

382

8th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 25 – 27, 2 0 0 6

ACTING AGENTS FOR SOC

Ioan Alfred LETIA1, Anca CHIORAN2

Technical University of Cluj-Napoca
Department of Computer Science
Baritiu 28, RO-3400 Cluj-Napoca, Romania
{letia, anca}@cs-gw.utcluj.ro

Abstract. We present a SOA based on MAS principle. Modelling service composition from both choreography
and orchestration point of view has some drawbacks in the context of a dynamic and open environment. Global
composition requires all the information for composition to be available and understandable. Existence of
ontology is a key requirement for interoperability, so we propose a SOC approach based on ontology of
activities. Each simple service is described in terms of this ontology and the composite service too. But the
synthesis process of composite service is moved from a central entity to each agent involved in SOA. Therefore,
agents work with local views of the composite service and interact to decide which services and in which order
have to be enacted for the composite one.
Keywords: web services, agent collaboration, process specification language, situation calculus

1. Introduction

Web services, interoperation and integration are
for quite some time the major subjects of
modeling and software engineering as a
response to the requirements of the business
world. The benefits of using web services are far
from being complete in the absence of their
composition. Although not brand new, with
principles taken from MAS, SOAs (Service
Oriented Architectures) address many of the
service integration issues. Service-Oriented
Computing (SOC) is the emerging paradigm for
distributed computing and e-business processing
that utilizes services as fundamental elements to
enable building agile networks of collaborating
business applications distributed within and
across organizational boundaries [10].
The ability to build on conventional information
technology in a standardized manner requires
strong conceptualizations of the knowledge
domains, in other words semantic descriptions.
SOA, that supports reasoning for discovery,
composition, invocation, integration and
knowledge management is not the only relevant
topic for semantic enabled software engineering.
Model driven architecture addresses the
reasoning for consistency checking and
transformation; Autonomous Computing
emphasizes the reasoning for self-management
of software systems; Requirements Engineering

use ontologies as more expressive domain
models. Together they offer principles for
building new systems from the existing one.
The composition aspects discussed in this work
are inspired from the relation between services
and agents. We propose a SOA based on agents
and a domain ontology in order to address some
challenges of SOC like dynamic selection, fail
recovery and utility computing in the context of
service integration. The services are modeled as
processes, as in many other works. The central
issue of our proposal is the activity ontology that
captures behavioral aspects of services domain.
This ontology underlies the collaboration of
agents associated to services in their attempt to
solve a query that implies one ore more web
services.
The present paper is organized as follows:
Section 2 discusses some models for web
services and introduces the PSL language and
situation calculus; Section 3 introduces the
ontology, methods for reasoning on it and
simple web service description. The agent’s
collaboration for synthesis of composite service
is highlighted in Section 4 and Section 5 draws
some conclusions.

2. Web service model

Business processes are used for both
orchestration and choreography of services. The

383

orchestration analyse the interaction from the
service perspective, and the choreography from
a global one. But even when we look at the
processes from the choreography perspective,
the services are not autonomous in deciding the
collaborations; these decisions are taken by the
global business process.
Drawbacks of the business processes are the
static description of them. That processes exist
apriori, they are not built dynamically from
some rules; in this context, their capability to
adjust to the changing environment is limited. In
order to allow free interaction of services,
methods from agent planning and reasoning
should be applied for services or the join
between the two paradigms - web services and
agents - should be used.
The WSDL description offers only descriptive
information about the way a service can be
invoked. But no information about when to
invoke that service is contained by this
description. The functionality of the service and
its flow must be part of the service interface.
There are two important issues: the first is how a
service must describe what it can do, and the
second one is how the other services can find
out and understand this. For the first one,
describing a service as a business process seems
to be a suitable approach. For the other one,
there must be protocols for complex
conversation between services in order to know
each other behaviours and to work in a
collaborative manner for achieving a goal.
There are more approaches for these issues. In
[8]it is suggested a combination and extension
of two web services languages, WS-
Conversation Language(WSCL) and WS-
Agreement in order to overcome the simple
request/response communication between
services. The paper proposes extending the
languages with speech-acts that allow many
complex types of interaction.
The Roman model [2], [3] includes transitions
based not only on internal activities but also on
message exchange [5]. The e-service model
includes an exported behaviour for each service
represented as a set of (possibly) infinite
sequence of actions that the e-service
participates in.

