

346

8th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 25 – 27, 2 0 0 6

TOWARDS INTEGRATING DECISION TREE WITH XML TECHNOLOGIES

Diana GOREA1, Sabin Corneliu BURAGA2

"Al. I. Cuza" University of Iasi
str.G-ral Berthelot nr.16, RO-700483 Iasi
1dgorea@infoiasi.ro, 2busaco@infoiasi.ro

Abstract. The paper proposes a method for efficiently store collections of multi-purpose decision trees within a
native distributed XML database. The predictive information for building the XML decision trees is gathered
through Web mining techniques and methodologies. In order to share data from heterogeneous sources, the
model employs semantic Web languages to describe and represent data sources. The use of a native XML
database system provides robust storage and manipulation capabilities of XML decision trees according to a
logical model mapping. The classification of real data can be obtained by issuing queries over XML decision
trees, using specific XML-based query processing capabilities.
Keywords: decision tree, XML, distributed XML database system, semantics.

Introduction

Decision and regression trees are the hierarchical
approach to decision support making methods
and are used successfully in many various areas
like medical diagnosis, agent learning, risk
assessment, radar signal classification,
commercial and banking applications, strategy
games, policy assessment, expert systems and
speech recognition, to name only a few.
Usually, the decision trees are built to support
one or more decisions. In the latter case, we may
also consider a continuous exploitation of a
decision tree by various beneficiaries. As a
consequence, in the context of a distributed
system, we may consider a frequently revised
distributed repository of multipurpose decision
trees.
In the context of World-Wide Web space, a
decisional system can function as a group of Web
services in order to be invoked by other Web
applications. In this case, an XML-based
approach in storing decision trees could be more
flexible and useful than classical representations
(the XML format of decision trees can be viewed
as a serialization mechanism of information or
knowledge exchanged by decision-making
components, e.g. Web agents or services).
More interesting approach is to use the decision
trees into semantic Web applications. In this
case, a distributed native XML-based decisional
system can play an important role, because it can

offer semantic Web services for making
decisions within complex Web applications, such
as multi-agent systems or Grids.
The decision rules incorporated by decision trees
offer a superior layer of the actual semantic Web
layers (metadata, schema, and ontology layers)
[11] and can be easily expressed by XML
constructs.

After providing some details regarding the
formal model of decision trees and their use in
classification, in section 3 we’ll propose an
XML-based format for storing decision trees
within a XML database system and the
extensions of this format to incorporate various
metadata and ontological assertions. Section 4
will present how we build XQuery assertions to
make queries over XML decision trees.

Decision Tree Classifier Model

First, we’ll present some general information
regarding the model of a decision tree classifier.
Let X be a q-dimensional vector called pattern
whose components are called features or
attributes. The instances (samples) of X are
represented by attribute value pairs.
If the features of X are elements in a totally
ordered set, X is called ordered or numerical
pattern, otherwise it is called a categorical
pattern. In the case of ordered pattern, the
features may have continuous or discrete values.

347

Let Y be a discrete set of values, called class
labels. In the simplest case – the Boolean
classification – Y has exactly two elements.
Let L be the set of instances. L is partitioned into
two subsets:
– L1 is the subset of instances that are mapped
into a corresponding class label and it is called
training data. The training data may contain
instances with missing values, when values for
some attributes are unknown. The training data is
used to build the decision tree.
– L2 is the subset of instances for which the class
label has to be found, which is known as test data.
A decision rule is a function that maps an
instance into a subset of class labels. Decision
rules are used at each internal node of a decision
tree to split the instance according to the values
of a selected subset of features. A decision tree is
an ordered tree in which each internal node t is
labelled with the sequence (C(t), F(t), D(t)) and
each leaf is labelled with a class label. General
structure of a decision tree is depicted in figure 1.

Figure 1. General structure of a decision tree.

