 Serial
Com m unications

User Commands

Feedback Information

Normal Force

Shear Force

PWM Signals for Gripper

PWM Signals for Lift

Gripping Behavior
(Grip / Release)

Lifting Direction (Up / Down)

Intelligent
Gripper

Micro Controller
(AVR Atmel 128 and STK300)

Figure 4. Gripper system setup.

The gripping and lifting motions of the system
are controlled by the operator through a RS232
serial communication, and actuated by means of
2 different motors. One is used for the vertical
movement (lifting up/down) and the other is for
the gripping behavior (opening/closing).
Some of the requirements for the system are:

A non-slip lift is done by applying enough
and necessary normal force (lowest
maximum value).

The applied normal force should behave
linearly and cover the weight in the range of
0 to 500 gram.
The applied normal force should behave
linearly the same for cylindrical objects with
the diameter between 0 and 10 cm.
The system could be programmed to place
down an object “soft” on a surface.
It could be possible to build in “intelligence”
in terms of characterizing different shapes of
objects (cubic, convex, cylindrical or
concave).

The design will be presented in a top down
specification approach. The oriented signal flow
graph, whose arcs are labelled with the signals
exchanged between various FUs is presented in
Figure 5.

FU_UI

FU_Sensor FU_Controller FU_ActuatorA_NF

A_SF

SerialIn

Se
ns

or
SF

Se
ns

or
NF

Se
ns

or
NF

Se
ns

or
SF

Co
ntr

oll
er

Lif
tS

wi
tch

Co
nt

ro
lle

rG
rip

pe
rS

wi
tch

Co
ntr

oll
er

Lif
tS

wi
tch

Co
nt

ro
lle

rG
rip

pe
rS

wi
tch

ActuatorPWMLift

ActuatorLiftDirection
ActuatorGripperBehavior

Se
ns

or
W

eig
ht

Se
ns

or
W

eig
ht

SerialOut

Se
ns

or
SF

Se
ns

or
NF

Ac
tua

tor
He

igh
t

Ac
tua

to
rH

eig
ht

Co
ntr

oll
er

Gr
ipp

er
Be

ha
vio

r
Co

ntr
oll

er
Lif

tD
ire

cti
on

UI
Gr

ipp
er

Be
ha

vio
r

UI
Lif

tD
ire

cti
on

UI
Gr

ipp
er

Be
ha

vio
r

UI
Lif

tD
ire

cti
on

Co
nt

ro
lle

rG
rip

pe
rS

wi
tch

Co
ntr

oll
er

Lif
tS

wi
tch

UI
Gr

ipp
er

Sp
ee

d
UI

Lif
tS

pe
ed

UI
Lif

tS
pe

ed

UI
Gr

ipp
er

Sp
ee

d

ActuatorPWMGripper

UI
Ba

tch
Cm

d

UI
Gr

ipp
er

Sw
itc

h

UI
Lif

tS
wi

tch

UI
Gr

ipp
er

Sw
itc

h
UI

Lif
tS

wi
tch

Figure 5. System FU Diagram.

There are four virtual nodes (FUs) inside the
system (mapped on one physical node):

FU_UI (user interface) – status/commands
with PC,
FU_Sensor - sampling the forces,
FU_Controller – computing system
behaviour, and
FU_Actuator – applying PWM (Pulse-
Width Modulation) signals to the motor.

As presented in Section 2, a COMDES system
can be seen as a signal flow diagram. It consists
of a set of function units, a set of input/output
signals, and the mappings among the signals.
The specification of the signals exchanged
among FUs is listed in the Table 1:

30

Table 1. FUs and the Mapping of Input/Output
Signals

3.1 Function Unit of Sensor (FU_Sensor)

The job of FU_Sensor is to receive physical
signals generated by the sensors (interrupt
routines), ADC, and transmit the values to
FU_Controller. There are two physical values to
be measured. As a result, two activities, which
are in charge of handling the two physical
signals respectively, are aggregated into this FU.
The activities, Act_NF and Act_SF, work as two
tasks, handling the incoming sampled values of
normal force and shear force. They are running
in two different periods. Because shear force is
more critical to the safety property of the system,
the sampling rate of Act_SF is higher than that
of Act_NF.

A series of executions is carried on in each
activity. These executions are organized in CFB:
CFB_NF, which aggregates the execution
sequence for calculating normal force; and
CFB_SF, which is for the calculation of shear
force. The CFBs are containers of some basic
executions, such as unit conversion and limit
checking. The hierarchical structure of
FU_Sensor is presented in Figure 6.

