

359

8th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 25 – 27, 2 0 0 6

DYNAMIC ONTOLOGY MAPPING FOR E-COMMERCE

Ioan Alfred LETIA1, Mihai COSTIN2

Technical University of Cluj-Napoca
Department of Computer Science
Baritiu 28, RO-400391 Cluj-Napoca, Romania
1letia@cs.utcluj.ro

Abstract. In order to have a functionally and usable e-commerce system, the first obstacle that has to be
surpassed is dealing with the different views of all partaking actors or agents and this can be done by means of
mediation1. This mediation, which has as purpose solving different mismatch problems, must take place at the
ontology level of the different sides in order for them to be able to share information. This paper will emphasize
the idea that in an e-commerce environment the mediation must take a dynamic form in order to be successful.
Keywords: ontologies, mismatch, MAS, dynamic mapping.

1 The term mediation is used here in an ontology context and defines actions as mapping or merging, which solve ontology
mismatch problems.

1. Introduction

For information systems, homogeneity is hard, if
not impossible to achieve. The main reason is
that all existing systems use, explicitly or
implicitly, their own ontology and it is quite
unlikely that the wide variety of these ontologies
will conform to a single standard because of
multiple reasons, both technical and economical.
Still, it would be desirable, especially from the
semantic web approach, for heterogeneous
components to be able to collaborate and to
exchange information regardless of the
underlying tiers. A large array of applications,
like the ones in the e-commerce or e-
government category, would benefit mostly
from this transparent collaboration and
information sharing. Even more, as pointed out
in [5], this ability is essential for MAS systems,
which have the strongpoint of partitioning the
problem space and assigning a piece to different
agents with different knowledge and
representations.
A great amount of research is involved in this
area and more and more methods are proposed
to solve the problem or aspects of the problem,
including theoretical methods that unify
different approaches in order to find the best
solution [3].

As mentioned, the differences between two or
more such heterogeneous components (for
example, in a MAS e-commerce application, the
agents that represent the different part-taking
actors) are situated at ontology level. These
differences are called ontological mismatches.
The first step when dealing with an ontological
mismatch is to define that type of mismatch,
followed by choosing the appropriate method of
solving the problem.
This mismatch problem for the ontologies can
be an obstacle at least in two common scenarios
in the semantic web context: ontology reuse and
ontology based-communication. Ontology reuse
is one of the main points when dealing with
developing ontologies and can be considered as
important as the reusability for an object
oriented approach. The main concern in this
case is for one to be able to enrich an existing
ontology by adding new concepts or to create
new ontologies by means of composition or
aggregation. Ontology based-communication
tackles the problem of two or more entities that
rely on top of one or more ontologies and are
trying to exchange information. In most of the
cases, the mentioned ontologies are not directly
available and can be quite different (in fact,
agents that have different ontologies would have
more potential information to exchange than the
ones that use exactly the same ontologies).

360

From the point of view of e-commerce, the
second one presents more interest since, as
pointed out before, the main problem in this area
is the lack of homogeneous agents (and
implicitly, ontologies that support this agents)
taking part in the B2B or B2C process.

1.1 Ontology mismatch

Two or more ontologies may exhibit conflicts at
ontology level (semantic level) or at language
level (syntactic level).
The mismatch at language level can be caused
by different representing language (for example,
one ontology using OWL2 and another one
using RDF3). The mismatch at semantic level
can be caused by multiple reasons in a range
from ontologies that have different
representations for the same concepts to
ontologies that don't refer to the same domain,
but the main source of conflict is the use of
conflicted or mismatched terms about concepts
[6].
These mismatches can be solved by using
methods that include aligning, mapping,
translating, merging or integration. The method
to be used must be chosen based on the source
and target ontologies, on their availability and
eventually on the domain that is being tackled.
For the case considered in this paper the general
domain is taken to be e-commerce, although any
other context can suite just as well. A much
more important aspect is the fact that the
ontologies are not considered to be public
available, as they are in [1], and can be accessed
only trough the agents that rely on them, these
agents representing the entry points to the
information held at ontology level. Practically
what the proposed scenario is trying to do is to
map a real world (economic) context in which
information is quite precious and not always
available, communication is done by exchanging
pieces of information, or tokens [4] and not the
whole repository, and the facade to the
information repository are one or more agents

2 http://www.w3.org/OWL
3 http://www.w3.org/RDFS

that have more or less the purpose of controlling
the flow of information.
In this kind of context most of the classical
'whole-ontology' merging and mapping solutions
are prone to failure, and thus a form of dynamic
mapping must be imposed to solve the problem.