Representing services as Mealy machines has a
large acceptance in the composition area. The
Conversational Model from [5] includes the idea
of exchange sequence of messages of given
types according to a predefined set of channels.
Composition in the context of service
communities is improved for efficiency in [9].
The paper uses the Roman model and extends it
to integrate costs into the "ad hoc" delegation
computation.
All of them have in common the concept of
behavioural description [9] in a business
process. One of the advantages of using business
processes and actions is the state concept
introduced by them. In the real life we usually
meet long term transaction. Process state support
these long transaction, unlike the web services
that do not have state information [10].
In our model, web services are described by
simple or complex processes. These processes
are sequences of activities and subactivities. The
sequence is determined by the constraints on
activities. These constraints can be owned by a
service - expressing the local policy of the
service provider - or can be general constraints,
known by all entities involved - the activity
ontology.

PSL and Situation calculus
We chose to work with these two theories due to
the similarities between them and their
capabilities for process description. There are
already standards based on PSL principles for
describing services [1]. Occurrence tree of PSL
are isomorphic to substructures of the situation
tree from situation calculus, the primary
difference being that rather than a unique initial
situation, each occurrence tree has a unique
initial activity occurrence. As in the situation
calculus, the poss relation is introduced to allow
the statement of constraints on activity
occurrences within the occurrence tree. Since
the occurrence trees include sequences that
modellers of a domain will consider impossible,
the poss relation "prunes" away branches from
the occurrences tree that correspond to such
impossible activity occurrences.

384

3. Activity ontology

Although PSL defines a neutral representation
for manufacturing processes, it provides for
describing the semantic domain of web service's
behaviours. Behaviour specification is clearer
and unambiguous using the PSL constructs [4].
Besides describing activities and subactivities of
the domain, PSL axioms establish ordering and
existence constraints for the sequences of the
behaviour execution.
The common knowledge about the domain for
the web services is axiomatised in a PSL
ontology. The task on integration cannot be
imagined in the absence of some common
knowledge, especially if the autonomy and
dynamic decisions of agents and services are
aimed. Other languages proposed for describing
the behaviour of web services (simple or
composite) - like BPEL4WS - lack the power of
expressing partial constraints [1]. PSL has
support for such constraints, thus it facilitates
behaviour specialisations. The use of activity
ontology implies the existence of a hierarchy of
activities and the capability of specialisation of
the contained axioms.
The activity in the context of web service is
characterised by IOPEs, like the FLOWS or
OWL-s model. So the ontology will include
description of activities and subactivities
together with order constraints(that can be total
or partial) and occurrence constraints. Besides
activities, the ontology includes fluents that
characterise the world state.
There are two kinds of activities: message
activities - that receive and generate the
messages- and behaviour activities - expressing
the process flow of the service. The message
activities are not the object of this work, but they
will be included in future work.

IOPEs axioms
The axioms for IOPEs of each simple behaviour
activity are:
• input preconditions - the knowledge
needed by an activity to execute; they establish
the fact that an action can not be executed before
knowing its inputs. These inputs will be known
after receiving a message for enactment of the

service.

(activity sell)
(forall ?occ , ?clientid, ?prodid

 (implies
 (occurrence_of(?occ, sell(?clientid,
?prodid))
 (and
 (holds (Known(client_id(?clientid)), ?occ))
 (holds (Known(prod_id(?prodid)),
?occ)))))

For each occurrence of the sell activity it must
hold the fluents about knowing the client id and
product id.
• output conditions - the knowledge found
after an activity occurrence. It is the
information that the process provides to the
requester. The output can be conditioned by
fluents; it can be defined only for legal
occurrences. An activity occurrence is legal if all
the occurrence constraints are met.

 (forall ?occ, ?clientid, ?prodid

 (implies
 (and
 (occurrence_of(?occ, shipment(?clientid,
?prodid))
 (legal(?occ)))
 (and
 (implies
 (served_area(?client, ?occ))
 (holds(shipment_time(?prod, ?clientid)))
 ))))

For all legal occurrences of the shipment
activity, the output will be the estimated time.
• effect conditions - express how the
world state changed after the occurence.

The shipment activity is a long term activity,
that can be interrupted and needs some time
conditions. Eventually some compensation
activities and exception activities should be
introduced. The type for these activities can be
state triggered activities.