FU_Sensor
SensorNF

A_NF

SensorSF

SensorWeight

A_SF

ISD_1

ISD_2

OSD_1

OSD_2

OSD_3

NF_Output

WeightValue

SF_Output

NF_Input

SF_Input

Act_NF

Act_SF

Unit
Conversion

Hi/Lo
Lim it

Checking
NF_Input

NF_Output

WeightValueWeight
Calculation

Unit
Conversion

Hi/Lo
Lim it

Checking
AveragingSF_Input

CFB_NF

CFB_SF

SF_Output

Figure 6. Structure of FU_Sensor and its
internal activities.

Every activity has an input signal driver and an
output signal driver. The pair of drivers is in
charge of decoding or encoding of the
transferred signals (messages). Tables 2 and 3
summarize the detailed signal transferring
mappings.

Table 2. Mapping of Input Signal Drivers and
Corresponding Internal Signals Produced
ISD’s Input Signals Internal Signals

Produced
ISD_1 A_NF (Physical

input)
NF_Input

ISD_2 A_SF (Physical
input)

SF_Input

Table 3. Mapping of Internal Signals Produced
and Consumed Inside the Activity
Activities Internal

Signals
Consumed

Internal Signals
Procuded

NF_OutputAct_NF NF_Input
WeightValue

Act_SF SF_Input SF_Output

Table 4. Mapping of Internal Signals and
Corresponding Output Signals
OSD’s Internal Signals

Consumed
Output Signals

OSD_1 NF_Output SensorNF
OSD_2 WeightValue SensorWeight
OSD_3 SF_Output SensorSF

Subsequently and accordingly will be specified
the other FUs.

Function Units Signals Received Signals Sent

SerialIn (Physical Input) SerialOut (Physical Output)
SensorNF UIBatchCmd
SensorSF UIGripperSwitch

SensorWeight UILiftSwitch
ActuatorHeight UIGripperBehavior

UILiftDirection
OSLiftSpeed

FU_UI

OSGripperSpeed
A_NF (Physical Input) SensorNF
A_SF (Physical Input) SensorSF FU_Sensor

 SensorWeight
SensorNF ControllerLiftSwitch
SensorSF ControllerGripperSwitch

UIGripperBehavior ControllerLiftDirection
UILiftDirection ControllerGripperBehavior

UIGripperSwitch

FU_Controller

UILiftSwitch
ControllerLiftSwitch ActuatorPWMLift

ControllerGripperSwitch ActuatorPWMGripper
ControllerLiftDirection ActuatorLiftDirection

ControllerGripperBehavior ActuatorGripperBehavior
UILiftSpeed ActuatorHeight

FU_Actuator

UIGripperSpeed

31

S 0 / Id le

S 2 /G r ip C o n t r o l

S 1 /L i f tC o n t r o l

!x 3

! x 3 x 3

x 1 & x 3
! x 2 & x 3

(x 2 & x 3) | (! x 3)

! x 1 & x 3

Next level of specification is event-based
behaviour, i.e SMs. The execution of the control
software is time-triggered, i.e. the only external
event is the elapse of time period. We will
exemplify with the Act_MotorControl activity,
from FU_Controller, which controls the power
(ON/OFF) and the behaviors (Up/Down and
Grip/Release) of the two motors, Figure 7 and
Table 5

Figure 7. Act_MotorControl SM behavior.

Table 5. Next State Mapping
Current

State
Trigger Guard Next

State
Action

s0 (kT) x3 s1 Lift Control

(kT) !x3 s0 Idle
s1 (kT) x1&x3 s2 Grip

Control
(kT) !x1&x3 s1 Lift Control
(kT) !x3 s0 Idle

s2 (kT) !x2&x3 s2 Grip
Control

(kT) (!x1&x3)
| !x3

s0 Idle

4. Verification in COMDES

Analysis of system behaviour is a highly
complex problem, which has been extensively
studied over the years but no comprehensive
solution has emerged as yet [3,5,9]. A practical
approach to systems analysis has to take into
account the specific features of the system
model used. That is the case with component-
based design, which is inherently based on the

adoption of such a metamodel (framework) that
has to explicitly specify all aspects of system
structure and behaviour (e.g. COMDES).
Compositional specification of component-
based systems is naturally combined with
compositional verification, which might also be
denoted as modular reasoning [7]. In that case
the system is partitioned a-priori into
subsystems and components with clearly defined
functionality and interfaces (e.g. FUs, activities,
etc.), which makes it possible to verify them
separately, and then by using a suitable
inference rule, make conclusions about the
correctness of the system as a whole.