The decision tree learning is a method for
approximating a discrete-valued target function.
The misclassification rate of the target function is
the likelihood of obtaining the wrong class label
for an instance. If target function has values in a
continuous set, the method is called regression
tree learning. A decision tree can be seen as a set
of sequences of decision rules. A sequence of
decision rules corresponds to a path from the root
to a leaf. The label of the leaf represents the
output of the target function that takes a test
instance as input. This way the outcome of a

global complex decision (the target function) can
be approximated by the union of simpler local
decisions (the decision rules) made at each level
of the tree.
For example, in figure 2 we have a fragment of a
decision tree that can be used in a banking
application to predict behaviour of a prospective
client when according a loan.

Figure 2. Example of a decision tree.

Construction Methods

Design of Optimal Decision Trees Given a set
of labelled training instances L1 – for which the
classification is known – and a set of classes Y,
the problem is to find a decision tree T that
optimizes a cost function. The problem may have
multiple solutions. The performance of a
decision tree in further classifying the training
instances strongly depends on how well the tree
is designed.

Resulting directly from the above, a good design
of a decision tree must assure the balance
between the accuracy and efficiency measures.
Tree construction can be divided into following
tasks: (1) choosing the appropriate tree structure,
(2) choosing the feature subsets to be used at each
internal node and (3) choosing the decision rule
to be used at each internal node.
Designing an optimal decision tree means
maximizing the mutual information gain at each
level of the tree. The problem of designing an
optimal decision tree is a NP-complete problem
[18], motivating the necessity for finding
efficient heuristics for constructing near optimal
decision trees.

348

Tree construction According to [28], various
heuristics for constructing a decision tree may be
categorized in: the bottom-up approach [21], the
top-down approach [29, 30, 33, 34], the hybrid
approach [19], the growing-pruning approach [4,
25, 26], the entropy reduction approach [32].
Some of the methods separate the tree structure
construction task from the feature or decision
rule selection at each node, while others tend to
combine these three tasks.
Some of the algorithms that assure the balance
between the accuracy and efficiency measures
were implemented by the majority of the decision
support software and are briefly presented in the
following paragraphs.
CHAID [18] and Exhaustive CHAID [3] are
algorithms suitable for both classification and
regression trees and are used especially for large
datasets.
CART (classification and regression trees)
incorporates the growing-pruning method
suggested in [4] – it is considered
computationally expensive, because in the
pruning phase it generates a sequence of trees
from which the one that minimizes the
misclassification rate is chosen.
In [24] a growing-pruning algorithm, called ID3,
is proposed, in which training data is initially
placed in the root and then repeatedly split into
partitions by the value of a selected feature at
each node until no further splitting is possible or
the class label is the same for all the instances in
the current node. The order of attributes is
selected by calculating the value of entropy
function. The pruning process uses another
dataset, called validation set, in order to improve
the performance of the decision tree when it
moves from the training data, where the
classification is known, to real-world
applications, where the classification has to be
predicted.
C4.5 is a software extension to the basic ID3
algorithm proposed in [25] to address the
following issues not dealt with by ID3: avoid
over fitting of data by determining how deeply to
grow a decision tree, handling attributes with
missing or continuous values, handling attribute
with different costs, choosing an attribute

selection measure, and improving computational
efficiency.
An improvement of C4.5 is C5 which provides
more efficiency and a few additional facilities
like variable misclassification costs, adding new
data types, defining attributes as functions of
other attributes, and giving support for sampling
and cross-validation.
Regarding feature selection at a certain node, we
distinguish two main approaches: an univariated
test, when the decision rule at the node depends
on a single feature (most of the presented
methods), and multivariate test [24] – in this
case, the decision rule depends on more features.
Incremental Restructuring When training data
arrives in continuous or periodic flow, it is more
reasonable to update the existing tree than to
rebuild it from scratch. In [31] it is described how
to update decision trees incrementally as more
data is made available, by presented a method for
mapping a decision tree and a new training data
set into a new tree. Transforming one tree into
another requires the ability to efficiently
restructure a decision tree. To do this, a
transposition operator is defined that transforms
the tree into another one that also incorporates
the new set of instances. After the transposition
operation is accomplished, the node decision
rules have to be rearranged according to the
feature selection metric that was used initially to
construct the tree.
Other approaches can be consulted in [10, 16,
22].