2. Problem Statement

2.1 Scenario

The problem that this paper is trying to solve
can be more easily described by the following
scenario:
In an e-commerce environment (modelled as a
MAS) there are different actors that are taking
part to the process. In this case three actors have
been chosen. There is a front agent that takes
contact with the client (this client can be human
or machine), and will be called client-agent and
two other actors that represent two different
factories that can produce goods and will be
called producer-agent-one and producer-agent-
two. These agents can communicate using a
wide accepted communication language that will
be allowing them to exchange tokens with no
regard to the underlying ontology.
The client-agent has an ontology describing the
services it can provide to its clients and
according to the chosen scenario it has
knowledge of furniture components and
arrangements (like, for example living room
furniture composed out of a table and four
chairs).
The producers have their own ontologies
(catalogs) that are assumed not to be public
available, the agents being the only interface to
the data stored in those ontologies and have
knowledge of the goods that the factory can
produce, goods named by the factory's own
procedure (a real life example of such a catalog
would be RosetaNet or UNSPSC4, catalogs
which are widely used at the moment by
different actors).
For example, we can assume that the element
representing a chair it is called “chair” in the
client-agent ontology and “CHx” in the

4http://www.unspsc.org/

361

producer-agent-one's ontology. Both of these
elements have attributes and relations that define
it with respect to the owning ontology.
Furthermore, the producer has no knowledge of
or interest for different furniture arrangements
present on the client, so in this case the client is
the one that must query the producers for
different components of an arrangement.
Since the ontologies are not public available (the
agent's can't look into each other's heads to find
out what the other knows) the only way of
information exchange can be done through agent
communication. This communication will help
the agents to establish a partial mapping for the
elements of interest in order for their
collaboration to take place with success. The
partial mapping is an important aspect of the
way the agents interact since mapping the whole
ontologies, besides being computationally
expensive, maybe impossible in the case of
ontologies referring to different domains.

We also presume that, even if the ontologies
would be public available, the client can't have in
an efficient way a complete mapping from its
elements to the elements of the producer from
another source out of a couple of reasons: 1) the
amount of data that would have to be carried after
the client 2) Adding a new producer and removing
an old one from the network would force the client
(clients) to rewrite all his (theirs) mappings to be
up to date.

2.2 Goal

The described problem leads to the idea that some
form of dynamic mapping has to take place
between the agents (their ontologies) if
communication is to take place with success and
that the agent will be updating its own knowledge
as more and more queries are answered.
Also, some form of discovering the other agents,
language to be used and methods of integrating
new knowledge have to be found along with the
mentioned mapping between the agents.

3. Information exchange and integration

The proposed solution to the problem we are
facing involves managing information sharing

and exchange in a multi agent system in which
each agent uses an ontology to represent its
knowledge.
These agents can receive queries (from another
agent) that must be solved and can engage (be
engaged) in a 'discussion' with another agent in
order to acquire knowledge if the present
available knowledge can't solve the query.
The problem appears when an agent is trying to
acquire more knowledge and that knowledge is
held by another agent that uses a different
ontology behind causing a conflict to appear
when the two are trying to communicate. The
communication takes place with the help of
information tokens exchange between the
agents, information tokens that will also
represent the main mean of obtaining the partial
mapping needed for the actual information
sharing to take place. The idea of tokens is
similar to the one in [4], but the approach
proposed here will not be using these tokens in
order to create an explicit information channel
or a global ontology that would serve the two
semantically integrated agents. Instead, those
tokens will be used, somehow similar to real life
exchange of information between humans, in
order to achieve a lazy dynamic mapping. The
mapping is both lazy and dynamic because the
communication will have as purpose the
translation of only a couple of concepts from the
ontologies and only when those concepts are
needed.
Another possible approach to the stated problem
could be similar to the one described in [2], that
is also tackling the problem of agents based on
heterogeneous ontologies, but the present paper
is aiming at also enriching the agent's
knowledge beside making the communication
possible between the entities and is taking a
more common-sense (real life based) approach
to the problem of asking and answering queries.
The idea behind the proposed mapping solution
is based on the fact that, for a given domain,
ontologies are more or less created by humans
and all elements or some of their attributes have
attached a textual description. (This idea is
similar to the grounding ontology theory [5] but
in this case, the common underlying structure is
more transparent and is given exactly by the