Order constraints
The rules establishing relations between
activities are expressed in terms of constraints
on occurrences. Concepts from more PSL
theories can be used in order to describe in a
flexible manner the semantic of the activities

385

domain: subactivity theory, occurrence trees
theory, and atomic and complex activity theory.
Very important are the ordering constraints;
these can impose from strict order - occurrence
of activity a2 must occur immediately after
activity a1 occurrence, or more less tight
ordering - occurrence of activity a1 can be
performed only before activity a2 occurrence.
The first one implies the existence of both
activity occurrences, while the second does not
say anything about the need of existence of any
of the two actions, and even more, between them
can be performed other activities.
The occurrence constraints can model also the
context. The occurrence of the same activity can
be ruled by some constraints if it is
subactivity_occurrence of some activity and by
other constraints in other situation.
For example, for stating the fact that for all
occurrences of buy activity must exist one
occurrence of sell activity and one occurrence of
shipment activity, we will use the following
axiom.
 (forall ?occ
 (implies
 (occurence_of (?occ, buy))
 (and (exists (?occ1, ?occ2)
 (occurrence_of(?occ1, sell))
 (occurrence_of(?occ2, shipment))
 (subactivity_occurence(?occ1, ?occ))
 (subactivity_occurence(?occ2, ?occ))
 (min_preced(?occ1, ?occ2, buy))))

We can consider another activity – chooseThe-
BestShipment, about it can be said that none of
it's occurrences can be performed after an
occurrence of the shipment activity. Notice that
this activity is not needed when performing the
buy activity, but it can occur.
 (forall ?occ, ?occ1, ?occ2
 (implies
 (and (occurence_of(?occ, buy))
 (occurrence_of(?occ1, chooseTheBestShipment))
 (subactivity_occurrence(?occ1, ?occ))
 (subactivity_occurrence(?occ2, ?occ))
 (not min_precedes(?occ1, ?occ2, buy)))))

Activity ontology to Situation Calculus
In order to catch in situation calculus the
constraints expressed in PSL, the first entity that
we introduce is the after-occurrence fluent - it

means that after the execution of action
corresponding to an activity occurrence a fluent
becomes true.
 Poss(a, S) ⊇
 [Done(act, do(a, S) ≡ act == a]
An action corresponds to each PSL activity. The
concept of runtime execution of behaviour
specification captured by PSL occurrences is
enforced in situation calculus by the situation.
For different type of constraints we give some
general translation to situation calculus.
Order constraints The order constraint is
expressed by adding to the precondition axioms
of the before activity the negation of the after-
occurrence fluent of the after activity.
Subactivity constraints For the complex
activities, the after-occurrence fluent is true
when all the after-occurrence fluents of the
subactivities are true.
Existence + order constraints The before activity
after-occurrence fluent is one of the precondition
axioms of the after action, but only in the
context of the activity which for these two are
subactivities. ";" order construct introduced by
[6] expresses that two actions must be
performed, and there is an order. The sequence
construct is not suited due to the possibility of
actions that can occur between that two.
Proc a1 : a2 ≡
 a1 ; while ⌐ Poss(a2) do
 (π Action a). ?Poss(a) ; a
 endWhile
endProc
But this expression is still not good enough for
expressing the subactivity concept. For example,
if we use it for expressing that for buying a
product the sell and shipment actions are needed
we restrict the buying action to this two and
maybe something between them. So another
subactivity can not be defined.
Therefore, we choose to assert and retract the
information about the current complex activity
occurrence and the fluents for subactivities are
conditioned by these information.

Processes of simple web services
The entities and relations of the activity
ontology underlie the behavioural description of
each simple web service. We choose for these
the situation language due to the similarity of the

386

theories: process and situation theory.
The desired behaviour is sketched in terms of
situations and possible actions. Not only
activities from ontology can be part of the
descriptions. The specialisation of the
ontological activities can involve new actions,
but these new actions should depend on the
ontological activities. For example, if a service
provider private policy implies choosing the
shipment among some favourites partners after
the selling action(described in the ontology) it
can describe this myChoice action even if there
is no corresponding activity in the ontology. But
the provider has to describe the ordering and
existence constraints relating to the selling
activity or other used activities from ontology.
So the precondition axiom for myChoice
requests the knowledge about the price of the
product(this is the output of the see activity) and
the after-occurrence fluent done for selling
activity is modified.
 Poss(myChoice(Id, Prod), S) ≡
 holds(price(Id, Prod), S)
 Poss(a, S) ⊇
 [done(sell(Id, prod), do(a, S)) ≡
 a = myChoice(Id, prod)]
New fluents can be part of the description too
besides the fluents from ontology. Some
provider decides to apply some discounts for
loyal customers.
 Poss(a, S) ⊇
 [holds(discount_price(Id, Prod), do(a, S)) ≡
 a = sell(Id, Prod)]

The partial order of PSL ontology rise the
opportunity of specialisation through more order
constraints. In the same context of buying
process, some services can request the existence
of testQuality action on some after-sell service
before shipment. Both actions have
corresponding ctivities in ontology, but there is
defined only an order constraint, not an
existence one.