Storing Decision Trees in Distributed XML
Databases

Most of available implementations for decision
tree construction algorithms provide a model for
serializing decision trees for storing or exporting
to another application.
The XML (Extensible Markup Language) [2]
meta-language is suitable for storing decision
trees. Moreover, XML has become the universal
standard for information interchange between
applications; thereby, it can be also used for
transferring decision trees between different
applications (Web agents, Web services, etc.).

349

In the context of once-built multiple-used
decision trees, it makes sense to efficiently store
them in order to further classify data samples.
Furthermore, if we consider decision trees that
are constructed from Web data (eventually,
already adnotated in a ontological manner) and
serve more than one beneficiary, then it would be
helpful for those consumers – human users, Web
services, agents, etc. – to obtain on-line
predictions for their input data samples.
Our proposal is to build a distributed XML
database of decision trees, taking advantage of
the robust storage and manipulation capabilities
of the XML decision trees according to a logical
model mapping offered by various native XML
database management systems. Basically, an
XML decision tree is obtained by converting the
output of a decision tree construction tool into
XML and stored according to a logical model.
First of all, we propose an XML-based format, in
order to store a decision tree. Each tree has a list
of features denoted by <feature-list> element
and a list of classes expressed by <class-list>
construct. To express the type of features, we can
use the XML Schema [15] data types (e.g.,
xs:integer) and/or categories – such categories
are ontological constructs declared by
RDF/OWL assertions. To assure the model
generality, an upper-level ontology, such as ABC
[20], can be used.
Each <node> element of the XML document
corresponds to a node in the decision tree and
contains information about the subset of features
that the decision rule at the node depends on
(<features> element), the subset of classes
accessible at the node (<classes> element) and
the decision rule selected at the node, which can
be modelled as one or more tests over selected
features (for this, we use <decision-rule>
construct). The leaf nodes are represented as
<node> elements with a single sub-element
corresponding to the predicted class label.
For instance, the XML decision tree can be used
in a banking application to predict behaviour of a
prospective client when according a loan. This
approach was proposed in [17]. To keep the
simplicity of presentation, we depict a binary
tree, given that any ordered tree can be uniquely
transformed into an equivalent binary tree [27].

Using the proposed XML constructs, such a
document has the following form:

<decision-tree type="binary">
<feature-list>
<feature ID="mi" name="monthly-income"
type="continous"/>
<feature ID="dom" name="domain"
type="categorical" />
<feature ID="edu" name="education"
type="categorical" />
<!-- other features -->
</feature-list>
<class-list>
<class ID="c1" name="eligible" />
<class ID="c2" name="risky" />
<class ID="c3" name="not-eligible" />
</class-list>
<node leaf="no">
<features><feature IDREF="#mi"
/></features>
<classes>
<class IDREF="#c1" />
<class IDREF="#c2" />
<class IDREF="#c3" />
</classes>
<decision-rule
direction-if-true="left">
<test comparison="less-than-equal-to">
<range IDREF="#mi" />
<cutpoint value="1000" />
</test>
</decision-rule>
<sub-trees>
<node leaf="no">
<features>
<feature IDREF="#edu" /></features>
<classes>
<class IDREF="#c1" />
<class IDREF="#c2" />
<class IDREF="#c3" />
</classes>
<decision-rule
direction-if-true="left">
<test comparison="equal">
<range IDREF="#edu" />
<selected-value value="high school"
/></test>
</decision-rule>
<sub-trees>
<node leaf="yes">
<class-label IDREF="#c2"
probability="98" /></node>
<node leaf="no"><!-- continuing to decide
--></node>
</sub-trees>
</node>
<node leaf="no"><!-- right sub-tree
--></node>
</sub-trees>
</node>
</decision-tree>