362

assumption that at the base of an ontology
specification there is a human factor). This
description along with the attributes of an entity
and the relations of that entity with other entities
represents the information contained by the
ontology. When two agents are trying to
exchange knowledge they will exchange tokens
of the mentioned information. These tokens will
be used to answer the queries or to integrate
knowledge into the existing ontology.
When receiving a token, the agent must take into
account the context of the token in order to
decide what action to take - for example if a
query was made using that token or an answer
has been given that contains the token. In each
case, the token may be the only element that is
unknown to the agent, and if that happens, a
translation must be made in order for the
interaction to proceed. This translation or
mismatch solving will be tackled in the next
section.
For the agents to be able to communicate a set
of common vocabulary is required. This
vocabulary must be accurate enough while using
the smallest set of concepts [5]. A wide accepted
agent communication language (or a subset o it)
can be used (like FIPA ACL or KQML),
although this languages don’t specify the
semantics of the content but only the syntax.
Alternatively a common communication
language can be constructed and used by the
agents like in [5] and for the proposed scenario
we will use a simple common communication
language with elements (predicates) such as ask,
buy, confirm...
We could imagine the following flow:
The client-agent must get a set of furniture for
one of its customers composed out of 4 chairs
and a table. First, the agent will check its own
ontology to see if he knows who is producing
such components. If it founds something will
ask for a confirmation from those agents and
will present the offer to its client. If one or more
components don't have a producer in the
knowledge base or a confirmation is not made,
the agent must find a producer for that
component, or if we are to make a parallel with
the OO world, the agent must find an
implementation for one of its abstract classes.

Let's say that the chair element has no producer
in the client-agent knowledge base. Now the
agent must find all the producers (beside the
ones it already knows) and ask them about the
chair token. For finding the producers we can
imagine, for example, a network using JINI5
technology where all the agents that have joined
that network can be discovered after the services
they provide. After all the producers have been
found the agent will send a query to them,
asking about the chair product. If the produces
have no knowledge of the chair element will ask
for a clarification and so the translation
(mismatch solving) process will begin. After the
mismatch has been cleared the producer will
send its term for the chair along with all the
attributes to the client-agent which will now
have more knowledge about the chair
component and will be able to present an offer
to its customers.

4. Mismatch solving

As mentioned in the previous section, a
mismatch has appeared between the two agents
regarding the "chair" element.
The two will now try to solve that mismatch
using the following predicate exchange:
Client-agent -> producer-agent:

query(produce, chair)
Producer-agent -> client-agent:

clarify(chair)
Client-agent -> producer-agent:

startExplainToken(chair)
token("Furniture element with 3

or 4 legs")
token("made out of wood or

metal")
token("used by people to sit on")
endExplainToken(chair)

The predicates used are known by both agents
and belong to the common language used by the
agent network to communicate. At each step a
message check will occur, making sure that the
received predicate is syntax-valid.
When the startExplainToken message is
received the agent will begin listening for
incoming tokens that have the purpose of
clarifying the source of mismatch.

5 http://www.jini.org/

363

The tokens sent by an agent in order to explain a
mismatched concept will most likely include
also tokens describing super-concepts in a
similar way to the method used in [6] for
retrieving a concept’s meaning from the WWW.
(The process can also be done in an iterative
way, for large to very large taxonomies, by
passing to the other agent the tokens from one
conceptual level each step until the match is
found)
These tokens will then be used by the receiving
agent in a classification process in order to find
the category/product that the initial token was
referring to.
The taxonomies that represent the base structure
for the ontologies belonging to the two agents
could be like the ones in the following images:

Figure 1. The client agent taxonomy.

Figure 2. The producer agent taxonomy.

These taxonomies will be used by the two
agents as the foundation for their ontologies, and
so, for example the client agent (figure 1) will
have as part of its ontology the rule

RoomFurniture=has(Table, 1) ∩
has(Chair, 4)

Also, both of the agents will have, as mentioned
before, beside other attributes, textual
descriptions for the elements or the categories
belonging to the ontologies.
In the considered scenario we will take into
account the taxonomies (as the taxonomies stand
at the base of any ontology definition) and the
textual descriptions for the two agents in order
to exemplify the proposed process of mapping.
The producer agent will have attached in its
ontology attributes for each element and so, for
example, it will have a description element for
WPx, d="Products made out of wood", for Fx,
d="Furniture elements", and for CHx="Chairs
with 4 legs" and so the producer-agent will be
able to find the match of the questioned token in
his ontology by using the provided information
by the client-agent. After the element was found
it will be sent, along with some attributes, to the
client-agent and now this agent will have an
extra piece of knowledge regarding the chairs
produced by the producer-agent allowing it to
make the future interactions much more easy
(lazy dynamic mapping).
As mentioned, the received tokens will be used
by a text classificator to find the category and
then product that meets the given description.
These received tokens can be viewed as a
document that must be classified in one of the
existing categories at destination. There are
means of including in this document (and in the
classification process) also other attributes
beside description, like key-value pairs, but here
we treat just the simple case in which the
exchanged tokens contain only textual
descriptions. For this classification processes a
naive bayesian classifier together with a
synonyms dictionary (like for example
WordNet6) will be used as described below.