4. Agents for SOC

Web services are closely related to the agent
programming paradigm. The definition of the
web services architecture[11] states that "a web
service is viewed as an abstract notion that must

be implemented by a concrete agent".
The interactions between web services are
currently limited to simple request-response
exchanges [8]. For flexible and autonomous
services a method for engineering expressive
protocols is needed. The open problems are
when a service needs another service, which
service it needs and how can interact with it.
Another challenge is that the environments are
rarely static and a MAS approach should deal
with such dynamic nature.

Integration means joining together independent
pieces of codes. These "building blocks" can be
more or less publicly. The web service
description is published for everyone, but in real
life there are private business rules too that
governs the service itself or its behaviour in a
composite one.

In order to solve these problems we associate to
each service an agent that intermediates the
collaborating activities between services. These
agent know the enactment description of the
services (e.g. WSDL) and the activity ontology
and change messages in order to establish the
agreements that will govern the composition.
The grounding activity is not discussed here, but
the WSDL description allows querying a web
service if the agents decide to.

Composite service
The composite service is specified in terms of
activity ontology. Agents are reasoning in
situation calculus on the behavioral descriptions
of the served services using the activity ontology
and on some special actions for agent-
collaboration in order to reach a situation where
the requested composite service is acquired.
These special types of agent activities are
delegation and foreign activity. When a service
can't execute an activity it can delegate others to
do it. Each service must have the possibility to
perform such activity. The delegation activity
asks for some kind of commitment from another
service to do some common activity. The effect
of the activity is a foreign activity - an
occurrence activity that is part of the
behavioural description of another service.

387

Speech-acts
We use the ideas of introducing speech-acts
from [8]: call-for-proposal, propose, inform,
accept. Each one has the following form
s.something(r, γ). The speech-act specifies the
initiator, a list of recipients and an action taken
from the activity ontology. Activities from
speech-acts can be executed by the served
service or they can be delegated to other
services.
Each speech-act has associated an action in the
situation calculus, in order to include such
actions in the synthesis of the composed service.
We will call these actions collaboration-actions.
Associated to these actions, there are fluents for
asked(Action), proposed(Action) and
accepted(Action). A special note is that the
ability of doing an action is requested, not the
execution. Also for constraints taken from
ontology the gen_poss fluent is used.
Call-for-proposal The call-for-proposal
collaboration-action is possible whenever no
other action is possible (or possible all the time,
but desired only in this case). The action for that
an executor is searched can be taken from the
needed actions (but not possible yet) from the
ontology.
 Poss(call_for_proposal(A)) ≡

 not(asked (A)) ∧ gen_poss(A) ∧
 (not(known(A) ∨ not(poss(A))

The precondition axiom expresses the fact that
an agent should send a call-for-proposal only for
actions that are not delegated by other agents (in
order to avoid two or more step delegation for
the same action).
When a call-for-proposal is received by an
agent, the asked action becomes desired in that
situation. If that action is possible too in the
current situation, a propose collaboration-action
must be executed, sending back to the initiator
of the interaction a propose speech act.
Propose The propose collaboration-action is
possible whether a call-for-proposal message
was received or not. If this action is done as a
response to a call-for-proposal and one of the
simple or complex possible actions known by
the service is the asked action, then the proposed
action is the asked action. If the asked action is
not among the known action but there are known

actions that are needed for the asked one (from
the ontology) then the response will include a
propose for all these actions.
 Poss(propose(A)) ≡
 known(A) ∧ poss(A) ∧ gen_poss(A) ∧
 (asked(A) ∨ asked(B) ∧ subactivity(A, B))
Accept Whenever a proposal is received, the
fluent for proposed actions is changed for that
actions. From the current situation a new final
situation is reached, using the proposed actions
and its own actions. If it can be reached a
situation that meets the goal, then accept
collaboration-actions are executed for each
proposed actions included in this theoretical
final situation.
Inform and request These two collaboration
actions are needed when the choice of an action
and its executor is based on some quality
criteria; some more information from the
possible delegated service is needed to decide
whether or not to delegate (e.g. price of
something). A special case of inform is the
acknowledge of finishing the execution of a
delegated action.
Based on the autonomy of web services, the
situations of the services are each other
independent. The only common information that
can appear are the fluents that characterise some
actions in the ontology. For these common
information there are request/inform
collaboration-actions.