350

Adding Metadata and Ontological Assertions

In the above example, we can enumerate the
following main ontological categories: monthly
income (its individuals have numerical values),
domain and education (both of them have a
categorical type), and loan conditions (the
individuals of this ontological class have values
“eligible”, ”risky” and ”not-eligible”).
Because XML format permits mixed
vocabularies (different XML constructs), we can
extend the proposed representation by providing
metadata and ontological assertions. Using
Metadata Each feature and decision rule may
have attached various metadata via RDF
(Resource Description Framework) [23]
assertions. This can be very useful for decision
trees that are used in the context of e-commerce
by comparison or recommender Web agents. For
example, if one of the features denotes an e-shop,
then we can use DCMI (Dublin Core Metadata
Initiative) [35], RSS (RDF/Rich Site Summary)
[11] or other kinds of metadata constructs to
enrich the decision tree with relevant information
that can further be used.
If the decision tree is used by a planning
component of a multi-agent system or Grid, we
can add different metadata regarding spatial and
temporal relationships established between
various software components of that application.
For this, we can use XFiles [5] and TRSL
(Temporal Relation Specification Language)
metadata languages, following our previous
research (please, consult [5, 6, 8, 9]).
Using ontological assertions – via RDF [22] or
OWL [12] languages –, decision trees can be
(automatically) transformed to be used in
different contexts, according to user/application
needs.
In this manner, a decision making Web-based
tool can use various Web mining techniques and
methodologies to build XML decision trees,
which contains ontological categories of features,
classes and decision rules. Because our proposed
model implies the XML format,
RDF/OWL-based documents can be used as
predictive information by interrogating semantic

Web indexing and retrieval engines, such as
SWOOGLE [13].
To attach various metadata/ontological
declarations to monthly income, we can use:

<rdf:Description rdf:about="#mi">
<!-- mountly income is expressed in USD
and has integer values -->
<currency>USD</currency>
<rdfs:range rdf:resource="xs:integer" />
</rdf:Description>

One important aspect is to enrich decision trees
with ontological constructs in order to use them
in the context of planning process within a
multi-agent system or Grid. Because agents
expose communication and collaborative
characteristics, a suitable ontological model can
be KAD (Knowledge-Argument-Decision) [14].
In our case, argumentative discourses are
accomplished by agents themselves, nor by
humans. At a syntax level, the ontological model
is expressed by OWL declarations “embedded”
into XML decision trees. Following [1, 7], agents
can exchange – e.g., for planning purposes –
XML-based information (in this case,
knowledge) within the multi-agent system. A
similar approach could be adopted for Grid
applications.

Obtaining Predictive Information via XQuery

Using the proposed approach, obtaining a
classification for a test instance is equivalent to
issuing a query over a XML document that holds
a decision tree. Queries are expressed in XQuery
[36], a flexible query language for XML data.

The XQuery query takes as parameters a set of
values corresponding to the features in the test
data and retrieves the <class-label>
sub-element of a <node> element corresponding
to a leaf node in the decision tree. It performs a
tree traversal in depth applying at each node the
decision rule for the actual parameters and then
following the branch that corresponds to the
outcome. The process continues recursively until
a leaf node is reached.
The features in a test data instance that represents
the input for a classification query are also
modelled as a XML element as follows:

351

<test-instance><feature
name="monthly-income" value="1500" />
<feature name="education" value="PhD" />
<feature name="domain" value="IT" />
<!-- other features --></test-instance>

An XQuery query that obtains a classification for
a test instance will call the
recursive_traversal() function having two
parameters: <node> (the decision tree root node)
and <test-instance>.
The apply_decision_rule() function returns a
Boolean value after evaluating the decision rule
at the current node.
This function depends on the decision problem
that must be resolved (of course, using the
metadata and ontological assertions included in
tree, the function could imply different strategies
in order to correctly evaluate and apply the
decision rule).

declare function recursive_traversal
($node as element(), $test as element())
as element()* {
if ($node/@leaf = "yes") then return
$node/class-label
if (apply_decision_rule ($node, $test))
then recursive_traversal
($node/sub-trees/node[position() = 1])
else recursive_traversal
($node/sub-trees/node[position() = 2])
}

Related Work

There are a number of commercial decision tree
software products available on the market.
Among other models that aid in decision-making,
they basically provide a the decision tree
construction based on data stored in a database or
spreadsheet and the decision tree analysis to
obtain all possible outcomes and probabilities, to
facilitate the selection of the best course of action
when facing complexity and uncertainty.
Some of existing software decision tools provide
export of decision trees in XML format, in order
to integrate the results with other information
management and decision support components.
XQuery is supported only by various database
engines or native database management systems
and is not integrated into standard decision
applications.