6 http://wordnet.princeton.edu/

364

Regarding the usage of the word dictionary,
more complex relations between words and
concepts can be used beside synonymy, like
hyponymy and hypernymy that can define
parent – child (“is a”) relationship between
concepts or holonymy and meronymy (“has a”
relations) in order to have a more flexible
concept matching and classification.
The naive bayesian classifier will estimate the
posterior probability of the token-based
document belonging to category Ci using that
document as evidence:

P(Ci |d) =
P(d)

Ci) |P(d*P(Ci) (1)

In the given equation P(d) can be ignored since
it is the same for all the destination categories
(D) and P(Ci) can be estimated as :

P(Ci)= Dfor elements of nr. Total
 Ciin elements of Nr. (2)

The only remaining term to be computed is
P(d|Ci). If we take a simplistic approach by
assuming that the words are independent from
each other, this probability can be estimated
using the following equation:

P(d| Ci) =∏
din w

Ci) |P(w (3)

where w represents the words that are part of the
document d. In fact, w represents more that just
one word, being a group of words that are all
synonyms. In order to estimate P(w | Ci) we can
count the number of occurrences of word w (or
any of it's synonyms) in all the descriptions of
the elements from category Ci (nrw(w, Ci)) and
divide it by the number of total words in those
descriptions (nrw(Ci)). In order to avoid the
problem caused by a word that doesn't appear in
any of the descriptions of the elements from
category Ci (causing the number of occurrences
to be zero, nrw(w, Ci)=0) we can use Lidstone's
law of successions and so, the searched
probability is:

P(w|Ci) =
|V| *nrw(Ci)

Ci) nrw(w,
λ

λ
+

+ (4)

where |V| represents the size of the used
vocabulary (the number of all the words from all
the descriptions in all the categories), and λ >
0, whose optimal value must be chosen in order
for the model to be as accurate as possible
(usually this values is found by running a couple
of trials on some data sets).
At this step we can compute the value of P(Ci|d)
and we can choose the category with the highest
probability as being the one that the element
belongs to.
One issue still remains, that of choosing the
categories Ci, and one approach is the
following:
We do the classification process in iterations
going top-down in a "divide et impera" way. At
each step we choose a couple of top categories
that will have all the children and parents
descriptions passed onto them and run the
classification process. The category/element that
has the highest probability and the ones that are
very close (determined by an error factorε) to
that probability will then be chosen to represent
the base for the next step. At the end of this
process the category/element(s) with the highest
probability will be chosen as the result.

5. Conclusions and future work

In this paper we have pointed out the importance
of finding a solution for the ontology mismatch
problem in a MAS environment and that a
“classic” whole-ontology mapping approach is
not feasible in this case. We have proposed, as
an alternative to the whole-ontology mapping,
the lazy dynamic mapping in order to achieve
the desired communication level between the
agents in such a network. This mapping is based
on token exchange, in a similar way to the one
presented in the described scenario, between two
agents followed by a matching process at the
receiver’s side, a matching process that is using
a naïve bayesian classificator.
The solution presented here is only the first step
in solving the problem as the approach taken
here is a simplistic one, and can be viewed as
the starting point in constructing a real
framework that will be able to solve the

365

mismatch problems for ontologies, as
communication takes place between agents, by
using a form of dynamic mapping appropriate to
the MAS environment.
Some of the possible future enhancements to the
proposed process would be to add a formal
communication vocabulary as defined in [5] in
order to enhance the communication abilities of
the partaking agents, and, directly related to the
presented mapping method, to introduce
bayesian networks in order to improve the
mapping process [6].
Another important issue that is to be taken into
account, especially for the implementation
phase, is the one related to performance and
scalability when mapping and classifying in
large taxonomies or with many actors that take
part to the process.
Also, a more elaborate scenario and study case
will be used in order to capture more of the
aspects present in a real world MAS.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant.
(2004) On integrating catalogs.
[2] Patrick Doherty and Witold Lukaszewicz.
(2004) Approximative query techniques for
agents with heterogeneous ontologies and
perceptive capabilities. In The 9th International
Conference on Principles of Knowledge
Representation and Reasoning.
[3] York Sure, Marc Ehrig. (2004) Ontology
mapping - an integrated approach.
[4] Marco Schorlemmer and Yahhis Kalfoglou.
(2004) Progressive ontology alignment for
meaning coordination: An information-theoretic
foundation.
[5] Jurrian van Diggelen, Robert Jan Beun,
Frank Dignum, Rogier M. van Eijk and John-
Jules Meyer (2005). Optimal Communications
Vocabularies and Heterogeneous Ontologies
[6] Zhongli Ding, Yun Peng, Rong Pan, Yang
Yu (2005). A Bayesian Methodology towards
Automatic Ontology Mapping

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