Synthesise of composed service
The synthesis of the composed service is the
result of agent collaboration. One agent initiates
the process and then other agents are involved
based on collaboration-actions. Each agent has a
local view about the composed service, knowing
only the actions that it committed to do.
 proc compose(G)
 while ⌐done(G) do
 (πAction a). gen_poss(a) ∧poss(a) ; a
 endWhile
 endproc
The choice of next action to execute is
nondeterministic and it is based only on the
preconditions axioms. When the number of
actions increases, the complexity of choosing an
action in this way is greatly affected.

388

In [6] cases in with an action can be executed
are restricted by requiring not only that an action
a is Poss(a, s), but further that is Desirable(a,s).
This way, the search space for actions is
constraint further. The Desirable fluent can be
extracted from the PSL action ontology. For
stronger constraints, a new fluent can be used
Needed(a,s) that can express the need of
executing an action in a given situation, similar
to expressing a sequence of actions. Some
attention have to be paid when choosing the
fluents, being known the fact that a situation is
not a state, it is a history. From two different
states it can be reached another state throw two
different actions, but if a same situation is
reached from two situations then those two
situations are the same and the actions are the
same too.
The reliability aspect and utility for each service,
together with some quality of service
requirements imposed by the requester of the
composite service are possible to achieve in
MAS context. Based on facts learn from the
recent interactions, each agent can build a
reliability profile for other agents and use it in
choosing the next action.

5. Conclusions and Future Work

The ideas presented in this work are still in an
incipient phase. The primary goal is unifying
technologies for process specification, multi-
agent systems and semantic web in order to
improve autonomous and reliable integration of
services as SOC already emphasised as being
the current challenge. Further work include
refining the collaboration-actions and the
planning throughout ranges of desirability for
each action according to ontology constraints
and QoS requirements. Further more, in
ontology we will add some fail recovery action
that might include compensation too.

References
[1] Battle, S. and Bernstein, A. and Boley, H. and
Grosof, B. and Gruninger, M. and Hull, R and
Kifer, M and Martin, D and McIlraih, S. and
McGuiness, D. and Su, J. and Tabet, S. (2005)
Semantic Web Sevices Ontology , Semantic Web

Services Initiative.
[2] Berardi, D. and Calvanese, D. and De Gia-
como, G and Hull, R. and Mecella, M. (2005)
Automatic Composition of Transition-based
Semantic Web Services with Messaging, Proc. of
the 31st Int. Conf. on Very Large Data Bases,
Trondheim, Norway, ACM Press.
[3] Berardi, D and Calvanese, D. and De Giacomo,
G. and Lenzerini, M. and Mecella, M. (2003)
Automatic composition of e-services that export
their behaviour, Proc. of International Conference
on Service Oriented Computing, Trento, Italy,
Springer.
[4] Bock, C and Gruninger, M. (2005) PSL: A
Semantic Domain for Flow Models, Software and
Systems Modelling Journal, 4:2, Springer.
[5] Bultan, T. and Fu, X. and Hull, R. and Su, J.
(2003) Conversation specification: a new
approach to design and analysis of eservice
composition, Proc. of 12th Int. World Wide Web
Conference, Budapest, Hungary.
[6] McIlraith, S. and Son, T. (2002) Adapting
Golog for Composition of Semantic Web Services,
Proc. of the Eighth International Conference on
Principles and Knowledge Representation and
Reasoning.
[7] Gerede, C. E. and Ibarra, O. H. and
Ravikumar, B. and Su, J. (2005) On-line and
minimum cost ad hoc delegation in e-service
composition, Proc. of IEEE International Con-
ference on Services Computing, Orlando, SUA,
IEEE Computer Society.
[8] Paurobally, S. and Jennings, N. R. (2005)
Protocol engineering for web services
conversations, Journal of Engineering
Applications of Artificial Intelligence, 18(2).
[9] Shen, Z. and Su, J. (2005) Web service
discovery based on behavior signatures, Proc. of
IEEE International Conference on Services
Computing, Orlando, SUA, IEEE Computer
Society.
[10] Singh, M.P. and Huhns, M.N. (2005) Service-
Oriented Computing: Semantics, Processes,
Agents, John Wiley and Sons, Chichester West
Sussex.
[11] Booth, D and Haas, H. and McCabe, F. and
Newcomer, E and Champion, M and Ferris, C and
Orchard, D. (2003) Web Services Architecture,
World Wide Web Consortium.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