Our model differs from other existent proposals
in that it not only proposes storage of generated
XML decision trees, but also integrates XML
technologies (such as querying XML documents
or attaching metadata and ontological assertions)
into decision tools, in order to offer support for
semantic Web decisional applications.

Conclusions and Further Work

The paper presented an XML-based model for
storing and maintaining multipurpose decision
trees to be used in the context of semantic Web
applications. A distributed native XML database
system, such as Berkeley DB-XML or Mark’s
Content Information Server, can be adopted to
efficiently store and retrieve such as trees by
using XQuery constructs.

Our proposal is flexible enough to permit
additional metadata or/and ontological assertions
to be included into XML decision tree –
augmenting features, classes or decision rules –
in order to give support for reasoning.

This approach has advantage in the context of
using Web mining techniques to retrieve, in an
intelligent manner, predictive information
(knowledge) for building collections of XML
decision trees.

The metadata expressed in RDF graphs can be
obtained with queries expressed in SPARQL
query language [37]. New RDF graphs can be
constructed as the result of querying existing
information.

Our further focus is to refine proposed XML
model by expressing decision rules via RuleML
[11] or related languages, investigating a
practical implementation in the context of
predictive and planning activities, following the
ideas presented in the paper.

352

References

[1] Alboaie, S., Buraga, S., Alboaie, L. (2004) An
XML-based Serialization of Information
Exchanged by Software Agents, International
Informatica Journal, 28 (1), 13–18
[2] Bray, T. (ed.) (2004) Extensible Markup
Language (XML) – version 1.0 (Third Edition),
W3C Recommendation, Boston
http://www.w3.org/TR/REC-xml
[3] Biggs, D., de Ville, B., Suen, E (1991) A
method of choosing multiway partitions for
classification and decision trees, Journal of
Applied Statistics, 18 (1), 49–62
[4] Breiman, L. et al. (1984) Classification and
regression trees, Belmont, Wadsworth
[5] Buraga, S. C. (2002) A Model for Accessing
Resources of the Distributed File Systems,
Lecture Notes in Computer Science – LNCS
2326, Springer-Verlag, 224–230
[6] Buraga, S. C., Alboaie, L. (2004) A Metadata
Level for the tuBiG Grid-aware Infrastructure,
Proceedings of SYNASC04 International
Symposium, Mirton, 535–546
[7] Buraga, S. C., Alboaie, S., Alboaie, L. (2003)
The Use of XML Technologies for Exchanging
Information within a Multi-Agent System,
International Scientific Journal of Computing, 2
(3)
[8] Buraga, S. C., Ciobanu, G. (2002) A
RDF-based Model for Expressing
Spatio-Temporal Relations between Web Sites,
Proceedings of the 3rd International Conference
on Web Information Systems Engineering, IEEE
Computer Society Press
[9] Buraga, S. C., Gabureanu, P. (2003) A
Distributed Platform based on Web Services for
Multimedia Resource Discovery, Proceedings of
the 2nd International Symposium on Parallel and
Distributed Computing, IEEE Computer Society
Press
[10] Crawford, S. L. (1989) Extensions to the
CART algorithm, International Journal of
Man-Machine Studies, 31, 197–217