The COMDES model combines in a natural way
reactive (event-related) and transformational
(data-related) aspects of system behaviour. At
the same time, these two aspects are clearly
separated i.e. the model specifies which
reactions have to be generated in response to
certain events, and how these reactions are to be
generated within the corresponding system
states. That is why it is possible to treat them in
separation: event-driven behaviour can be
checked with respect to events, reactions, and
discrete abstractions using an appropriate
technique, e.g. model checking. Data
transformations might be verified via symbolic
data manipulations and assertion compositional
proofs integrated in model checking through
provable assertions [3,9]. Each FB or CFB have
an associated set of provable assertions
corresponding to the continuous state trajectory
evolving in Rn. Predicates include threshold post
condition boolean events and abstracted signals.
System correctness properties can be expressed
in LTL formulas and the whole model can be
translated native in SPIN/PROMELA [3].
For example, if we want to specify a property
for the gripper system, we will express it as a
LTL formula and then convert it to the so-called
never claims.

The lift will not move before the object is well-
gripped

The LTL formula, according to some property
pattern decomposition, which decodes an

Guard Condition Notation
NFValue > NFmin x1

SFValue < SlipThrd x2

ControllerEnable == true x3

32

English sentence into temporal/logical
connectors, logical terms, etc, will become:

<>Well_Gripped•(! Lift_Up U
Well_Gripped)

Timing correctness is addressed by applying
schedulability analysis with respect to real-time
deadlines imposed on the execution of FU
activities (tasks) and distributed transactions.
However, real-time scheduling theory assumes a
periodic execution framework, i.e. all activities
have to behave as periodic tasks. This poses no
problems with activities that are inherently
periodic but aperiodic activities have to be
modelled as pseudo-periodic (sporadic) tasks.
Alternatively, event-driven SM might be
transformed into equivalent time-driven SM
having periodic execution patterns [8].

5. Conclusion

The paper has presented the modelling technique
of COMDES framework as a possible solution
for embedded software development toward
mechatronic systems. The main idea behind this
development is to provide a metamodel that
facilitates the implementation of open yet
dependable systems: the system is built from
reusable software components that are error-free
by design. Furthermore, components interact via
softwiring protocols providing for safe and
predictable behaviour in an open system
environment. System behaviour is specified in
terms of concurrent processes (activities)
encapsulated in various subsystems, as well
process interactions within and across
subsystems. Individual process behaviour can be
specified in terms of hierarchical and hybrid
SMs. Behavioural verification is enhanced by
the compositional structure of separated
functionality, i.e. discrete and continuous, using
a combination of symbolic data manipulation
integrated in state transition model checking.
This is a powerful metamodel, applicable to a
broad variety of control systems, such as
continuous and sequential controllers, etc.

Given the complexity of the mechatronic
systems, we have advocated a framework that
would ultimately result in a feasible embedded
software development method.

References

[1] C. Angelov, K. Sierszecki and N. Marian
(2005) Design Models for Reusable and
Reconfigurable State Machines, LNCS 3824, pp.
152 – 163
[2] C. Angelov and K. Sierszecki (2004) A
Software Framework for Component-Based
Embedded Applications, Proc. of the Asia-
Pacific Software Engineering Conference
APSEC’2004, Busan, Korea
[3] N. Marian, Yang Liu and Yue Lu (2005)
Improvements in Control Software Development,
Proc. of the 6th International Workshop on
Research and Education in Mechatronics
REM’2005, Annecy, France
[4] N. Marian, Jinpeng Ma (2005) Reliable
Component-based Software Development for
Embedded Systems, Proc. of the 2nd
International Conference on Mechatronics
ICOM'05, Kuala Lumpur, Malaysia
[5] Wagner F., Wolstenholme P. (2003)
Modeling and Building Reliable, Re-usable
Software, Proc. of the 10th IEEE International
Conference and Workshop on the Engineering
of Computer-Based Systems, Huntsville, USA
[6] Wang S., Shin K. G. (2000) An Architecture
for Embedded Software Integration Using
Reusable Components Proc. of International
Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, San Jose,
California
[7] B. Berard, M. Bidoit et al. (2001) Systems
and Software Verification. Model-Checking
Techniques and Tools, Springer
[8] A. Benveniste, P. Caspi et al. (2003) The
Synchronous Languages 12 Years Later, Proc.
of the IEEE, vol. 91, No 1, pp. 64-83
[9] Nanette Bauer, Ralf Huuck (2001) Towards
Automatic Verification of Embedded Control
Software, Proc of the IEEE Asian Pacific
Conference on Quality Software, Hong Kong

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