[11] Daconta, M., Obrst, L., Smith, K. (2003) The
Semantic Web, Wiley
[12] Dean, M., Schereiber, G. (eds.) (2003) OWL
Web Ontology Language Reference, W3C
Recommendation, Boston
http://www.w3.org/TR/owl-ref/
[13] Ding, L. et al., A Search and Metadata
Engine for the Semantic Web, Proceedings of
13th ACM Conference on Information and
Knowledge Management, ACM Press, 2004
[14] Evangelou, C., Karacapilidis, N., Khaled, O.
A. (2005), Interweaving knowledge
management, argumentation and decision
making in a collaborative setting: the KAD
ontology model, International Journal of
Knowledge and Learning, 1 (1-2), 130– 145
[15] Fallside, D. (ed.), XML Schema Reference,
W3C Recommendation, Boston, 2001:
http://www.w3.org/TR/xmlschema-1/
[16] Fisher, D. (1996), Iterative optimization and
simplification of hierarchical clusterings,
Journal of Artificial Intel ligence Research, 4,
147–178
[17] Gorea, D., Felea, V. (2005), A Machine
Learning Approach in Establishing Reliability of
Customers in Banking Applications,
International Conference of Information in
Economy, Bucharest, Roumanie,
[18] Hyafil, L., Rivest, R. L. (1976),
Constructing optimal binary decision trees is
NP- complete, Information Processing Letters, 5
(1), 15–17
[19] Kass, G. V. (1980), An Exploratory
Technique for Investigating Large Quantities of
Categorical Data, Journal of Applied Statistics,
29 (2), 119–127
[20] Lagoze, C., Hunter, J. (2001), The ABC
Ontology and Model, Journal of Digital
Information, 2 (2)
[21] Landeweerd, G. et al. (1983), Binary tree
versus single level tree classification of while
blood cells, Pattern Recognition, 16, 571–577
[22] Lovell, B. C., Bradley, A. P. (1996), The
multiscale classifer, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18,
124–137
[23] Manola, F., Miller, E. (eds.), RDF (Resource
Description Framework) Primer, W3C

353

Recommendation, Boston, 2004:
http://www.w3.org/TR/rdf-primer/
[24] Murthy, S. K., Kasif, S., Salzberg, S. (1994)
A system for induction of oblique decision trees,
Journal of Artificial Intelligence Research, 2 –32
[25] Quinlan, J. R. (1986) Induction of Decision
Tree, Machine Learning, 1, 81–106[26] Quinlan,
J. R. (1993) C4.5: Programs for Machine
Learning, Morgan Kaufmann
[26] Rounds, E. (1980) A combined
non-parametric approach to feature selection
and binary decision tree design, Pattern
Recognition, 12, 313–317
[27] Rounds, E. (1980) A combined
non-parametric approach to feature selection
and binary decision tree design, Pattern
Recognition, 12, 313–317
[28] Safavian, S. R., Landgrebe, D. (1991)
Survey of Decision Tree Classifier Methodology,
IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 21, No. 3, 660–674
[29] Sethi, I. K., Sarvarayudu, G. (1982)
Hierarchical classifier design using mutual
information, IEEE Transactions on Pattern
Analysis and Machine Intel ligence, 4, 441–445
[30] Swain, P., Hauska, H. (1977) The decision
tree classifier design and potential, IEEE
Transactions on Geoscience Electronics, 15,
142–147
[31] Utgoff, P.E., Berkman, N.C., Clouse, J.A.
(1997) Decision Tree Induction Based on

Efficient Tree Restructuring, Machine Learning,
29, 5–44
[32] Wang, Q., Suen, C. (1987) Large tree
classifier with heuristic search and global
training, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9, 91–102
[33] Wu, D., Landgrebe, D, Swain, P. (1975) The
decision tree approach to classification,
Technical Report RE-EE 75-17, School of
Electroning Engineering, Purdue University,
Lafayette
[34] You, K., Fu, K. (1976) An approach to the
design of a linear binary tree classifier,
Proceedings of the 3rd Symposium on Machine
Processing of Remotely Sensed Data, Purdue
University
[35] * * *, Dublin Core Metadata Initiative
http://www.dublincore.org/
[36] Boag S., Chamberlin D., Fernandez M.,
Florescu D., Robie J, Simeon J. (2005) XQuery
Language - W3C Candidate Recommendation,
http://www.w3.org/TR/xquery
[37] Prud’hommeaux, E., Seaborne, A. (2006)
SPARQL Query Language for RDF - W3C
Working Draft 20 February 2006,
http://www.w3.org/TR/rdf-sparql-query/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

